ECE 2300 Digital Logic & Computer Organization Spring 2025

More Timing Analysis Binary Arithmetic

Cornell University

Announcements

- Lab 3 released; Form groups on CMS by Wed
- Lab 2b due tomorrow

Review: Important Timing Parameters

Lecture 12: 3

Timing Analysis Discussion (1)

- To achieve a *higher clock frequency* (i.e., smaller cycle time), would you prefer
 - 1) A smaller or larger <u>combinational delay</u>?
 - 2) A wider or narrower <u>setup time window</u>?
 - 3) A wider or narrower hold time window?
 - 4) A positive or negative <u>clock skew</u>?

Recap: Avoiding Hold Time Violation

- FF input must remain stable after the triggering edge by at least t_{hold} amount of time
 - Otherwise, the receiving flip-flop may be contaminated with an unexpected value
- Need to <u>consider minimum propagation delays</u> (the shortest timing path) for hold time calculations

$$\mathbf{t}_{\mathrm{ffpd(min)}} + \mathbf{t}_{\mathrm{comb(min)}} \geq \mathbf{t}_{\mathrm{hold}}$$

Example: Hold Time Constraint

Lecture 12: 8

Example: Hold Time Calculations

	Prop De	elay (ns)	Setup	Hold	
	min	max	Time (ns)	Time (ns)	
FF	1	2	3	2	
Comb	2	7	-	-	

• Hold time at FF2 met?

Timing Analysis Discussion (2)

- To avoid hold time violation, would you prefer
 - 1) A smaller or larger <u>combinational delay</u>?
 - 2) A wider or narrower <u>setup time window</u>?
 - 3) A wider or narrower <u>hold time window</u>?
 - 4) A positive or negative <u>clock skew</u>?

Hold Time With Positive Clock Skew

Receiving FF receives clock later than sending FF

t_{ffpd(min)} + t_{comb(min)} ≥ t_{hold} + t_{skew(max)} (hold time window effectively widened)

Harmful skew for meeting hold time constraint

Hold Time With Negative Clock Skew

What if receiving FF receives clock sooner than sending FF?

 $t_{ffpd(min)} + t_{comb(min)} \ge t_{hold} - t_{skew(min)}$

(hold time window effectively narrowed)

Beneficial skew for meeting hold time constraint

Example: Hold Time Analysis with Clock Skew

Clock may arrive at FF2 up to 2ns later than FF1

	Prop De	elay (ns)	Setup	Hold Time (ns)	
	min	max	Time (ns)		
FF	1	3	3	2	
Comb	3	7	-	-	

• Hold time at FF2 met?

Example: Hold Time Analysis with Clock Skew

Clock may arrive at FF2 up to 2ns later than FF1

	Prop De	elay (ns)	Setup	Hold Time	
	min	max	Time (ns)	(ns)	
FF	1	3	3	2	
Comb	3	7	-	-	

• Hold time at FF2 met?

 $t_{ffpd(min)} + t_{comb(min)} \ge t_{hold} + t_{skew(max)}$ 1 + 3 >= 2 + 2

The hold time constraint is met

Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines
- Clocking and timing analysis
- Binary arithmetic
- Memories
- Instruction set architecture
- Processor organization
- Caches and virtual memory
- Input/output

Unsigned Binary Integers

- An *n*-bit unsigned number represents 2ⁿ integer values
 Range is from 0 to 2ⁿ-1
- For the unsigned binary number b_{n-1}b_{n-2}...b₁b₀, the decimal number is

$$\mathbf{D} = \sum_{i=0}^{n-1} \mathbf{b}_i \bullet \mathbf{2}^i$$

2 ²	2 ¹	2 ⁰	value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Addition

- Just like base-10
 - Add from right to left, propagating carry

Signed Magnitude Representation

- Most significant bit is used as a sign bit
 - Sign bit of 0 for positive (001 = 1)
 - Sign bit of 1 for negative (101 = -1)
- Range is from -(2ⁿ⁻¹-1) to (2ⁿ⁻¹-1) for an n-bit number
- Two representations for zero (+0 and -0)
- Does ordinary binary addition still work?
 001 (1)
 + 101 (-1)
 110 (not 0)

