ECE 2300 Digital Logic & Computer Organization Spring 2025

Memories

Announcements

- Final exam is scheduled on Saturday May 10
 @ 9am
- Lab 3a due tomorrow

Review: Critical Path of 32-bit CLA

Carry generation and propagation functions (e.g., G_{7:4}, P_{7:4}) in a 4-bit CLA block do not depend on results from other CLA blocks P's and G's for all CLA blocks are generated *in parallel*

Our Microprocessor Needs (Large) Memory

Memory Organization: An Abstract View

- Two dimensional array of <u>bit cells</u>
 - Each bit cell stores 1 bit
- <u>Address</u> selects a <u>word</u> with multiple bits

General Memory Structure

Only one wordline is asserted at any given time

Types of Memories

- Read-Only Memory (ROM)
 - Truly read-only
 - Written in the factory, and never written after installation
 - Mostly read and rarely written
 - Much faster to read than write
 - Usually non-volatile
- Random Access Memory (RAM)
 - Dynamic RAM (DRAM), Static RAM (SRAM)
 - Read and write any location at similar speeds
 - Typically volatile: loses contents when powered off
 - New classes of non-volatile/persistent RAMs are emerging

Read-Only Memory (ROM) Structure

Example ROM Implementation

Example ROM Implementation

Applications of ROM

- Data & program storage
 - e.g., Boot configuration for personal computers or application code for embedded systems
- Combinational logic functions
 - Lookup table
 - Address inputs = function inputs
 - Data outputs = function outputs

Using ROMs for Combinational Logic

Types of Memories

- Read-Only Memory (ROM)
 - Truly read-only
 - Written in the factory, and never written after installation
 - Mostly read and rarely written
 - Much faster to read than write
 - Usually non-volatile
- Random Access Memory (RAM)
 - Dynamic RAM (DRAM), Static RAM (SRAM)
 - Read and write any location at similar speeds
 - Typically volatile: loses contents when powered off
 - Note: new emerging classes of non-volatile/persistent RAMs are emerging

Dynamic RAMs (DRAMs)

 DRAM modules are usually off-chip and mounted on a separate printed circuit board

- In a typical DRAM, the smallest unit is the memory cell, which forms arrays
 - Arrays make up banks; banks are organized into ranks

Common Organization of a DRAM Array*

- Multiplexed address inputs to reduce pin count
 - Row & column addresses are sent sequentially through a shared subset of pins
 - log₂N bits each for an NxN bit cell array
 - Row address bits arrive first; followed
 by column address
 Address
 RAS I

Row access

- Row-address strobe (RAS) loads row address bits into "row addr" latch to select 1 row
- Column access
 - Column-address strobe (CAS) loads column address bits into "col addr" latch to select 1 column bit

n x n bit cell array

*Optional reading: "How Does DRAM Work?" by Branch Education

DRAM Bit Cell

- Capacitor accessed through a transistor
- Capacitor is charged or discharged to produce a 1 or a 0
- DRAM cells loses their state overtime and must be refreshed periodically, hence the name dynamic

1-Transistor 1-Capacitor (**1T1C**) DRAM Cell

Write a DRAM Bit Cell

- Word line is asserted
- Bit line is driven with the desired value
 - Capacitor is charged by the bit line to store a 1
 - Or discharged by the bit line to store a 0

Read a DRAM Bit Cell

- Word line is asserted
- Bit line is *precharged* halfway between 0 and 1
- Capacitor voltage pulls the bit line slightly higher or lower
 - This also destroys the stored value (which the sense amplifier restores later)
- Sense amplifier <u>detects</u> this small change <u>and amplifies</u> it
 - If the bit line voltage increases, the sense amplifier drives it high (1); otherwise, it pulls it to ground (0).

Example: Read Access to a DRAM Array

To retrieve a word, multiple DRAM arrays are read in parallel¹

¹ In a modern DRAM, a bit cell array typically has more rows than columns (e.g., 64K rows x 8K columns). The columns are organized into groups of memory cells (typically group size=8), and all cells in a group share the same address and are read or written simultaneously.

DRAM Refresh

- Capacitors discharge over time
 - Bit cells must be periodically refreshed (e.g., every 64ms, technology dependent)
- Refresh cycles recharge each memory bit
 - An entire row is refreshed at a time each row periodically accessed using RAS (i.e., read access), which restores the charge

Static RAM (SRAM) Bit Cell

- One cell requires six transistors
 - The core is two cross-coupled inverters
- Maintaining the state of the cell requires a constant power
 - The cell is stable; no refresh cycles needed

SRAM Write

- Drive one bit line high, the other low (depending on the desired value)
- Then turn on word line
- Bit lines over power cell
 with new value

SRAM Read

- Precharge both bit lines high
- Then turn on word line
- One of the two bit lines will be pulled down by the cell
 - Change detected by sensor amplifier

Next Class

Single Cycle Microprocessor (H&H 7.1-7.3.4)