ECE/ENGRD 2300
Digital Logic & Computer Organization
Spring 2017

Boolean Algebra
Announcements

• Additional handouts posted on course website
 – Weekly calendar
 • TA office hours start next week
 – Regrade form

• Lab 2 will be released tonight

• Rescheduled lecture: Monday Feb 6 @ 7:15pm, Kimball B11
 – In case you have a conflict, email ece2300-staff@csl.cornell.edu before Thursday
Review: Digital Abstraction

• Typically digital implies a *binary* system (base 2)
 – Only 2 recognized values (*logic levels*)
 • High / Low
 • True / False
 • On / Off
 • ...

• Logic levels are particular voltage ranges

• Key idea: don’t allow “0” to be easily mistaken for a “1” or vice versa
Number Bases

- Digital computers represent numbers in binary
- We count in 10
- Mayans used positional notion based on 20

Maya numerals

![Maya numerals image]
Review: Logic Gates

- Logic gates are functions: take one or more binary inputs and produce a binary output.

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOT Gate

\[A' \]

\[
\begin{array}{c|c}
A & Y \\
0 & 1 \\
1 & 0 \\
\end{array}
\]

AND Gate

\[A \cdot B \]

\[
\begin{array}{c|c|c}
A & B & Y \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

OR Gate

\[A + B \]

\[
\begin{array}{c|c|c}
A & B & Y \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Lecture 2: 5
Boolean Algebra

• Mathematical foundation for analyzing and simplifying digital circuits

• Boolean algebra (George Boole, 1854)
 – Two-valued algebraic system
 – Used to formulate true or false postulations

• Switching algebra (Claude Shannon, 1938)
 – Adopted Boolean algebra for digital circuits
 – Terms “Boolean algebra” and “switching algebra” are used interchangeably
Basic “Ingredients”

• Variables that have values of either 1 or 0 (True or False)

• Basic operators are AND, OR, and NOT
Some Important Definitions

• **Literal**: a single variable or its complement
 – e.g., X (positive literal), X' (negative literal)

• **Product term**: AND of (more than one) literals
 – e.g., $X' \cdot Y$

• **Sum term**: OR of literals
 – e.g., $X + Y + Z'$
Operator Precedence

• What does $W \cdot X' + Y \cdot Z$ mean?

• Operator precedence rules
 1. NOT (highest priority)
 2. AND
 3. OR (lowest)
Axioms of Boolean Algebra

- Statements that are assumed true

- Obey the principle of duality
 - Interchange 1 and 0, AND and OR, still correct
 - Many axioms come in pairs
Axioms of Boolean Algebra

• Binary
 \((A1) \quad X = 0 \text{ if } X \neq 1 \quad (A1') \quad X = 1 \text{ if } X \neq 0 \)

• Complement
 \((A2) \quad \text{If } X = 0, \text{ then } X' = 1 \quad (A2') \quad \text{If } X = 1, \text{ then } X' = 0 \)
Axioms of Boolean Algebra

• AND and OR

\[(A3) \ 0 \cdot 0 = 0 \quad (A3') \ 1 + 1 = 1\]
\[(A4) \ 1 \cdot 1 = 1 \quad (A4') \ 0 + 0 = 0\]
\[(A5) \ 0 \cdot 1 = 1 \cdot 0 = 0 \quad (A5') \ 1 + 0 = 0 + 1 = 1\]

• A1-A5 completely define Boolean algebra
 – Everything else derived from these axioms
Single Variable Theorems

- **Identity:**
 - (T1) $X \cdot 1 = X$
 - (T1') $X + 0 = X$

- **Null Element:**
 - (T2) $X \cdot 0 = 0$
 - (T2') $X + 1 = 1$

- **Idempotency:**
 - (T3) $X \cdot X = X$
 - (T3') $X + X = X$

- **Involution:**
 - (T4) $(X')' = X$

- **Complements:**
 - (T5) $X \cdot X' = 0$
 - (T5') $X + X' = 1$

- **Can prove by *perfect induction***
 - Show that all possible inputs meet the theorem
Proof by Perfect Induction

(T3) \(X \cdot X = X \)
- \(X = 0 \Rightarrow 0 \cdot 0 = 0 \)
- \(X = 1 \Rightarrow 1 \cdot 1 = 1 \)

(T3') \(X + X = X \)
- \(X = 0 \Rightarrow 0 + 0 = 0 \)
- \(X = 1 \Rightarrow 1 + 1 = 1 \)

(T5) \(X \cdot X' = 0 \)

(T5') \(X + X' = 1 \)
Two and Three Variable Theorems

- **Commutativity**
 - (T6) \(X \cdot Y = Y \cdot X \)
 - (T6') \(X + Y = Y + X \)

- **Associativity**
 - (T7) \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \)
 - (T7') \((X + Y) + Z = X + (Y + Z) \)

