
Lecture 24:

Spring 2025

1

Virtual Memory

ECE 2300
Digital Logic & Computer Organization



Lecture 24:

Announcements

2

• Lab 4 report due tomorrow



Lecture 24:

How Do We Extend and Share Main Memory?

3

• What if one program needs more than the amount of 
installed main memory (i.e., physical memory)? 

• How do multiple programs share the same main memory 
address space (multitasking) ?

Main Memory (GB)

L2 Cache (MB)

L1 Cache (KB)



Lecture 24:

Extending Memory Hierarchy
• Main memory (MM) is managed similar to a cache 
– Data are brought into MM as requested 
– If MM is full, older data get swapped out to disk

4

Main Memory (GB)

L2 Cache (MB)

L1 Cache (KB)

Permanent Disk Storage (TB)

~2-5X slower

~10-50X slower

~100-10000X slower



Lecture 24:

Registers / Cache 
(bytes or words)

Cache / MM
(blocks)

MM / Disk 
(pages)

Data Transfer Granularity (Analogy)

5

Data movement in the memory hierarchy is like transporting goods over different distances:
• Passing a few bytes between registers is like handing a pen to your neighbor—quick and lightweight
• Moving data blocks between main memory and cache is like delivering a box across town in a car
• Transferring pages between disk and memory is like shipping containers across the ocean—bulkier, 

slower, but more efficient per unit at that scale

• Data transfer across the memory hierarchy increases in granularity
– Bytes/words between RF and cache; blocks between cache and main 

memory; pages between disk and memory



Lecture 24:

Sharing Main Memory
• How to enable multiple programs to share the same 

physical MM?

Requirements
– Transparency: a program should not know other programs 

are sharing the same MM
– Protection: a program must not be able to corrupt other 

programs 

Solutions (Virtualizing MM)
– Each program operates in its own virtual address space
– The set of physical MM addresses for each program is 

dynamically allocated and managed

6



Lecture 24: 7

Virtual Memory Intuition



Lecture 24:

Virtual Memory: Main Ideas

8

• The hardware and software mechanisms that 
dynamically manage the memory hierarchy

• Extends memory hierarchy to incorporate large 
permanent storage
– Hide physical size of MM from software
– Moves large blocks (in unit of pages) between MM and 

permanent storage as needed 

• Allows multiple programs (via processes) to share main 
memory with protection and isolation
– A process is an active running instance of a program
– Processes run in virtual address space



Lecture 24: 9

• When a program is compiled, the instruction and data 
addresses are virtual
– They need to translated to the physical addresses

• Virtual addresses refer to the addresses used by the 
programs
– With a N-bit virtual address, the size of the virtual address 

space is 2N bytes

• Physical addresses refer to the real addresses used by 
hardware to access the physical MM
– With a M-bit physical address, the size of the physical address 

space is 2M bytes (typically, M < N)

Virtual and Physical Addresses



Lecture 24:

Virtual Address Space of a Program (Process)*

10

code (text) 

initialized data

Low address 

High address 

uninitialized data

heap

stack
* Supplementary material
(not included in the final exam)
Code Section (or Text) contains the executable 
code of the program, i.e., instructions to be 
executed by the processor.
Initialized Data Section contains initialized 
global & static variables used by the program.
Uninitialized Data Section contains 
uninitialized global & static variables. 
Heap is a memory area where memory is 
dynamically allocated & deallocated at runtime. 
Stack is used for local variables and function 
call information, which grows & shrinks 
dynamically as functions are called & return.



Lecture 24:

Physical Memory Sharing with Virtual Memory

11

Virtual address space 
of process A

Physical address space

Virtual address space 
of process B

• Each process (program) has its own virtual address space
– Allows developers to write software as if it owns all of the computer’s memory
– At any given time, only portions of each process’s virtual memory need to 

reside in physical MM, due to data locality
• The OS allocates pages and “multiplexes” the physical MM across 

processes
– Without virtual memory, could have only one process in MM at a time

memory page



Lecture 24:

Paging

12

• Virtual/physical address space is divided into equal 
sized pages
– A page contains N bytes where N is a power of 2

• N = 4096 is a typical size
– A whole page is read or written during data transfer between 

MM and disk

– Each page in virtual memory space has a unique index called 
virtual page number (VPN)

– Similarly, each page in physical memory space has a unique 
physical page number (PPN)



Lecture 24: 13

View of Virtual Memory with 32b Address

Assuming 32-bit virtual addresses 
(4GB of virtual address space)

0
...

4095
4096

...
8191
8192

Virtual address
(in decimal)

Virtual page 0
(VPN = 0)}

...

...

...

...

4,294,967,295

8 bits

...