Another Way to Encode Signed Binary Numbers

Two's Complement Representation (2's C)

- A (slightly) different positional encoding: MSB has weight -2ⁿ⁻¹
 - n is the bitwidth
 - For the 2's C binary number $b_{n-1}b_{n-2}...b_1b_0$, the decimal is

$$\mathbf{D} = -\mathbf{b}_{n-1} \bullet \mathbf{2}^{n-1} + \sum_{i=0}^{n-2} \mathbf{b}_i \bullet \mathbf{2}^i$$

- Range of an n-bit number:
 -2ⁿ⁻¹ through 2ⁿ⁻¹-1
 - Positive numbers and zero are same as unsigned binary representation
 - Most negative number (namely, -2ⁿ⁻¹) has no positive counterpart

2 ²	2 ¹	2 ⁰	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	-4
1	0	1	-3
1	1	0	-2
1	1	1	-1

Two's Complement Addition

 Procedure for addition is the same as unsigned addition regardless of the signs of the numbers

> **001** (1) + <u>111</u> (-1) **000** (0)

Negating a 2'C Number

- To get two's complement negative notation of an integer
 - Flip every bit first
 - Then add one

-X = (X'+1)

2's C Negation Shortcut

- To get -X
 - Copy bits from right to left up to and including the first "1"
 - Flip remaining bits to the left

Converting Binary (2's C) to Decimal

- 1. If MSB = 1, take two's complement to get a positive number
- **2.** Add powers of 2 for bit positions that have a "1"
- **3. If original number was negative, add a minus sign**

Assuming 8-bit 2's complement numbers

n 2ⁿ

10 1024

Converting Decimal to Binary (2's C)

First Method: Division

- 1. Change to nonnegative decimal number
- 2. Divide by two remainder is least significant bit
- 3. Keep dividing by two until answer is zero, recording remainders from right (LSB) to left
- 4. <u>Append a zero as the MSB;</u> if original number X was negative, return X'+1

X = 104 _{ten}	104/2	=	52 r0	<i>bit 0 = 0</i>
	52/2	=	26 r0	bit 1 = 0
	26/2	=	13 r0	bit 2 = 0
	13/2	=	6 r1	bit 3 = 1
	6/2	=	3 r0	bit 4 = 0
	3/2	=	1 r1	bit 5 = 1
	1/2	=	0 r1	bit 6 = 1
$X = 01101000_{two}$				

Converting Decimal to Binary (2's C)

Se	cond Method: Subtract F	Powers of Two			O n	
1.	 Change to nonnegative decimal number Subtract largest power of two less than or equal to number 					
2.						
3.	Put a one in the corres	ponding bit position		3	8	
4.	4. Keep subtracting until result is zero					
5.	Append a zero as MSB:					
01	if original was X negativ	, ve, return X'+1		6 7 8	64 128 256	
	X = 104 _{ten}	104 - 64 = 40	bit 6 = 1	9	512	
		40 - 32 = 8 8 - 8 = 0	bit 5 = 1 bit 3 = 1	10	1024	
	$X = 01101000_{two}$					

Fixed Size Representation

- Microprocessors usually represent numbers as fixed size n-bit values
- Result of adding two n-bit integers is stored as n bits
- Integers are typically 32 or 64 bits (words)

- 4 or 8 bytes (1 byte = 8 bits)

Fixed Size Addition

• Examples with n = 4

Overflow

• If operands are too big, sum cannot be represented as *n*-bit 2's complement number

	01000	(8)	11000	(-8)
+_	01001	(9)	+ <u>10111</u>	(-9)
	10001	(-15)	01111	(+15)

- Overflow occurs if
 - Signs of both operands are the same, and
 - Sign of sum is different
- Another test (easy to do in hardware)

- Carry into MSB does not equal carry out

Exercise: Would Overflow Occur?

011100 + 010101

Next Class

More Binary Arithmetic ALU (H&H 5.1-5.2.4)