
Lecture 12:

Spring 2025

1

ECE 2300
Digital Logic & Computer Organization

More Timing Analysis
Binary Arithmetic

Lecture 12: 2

• Lab 3 released; Form groups on CMS by Wed

• Lab 2b due tomorrow

Announcements

Lecture 12: 3

Review: Important Timing Parameters

tsetup thold

tcomb

tffpd

tclk

combinational
logic

CLOCK

Lecture 12: 4

• To achieve a higher clock frequency (i.e.,
smaller cycle time), would you prefer
1) A smaller or larger combinational delay?
2) A wider or narrower setup time window?
3) A wider or narrower hold time window?
4) A positive or negative clock skew?

Timing Analysis Discussion (1)

Lecture 12: 5

Review: Positive Clock Skew

Receiving FF receives clock later than sending FF
tffpd(max) + tcomb(max) + tsetup ≤ tclk + tskew(min)

tsetup

(delayed)

tskew

IN

Q1

CLK2

D2

CLK1

combinational
logic

CLK2CLK1 [long wire]

CLOCK

FF2FF1
IN Q1 D2

è tffpd(max) + tcomb(max) + (tsetup – tskew(min)) ≤ tclk

(beneficial skew: setup time window
effectively narrowed)

Lecture 12: 6

Review: Negative Clock Skew

Receiving FF receives clock sooner than sending FF
tsetup

(delayed)

(delayed)

(delayed)

tskew

IN

Q1

CLK2

D2

CLK1 tffpd

tcomb

tffpd(max) + tcomb(max) + tsetup ≤ tclk – tskew(max)

combinational
logic

CLK2CLK1 [long wire] CLOCK

FF2FF1
IN Q1 D2

è tffpd(max) + tcomb(max) + (tsetup + tskew(max)) ≤ tclk

(harmful skew: setup time window
effectively widened)

Lecture 12: 7

Recap: Avoiding Hold Time Violation

• FF input must remain stable after the triggering edge by
at least thold amount of time
– Otherwise, the receiving flip-flop may be contaminated with an

unexpected value

• Need to consider minimum propagation delays
(the shortest timing path) for hold time calculations
 tffpd(min) + tcomb(min) ≥ thold

combinational
logic

CLOCK

FF1 FF2

Lecture 12: 8

Example: Hold Time Constraint
IN Q1 Q2

CLOCK

very short wire (assume
negligible delay)

tffpd(min) + tcomb(min) = tffpd(min)+0 ≥ thold

D2

IN

CLOCK

Q2

D2

Q1

tffpdtffpd

Hold time window (thold): D2 must remain stable
and not change too quickly

FF2FF1

Same requirement
every clock cycle

Lecture 12: 9

Example: Hold Time Calculations

Prop Delay (ns) Setup
Time
(ns)

Hold
Time
(ns)

min max

FF 1 2 3 2

Comb 2 7 - -

• Hold time at FF2 met?

combinational
logic

CLOCK

FF1 FF2

Lecture 12: 10

• To avoid hold time violation, would you prefer
1) A smaller or larger combinational delay?
2) A wider or narrower setup time window?
3) A wider or narrower hold time window?
4) A positive or negative clock skew?

Timing Analysis Discussion (2)

Lecture 12: 11

Hold Time With Positive Clock Skew

IN

Q1

CLK1

CLK2

thold

(delayed)

tskew

D2

Receiving FF receives clock later than sending FF
tffpd(min) + tcomb(min) ≥ thold + tskew(max)

Harmful skew for meeting hold time constraint

(hold time window
effectively widened)

combinational
logic

CLK2CLK1 [long wire]

CLOCK

FF2FF1
IN Q1 D2

tffpd tcomb

Lecture 12: 12

Hold Time With Negative Clock Skew

What if receiving FF receives clock sooner than
sending FF?

tffpd(min) + tcomb(min) ≥ thold – tskew(min)

Beneficial skew for meeting hold time constraint

combinational
logic

CLK2CLK1 [long wire] CLOCK

FF2FF1
IN Q1 D2

(hold time window
effectively narrowed)

Lecture 12: 13

Example: Hold Time Analysis with Clock Skew

Prop Delay (ns) Setup
Time (ns)

Hold Time
(ns)min max

FF 1 3 3 2

Comb 3 7 - -

Clock may arrive at FF2 up to 2ns later than FF1

• Hold time at FF2 met?

combinational
logic

CLOCK

FF1 FF2

Lecture 12: 14

Example: Hold Time Analysis with Clock Skew

Prop Delay (ns) Setup
Time (ns)

Hold Time
(ns)min max

FF 1 3 3 2

Comb 3 7 - -

Clock may arrive at FF2 up to 2ns later than FF1

• Hold time at FF2 met?
tffpd(min) + tcomb(min) >= thold + tskew(max)
1 + 3 >= 2 + 2
The hold time constraint is met

combinational
logic

CLOCK

FF1 FF2

Lecture 12:

Course Content
• Binary numbers and logic gates
• Boolean algebra and combinational logic
• Sequential logic and state machines
• Clocking and timing analysis
• Binary arithmetic
• Memories

• Instruction set architecture
• Processor organization
• Caches and virtual memory
• Input/output

15

Lecture 12:

