#### ECE 2300 Digital Logic & Computer Organization Spring 2025

More FSMs Timing



**Cornell University** 

#### Announcements

- HW4 will be released today
- Lab 2a due tomorrow

#### **Review: FSM General Circuit Form**



- Inputs and current state determine state transitions
- Output changes determined by changes in
  - Current state (Moore), or
  - Current state + inputs (Mealy)

#### **FSMs: True or False?**

- The next state in Moore FSM only depends on its current state
- The output logic in Mealy FSM is sequential
- D flip-flop is a Moore machine

#### **Recap: Moore State Diagram for DFF**





|   | <b>S</b> * |       | Q |
|---|------------|-------|---|
| S | D = 0      | D = 1 |   |
| 0 | 0          | 1     | 0 |
| 1 | 0          | 1     | 1 |

S\* = D Q = S

#### **Mealy State Diagram for DFF?**





|   | <b>S</b> *, <b>Q</b> |                   |  |
|---|----------------------|-------------------|--|
| S | D = 0                | D = 1             |  |
| 0 | 0, 0                 | 1, <mark>?</mark> |  |
| 1 | 0, <mark>?</mark>    | 1, 1              |  |

## **Traffic Light Controller**

- 4-way intersection with traffic lights
  - East-West (E & W), North-South (N & S)
- Opposing lanes sequence together
  - 20 seconds dwell on green
  - 5 seconds dwell on yellow
  - 25 seconds dwell on red



#### **Four Scenarios**

- E & W Green / N & S Red for 20 seconds
- E & W Yellow / N & S Red for 5 seconds
- E & W Red / N & S Green for 20 seconds
- E & W Red / N & S Yellow for 5 seconds



## **Traffic Light Controller States**

#### 10 states

- E & W Green / N & S Red1 for 5 seconds
- E & W Green / N & S Red2 for 5 seconds
- E & W Green / N & S Red3 for 5 seconds
- E & W Green / N & S Red4 for 5 seconds
- E & W Yellow / N & S Red for 5 seconds
- E & W Red / N & S Green1 for 5 seconds
- E & W Red / N & S Green2 for 5 seconds
- E & W Red / N & S Green3 for 5 seconds
- E & W Red / N & S Green4 for 5 seconds
- E & W Red / N & S Yellow for 5 seconds

**Clock period is 5 seconds** 



## **Factoring FSMs**

- Break FSM into multiple communicating FSMs
- Simplifies large FSMs
- May result in fewer states



## Traffic Light Controller Using 2 FSMs

- Light Controller (LC) FSM has 4 states
  G/R, Y/R, R/G, R/Y
- Timer FSM controls when the LC FSM advances to the next state

- Keeps LC in *Green* states for 4 clock cycles



**Next:** tells LC FSM to advance to next state **Green:** indicates the green light is currently on

Lecture 10: 12

NS

EW

## Light Controller (LC) FSM



Timer

Green

### **Timer FSM**



















# **Propagation Delay (t<sub>pd</sub>)**

- Time for change in input to change the output
  - Typically specified between 50% points



- Circuits have <u>minimum</u> and <u>maximum</u> propagation delays
  - Minimum sometimes called the contamination delay and maximum the propagation delay

# **Timing Diagram**

 Shows how outputs respond to changes in inputs over time





## **Glitch (Hazard)**

- Unplanned momentary switching of an output
- Types of glitches
  - Static 1-hazard: Input change causes output to go from 1 to 0 to 1 (should have stayed 1)
  - Static 0-hazard: Input change causes output to go from 0 to 1 to 0 (should have stayed 0)
  - Dynamic hazards: Input change causes a change from 0 to 1 to 0 to 1 or from 1 to 0 to 1 to 0 (there should be just one change)









## **Glitch Example**

 Glitches are typically caused by unequal signal propagation delays through the circuit

Assume X and Y are 1 S changes from  $1 \rightarrow 0$ 

**Expected behavior without considering delays:** This is a 2:1 mux. Both inputs are 1, so F should have remained 1 regardless of the S value



Actual behavior: Transition of S'•X is slower than that of S•Y because of the additional propagation delay on the top path  $\rightarrow$  F shows a transient 0 value

## Timing Diagram Showing Glitch





#### **Do Glitches Matter?**













#### **Next Class**

#### Timing Analysis (H&H 3.5)