- **Distributivity**
 - (T8) \(X \cdot Y + X \cdot Z = X \cdot (Y + Z) \)
 - (T8') \((X + Y) \cdot (X + Z) = X + (Y \cdot Z) \)

 AND distributes over OR
 OR distributes over AND
Two and Three Variable Theorems

- **Covering**

 \[(T9) \quad X \cdot (X+Y) = X \quad \quad (T9') \quad X + X \cdot Y = X\]

- **Combining**

 \[(T10) \quad X \cdot Y + X \cdot Y' = X \quad \quad (T10') \quad (X+Y) \cdot (X+Y') = X\]

- **Consensus**

 \[(T11) \quad X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z\]

 \[(T11') \quad (X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)\]
Exercise

• **Prove algebraically:** \((T9') \quad X + X \cdot Y = X \)

• **Solution**

\[
\begin{align*}
X + X \cdot Y &= X \cdot 1 + X \cdot Y \\
&= X \cdot (1 + Y) \\
&= X \cdot 1 \\
&= X
\end{align*}
\]
De Morgan’s Theorem

- So important, also known as De Morgan’s Law

(T12) \((X_1 \cdot X_2 \cdot \ldots \cdot X_n)’ = X_1’ + X_2’ + \ldots + X_n’\)

(T12’) \((X_1 + X_2 + \ldots + X_n)’ = X_1’ \cdot X_2’ \cdot \ldots \cdot X_n’\)
De Morgan Example

- By DeMorgan’s Law
 \((X \cdot Y \cdot Z)' = X' + Y' + Z'\)

- Proof by perfect induction

<table>
<thead>
<tr>
<th>XYZ</th>
<th>((X \cdot Y \cdot Z)')</th>
<th>(X' + Y' + Z')</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Canonical Form

• A canonical form is a unique representation for a Boolean function
 – Usually given a fixed ordering of the input variables
 – Two equivalent functions have the same canonical form

• Truth table is a canonical form
 – e.g., (A’+B’) and (AB)’ have the same truth table
 – 2^n rows always required for an n-input function

• Other representations:
 – Canonical sum
 – Canonical product
 – Even more compact forms exist (outside the scope of this course)
Some More Definitions

- **Normal term**: Product or sum term in which every variable appears, and exactly once

- **Minterm**: Normal product
 - e.g., \((X \cdot Y' \cdot Z)\) for a 3-input Boolean function

- **Maxterm**: Normal sum
 - e.g., \((X' + Y + Z')\)
Minterms & Maxterms

<table>
<thead>
<tr>
<th>XYZ</th>
<th>minterm</th>
<th>Minterm name</th>
<th>maxterm</th>
<th>Maxterm name</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>X’Y’Z’</td>
<td>m_0</td>
<td>X+Y+Z</td>
<td>M_0</td>
</tr>
<tr>
<td>001</td>
<td>X’Y’Z</td>
<td>m_1</td>
<td>X+Y+Z’</td>
<td>M_1</td>
</tr>
<tr>
<td>010</td>
<td>X’YZ’</td>
<td>m_2</td>
<td>X+Y’+Z</td>
<td>M_2</td>
</tr>
<tr>
<td>011</td>
<td>X’YZ</td>
<td>m_3</td>
<td>X+Y’+Z’</td>
<td>M_3</td>
</tr>
<tr>
<td>100</td>
<td>XY’Z’</td>
<td>m_4</td>
<td>X’+Y+Z</td>
<td>M_4</td>
</tr>
<tr>
<td>101</td>
<td>XY’Z</td>
<td>m_5</td>
<td>X’+Y+Z’</td>
<td>M_5</td>
</tr>
<tr>
<td>110</td>
<td>XYZ’</td>
<td>m_6</td>
<td>X’+Y’+Z</td>
<td>M_6</td>
</tr>
<tr>
<td>111</td>
<td>XYZ</td>
<td>m_7</td>
<td>X’+Y’+Z’</td>
<td>M_7</td>
</tr>
</tbody>
</table>
Canonical Forms of a Logic Function

- **Canonical sum**: Sum of minterms that correspond to the on-set of a function (for which $F=1$)
 - $F = X'\cdot Y'\cdot Z' + X'\cdot Y\cdot Z + X\cdot Y'\cdot Z' + X\cdot Y\cdot Z$
 - $F = \sum_{X,Y,Z}(0,3,4,7)$

- **Canonical product**: Product of maxterms that correspond to the off-set of a function (for which $F=0$)
 - $F = (X+Y+Z')\cdot(X+Y'+Z)\cdot(X'+Y+Z')\cdot(X'+Y'+Z)$
 - $F = \prod_{X,Y,Z}(1,2,5,6)$

$$F = \sum_{X,Y,Z}(0,3,4,7) = \prod_{X,Y,Z}(1,2,5,6)$$
Before Next Class

• H&H 2.4-2.7

Next Time

Combinational Logic Minimization