ECE/ENGRD 2300 Digital Logic & Computer Organization Spring 2025

Boolean Algebra

Lecture 2: 1

Announcements

- Course staff email <<u>ece2300-staff-L@cornell.edu</u>> is active now
- HW 1 will be released on CMS today
- Labs and office hours start next week
 - More logistics will be posted on Ed soon

Review: Digital Abstraction

- Typically digital implies a *binary* system (base 2)
 - Only 2 recognized values (logic levels)
 - High / Low
 - True / False
 - On / Off

. . .

- Logic levels are particular voltage ranges
 - Don't allow "0" to be easily mistaken for a "1" or vice versa

Fun Facts: Number Bases

- Digital computers represent numbers in binary
- We count in 10
- Mayans used positional notion based on 20

Maya numerals

Review: Logic Gates

- Logic gates are functions: take one or more binary inputs and produce a binary output
 - Note that the input values are not constants

NOT Gate

AND Gate

OR Gate

Truth Table

Lecture 2: 5

Exercise: Truth Table

- Write down the truth table for a three-input function F = f(A,B,C) that outputs
 - F = 1 if (A•B) is <u>equal</u> to (B+C')
 - F = 0 otherwise
- Fill out the blank entries

ABC	F
000	0
001	1
010	0
011	0
100	
101	1
110	
111	1

Boolean Algebra

- Mathematical foundation for analyzing and simplifying digital circuits
- Boolean algebra (George Boole, 1854)
 - Two-valued algebraic system
 - Used to formulate true or false postulations
- Switching algebra (Claude Shannon, 1938)
 - Adopted Boolean algebra for digital circuits in his master's thesis
 "A Symbolic Analysis of Relay and Switching Circuits"
 - Terms "Boolean algebra" and "switching algebra" are often used interchangeably

Basic "Ingredients"

- Variables that have values of either 1 or 0 (True or False)
- Basic operators are AND, OR, and NOT

Some Important Definitions

- Literal: a single variable or its complement

 e.g., A (positive literal), A' (negative literal)
- Product term: AND of (more than one) literals
 e.g., A'•B
- Sum term: OR of literals
 - e.g., A+B+C'

Operator Precedence

- What does D•A'+B•C mean?
- Operator precedence rules
 - 1. NOT (highest priority)
 - 2. AND
 - 3. OR (lowest)

Some More Definitions

- <u>Normal term</u>: Product or sum term in which every variable appears, and exactly once
- Minterm: Normal product

 e.g., (A•B'•C) for a 3-input Boolean function
- <u>Maxterm</u>: Normal sum
 - e.g., (A'+B+C')

Minterms & Maxterms

ABC	Minterm	name	Maxterm	name
000	A'•B'•C'	m 0	A+B+C	Mo
001	A'•B'•C	m 1	A+B+C'	M 1
010	A'•B•C'	m 2	A+B'+C	M 2
011	A'•B•C	m 3	A+B'+C'	Мз
100	A•B'•C'	m 4	A'+B+C	M 4
101	A•B'•C	m 5	A'+B+C'	M 5
110	A•B•C'	m 6	A'+B'+C	M 6
111	A•B•C	m 7	A'+B'+C'	M 7

Each input combination corresponds to a unique minterm/maxterm

Input 0 corresponds to a negative literal in a minterm, 1 to a positive; The opposite applies to maxterms

Canonical Form of a Boolean Function

- A canonical form is a distinct representation for a Boolean function, ensuring that
 - with a fixed ordering of input variables, two equivalent functions have the same form
- Truth table is a canonical form
 - e.g., (A'+B') and (A•B)' have the same truth table
 - 2ⁿ rows required for an n-input function
- Other canonical representations
 - Canonical sum, i.e., canonical sum of products (SOP)
 - Canonical product, i.e., canonical product of sums (POS)
 - Other (more) compact forms exist (outside the scope of 2300)

Canonical Sum of a Boolean Function

- <u>Sum of minterms</u> that correspond to the on-set of a function
 - On-set: the set of input combinations for which the function produces an output of 1

F = 1 if <u>one</u> of the input combinations <u>from on-set</u> is selected; Otherwise, F=0 (Intuition: F=1 when input "hits" the onset)

 $F = A' \cdot B' \cdot C' + A' \cdot B \cdot C + A \cdot B' \cdot C' + A \cdot B \cdot C$ = $m_0 + m_3 + m_4 + m_7$ = $\Sigma_{A,B,C}(0,3,4,7)$