Unsigned Binary Integers
• An n-bit unsigned number represents 2n integer values

– Range is from 0 to 2n-1
• For the unsigned binary number bn-1bn-2…b1b0 ,

the decimal number is
22 21 20 value
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

16

S
n-1

i=0
D = bi•2i

Lecture 12:

Unsigned Binary Addition
• Just like base-10

– Add from right to left, propagating carry

10010 10010 01111
+ 01001 + 01011 + 00011

carry

1001 0

(18)

(9)

(27)

(18)

(11)

(29)

(15)

(3)

(18)

17

1001 0

Lecture 12:

Signed Magnitude Representation
• Most significant bit is used as a sign bit

– Sign bit of 0 for positive (001 = 1)
– Sign bit of 1 for negative (101 = -1)

• Range is from -(2n-1-1) to (2n-1-1) for an n-bit
number

• Two representations for zero (+0 and -0)

• Does ordinary binary addition still work?
001 (1)

+ 101 (-1)

110 (not 0)

18

Lecture 12: 19

0
1

2

3

-4

-1

-2

-3

000

001

010

011

100

101

110

111

Another Way to Encode Signed
Binary Numbers

Lecture 12:

• A (slightly) different positional
encoding: MSB has weight -2n-1

– n is the bitwidth
– For the 2’s C binary number bn-1bn-2…b1b0,

the decimal is

• Range of an n-bit number:
-2n-1 through 2n-1-1
– Positive numbers and zero are same as

unsigned binary representation
– Most negative number (namely, -2n-1) has

no positive counterpart

-22 21 20

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 -4
1 0 1 -3
1 1 0 -2
1 1 1 -1

20

Two’s Complement Representation (2’s C)

D = S
n-2

i=0
bi•2i-bn-1•2n-1+

Lecture 12:

Two’s Complement Addition
• Procedure for addition is the same as

unsigned addition regardless of the signs of
the numbers

21

001 (1)

+ 111 (-1)

000 (0)

Lecture 12:

Negating a 2’C Number
• To get two’s complement negative notation of

an integer
– Flip every bit first
– Then add one

22

001 (1) 01001 (9)

110 (1’s comp) (1’s comp)

+ 1 + 1
111 (-1) 10111 (-9)

10110

-X = (X’+1)

Lecture 12:

2’s C Negation Shortcut
• To get -X

– Copy bits from right to left up to and including the
first “1”

– Flip remaining bits to the left

011010000 011010000
100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)

23

Lecture 12:

Converting Binary (2’s C) to Decimal
1. If MSB = 1, take two’s complement to get a

positive number
2. Add powers of 2 for bit positions that have a “1”
3. If original number was negative,

add a minus sign

X = 11100110two
 -X = 00011010
 = 24+23+21 = 16+8+2
 = 26ten

 X = -26ten

24
Assuming 8-bit 2’s complement numbers

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

Lecture 12:

Converting Decimal to Binary (2’s C)
First Method: Division
1. Change to nonnegative decimal number
2. Divide by two – remainder is least significant bit
3. Keep dividing by two until answer is zero,

recording remainders from right (LSB) to left
4. Append a zero as the MSB;

if original number X was negative, return X’+1

X = 104ten 104/2 = 52 r0 bit 0 = 0
52/2 = 26 r0 bit 1 = 0
26/2 = 13 r0 bit 2 = 0
13/2 = 6 r1 bit 3 = 1
6/2 = 3 r0 bit 4 = 0
3/2 = 1 r1 bit 5 = 1
1/2 = 0 r1 bit 6 = 1

X = 01101000two

25

Lecture 12:

Converting Decimal to Binary (2’s C)
Second Method: Subtract Powers of Two
1. Change to nonnegative decimal number
2. Subtract largest power of two

less than or equal to number
3. Put a one in the corresponding bit position
4. Keep subtracting until result is zero
5. Append a zero as MSB;

if original was X negative, return X’+1

X = 104ten 104 - 64 = 40 bit 6 = 1
40 - 32 = 8 bit 5 = 1

8 - 8 = 0 bit 3 = 1
X = 01101000two

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

26

Lecture 12:

Fixed Size Representation
• Microprocessors usually represent numbers as fixed size

n-bit values

• Result of adding two n-bit integers is stored as n bits

• Integers are typically 32 or 64 bits (words)
– 4 or 8 bytes (1 byte = 8 bits)

27

Lecture 12:

2 0010
+ 3 0011

2 0010
+ -3 1101

-2 1110
+ 6 0110

-2 1110
+ -6 1010

7 0111
+ 6 0110

-7 1001
+ -4 1100

5 0101 -1 1111 4 0100

-8 1000 -3 1101 5 0101

Fixed Size Addition

• Examples with n = 4

Something went wrong!

28

Lecture 12:

Overflow
• If operands are too big, sum cannot be

represented as n-bit 2’s complement number

• Overflow occurs if
– Signs of both operands are the same, and
– Sign of sum is different

• Another test (easy to do in hardware)
– Carry into MSB does not equal carry out

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)
10001 (-15) 01111 (+15)

29

Lecture 12:

Exercise: Would Overflow Occur?

011100
+ 010101

30

Lecture 12: 31

Next Class

More Binary Arithmetic
ALU

(H&H 5.1-5.2.4)