Each page contains 
4KB = 4096 bytes

Virtual page 1 
(VPN = 1)}



Lecture 24:

• During a program execution, only a subset of its virtual pages 
need to be in physical main memory (MM) at a time
– When requested, if the page is not already in MM, the OS loads an 

entire page from disk into a physical memory location
– The mapping between virtual to physical pages is saved in a directory 

called page table (which is stored in physical MM)
• When the same virtual address is encountered, it is translated using this 

saved mapping information in the directory

14

Virtual Memory and Physical MM

Virtual pages Physical pages

Disk

Page Table Physical pages

Disk



Lecture 24: 15

Address Translation

Assuming 1GB physical memory here
(30-bit physical address)

analogous to the byte 
offset for a cache
(not translated)

instruction 
or data 
address 

MM address

Address translation 
(performed by a 

page table)



Lecture 24:

Address Translation Using a Page Table

16

special CPU 
register

VPN 
(analogous to 

the index 
for a cache)

indicates that a 
page contains 

212 = 4 KB

A special CPU register
that holds a physical 
address for locating 
the page table

Page table 
entries 
(PTEs)

Page table stored
in physical MM



Lecture 24:

Breaking Down Page Table Operation (1)

17

The Page Table Register (PTR) is a special CPU register for 
locating the page table in the physical MM

PTR holds the physical 
address of the very first 
page table entry (PTE)



Lecture 24:

Breaking Down Page Table Operation (2)

18

Virtual page number 
(VPN) is used to index 
the page table;

PTR+VPN form the 
physical address of the 
page table entry (PTE) to 
access



Lecture 24:

1

Breaking Down Page Table Operation (3)

19

If Valid = 1, then the PPN 
and Page Offset are 
concatenated to form the 
physical address



Lecture 24:

Breaking Down Page Table Operation (4)

20

If Valid = 0, a miss (page fault) has 
occurred, and the page is read from 
disk into MM (replacing another page 
if the MM is full)



Lecture 24:

Example: Page Table Access

21

• Given the following page table and virtual address 
stream (in decimal), identify the potential page faults
128, 2048, 4096, 8192

Valid Physical Page#
0 Disk
1 16
0 Disk
1 4
… …

PTE0

PTE1

PTE2

0
...

4095
4096

page 0
(VPN = 0)

...
8191
8192

}
page 1
(VPN=1)

...

}
...

...

... Virtual 
memoryPage Table



Lecture 24:

Example: Page Table Access

22

• Given the following page table and virtual address 
stream (in decimal), identify the potential page faults
128 (VPN=0), 2048 (VPN=0), 4096 (VPN=1), 8192 (VPN=2)

Valid Physical Page#
0 Disk
1 16
0 Disk
1 4
… …

PTE0

PTE1

PTE2

0
...

4095
4096

page 0
(VPN = 0)

...
8191
8192

}
page 1
(VPN=1)

...

}
...

...

... Virtual 
memoryPage Table



Lecture 24:

Page Faults and Page Replacement
• Miss penalty on a page fault is significant
– Up to ~100M cycles

• Low miss (page fault) rates are essential
– Fully associative page placement (put anywhere in MM)
– LRU replacement of a page when MM is full

• The Operating System (OS) handles page 
placement

23



Lecture 24:

Page Replacement and Write Policy

24

• Too expensive to do true LRU (100K-1M pages); 
Use LRU approximation
– Each PTE has a Reference bit (ref)
– Reference bit is set when a page is accessed
– OS periodically clears all Reference bits
– OS chooses a page with a Reference bit of 0

• Write back policy is used (instead of write 
through)
– Dirty bit in PTE is set on a write to main memory
– Page with set Dirty bit is written to disk if replaced



Lecture 24:

Faster Address Translation
• Must access the page table before an instruction 

can be fetched and before data cache/memory
can be accessed

• Page table accesses have good locality
⇒ Cache the most recent PTEs within the CPU

25



Lecture 24:

Translation Lookaside Buffer (TLB)

26

accessed only 
on a TLB miss

• Small cache of recently accessed PTE (typically 16-512 
entries, fully associative)

Data: physical 
page number

Tag: virtual page 
number



Lecture 24:

TLB Miss Scenarios
• TLB miss, page table hit
– Bring in the PTE information from page table to TLB
– Retry the access
– Usually handled by hardware (the memory 

management unit, or MMU)

• TLB miss, page fault
– Bring in the page from disk (orchestrated by OS)
– Load the page table and TLB (orchestrated by OS)
– Retry the access 

• Cache miss will definitely occur!

27



Lecture 24:

Next Class

Exceptions
Inputs/Outputs

(H&H 6.6.2, 9.2, 9.3.8)

28