Canonical Product of a Boolean Function

- Product of maxterms that correspond to the off-set of a function
 - Off-set: the set of input combinations for which the function produces an output of 0
 - F = 1 if <u>none</u> of the input combinations <u>from off-set</u> is selected; Otherwise, F=0 (Intuition: F=1 when input "escapes" the offset)
 - $F = (A+B+C') \cdot (A+B'+C) \cdot (A'+B+C') \cdot (A'+B'+C)$ = $M_1 \cdot M_2 \cdot M_5 \cdot M_6$ = $\Pi_{A,B,C}(1,2,5,6)$

 \square

Different Forms, Same Function

 The canonical sum and canonical product are distinct (canonical) forms, representing the same function

 $\mathsf{F} = \Sigma_{\mathsf{A},\mathsf{B},\mathsf{C}}(0,3,4,7) = \Pi_{\mathsf{A},\mathsf{B},\mathsf{C}}(1,2,5,6)$

Lecture 2: 16

Exercise: Canonical Forms

• Write down the canonical sum & product forms for basic operators NOT, AND, OR

Α	F	Α	В	F	Α	В	F
0	1	0	0	0	0	0	0
1	0	0	1	0	0	1	1
		1	0	0	1	0	1
		1	1	1	1	1	1

Axioms of Boolean Algebra

- Statements that are assumed true
- Obey the principle of duality
 - Many axioms come in pairs
 - Interchange 1 and 0, AND and OR, still correct

Axioms of Boolean Algebra

• Binary

(A1) X = 0 if $X \neq 1$ (A1') X = 1 if $X \neq 0$

• Complement

(A2) If X = 0, then X' = 1 (A2') If X = 1, then X' = 0

Axioms of Boolean Algebra

AND and OR

(A3)	0•0=0	(A3')	1+1=1
(A4)	1•1=1	(A4')	0+0=0
(A5)	0•1=1•0=0	(A5')	1+0=0+1=1

- A1-A5 completely define Boolean algebra
 - Everything else derived from these axioms

Single Variable Theorems

- (T1') X+0=X • Identity: (T1) X•1=X
- **Null Element:**
- **Idempotency**:
- Involution:
- Complements:
- (T2) X•0=0 (T2') X+1=1 (T3) X•X=X (T3') X+X=X (T4) (X')'=X (T5) X•X'=0
 - (T5') X+X'=1

- Can prove by perfect induction
 - Show that all possible inputs meet the theorem

Exercise: Proof by Perfect Induction (T3) X•X=X (T3') X+X=X

 $X=0 \rightarrow 0 \cdot 0=0$ $X=0 \rightarrow 0 + 0=0$ $X=1 \rightarrow 1 \cdot 1=1$ $X=1 \rightarrow 1 + 1=1$

(T5) X•X'=0 (T5') X+X'=1

Two and Three Variable Theorems

- Commutativity (T6) X•Y = Y•X (T6') X+Y = Y+X
- Associativity

 (T7) (X•Y)•Z = X•(Y•Z)
 (T7') (X+Y)+Z = X+(Y+Z)
- Distributivity

 (T8) X•Y+X•Z = X•(Y+Z)
 (T8') (X+Y)•(X+Z) = X+(Y•Z)

AND distributes over OR OR distributes over AND

Two and Three Variable Theorems

• Covering

(T9) $X \cdot (X+Y) = X$ (T9') $X+X \cdot Y = X$

- Combining

 (T10) X•Y+X•Y' = X
 (T10') (X+Y)•(X+Y') = X
- Consensus

(T11) $X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$

 $(T11') (X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)$

Exercise

• Prove algebraically: (T9') X+X•Y = X

Exercise

- Prove algebraically: (T9') X+X•Y = X
- Solution

De Morgan's Theorem

Very important, also known as De Morgan's Law

(T12) $(X1 \cdot X2 \cdot ... \cdot Xn)' = X1' + X2' + ... + Xn'$

(T12') $(X1+X2+...+Xn)' = X1' \cdot X2' \cdot ... \cdot Xn'$

De Morgan Example

- By DeMorgan's Law (X•Y•Z)' = X'+Y'+Z'
- Proof by perfect induction

XYZ	(X•Y•Z)'	X'+Y'+Z'
000	1	1
001	1	1
010	1	1
011	1	1
100	1	1
101	1	1
110	1	1
111	0	0

Next Class

Combinational Logic Minimization (H&H 2.4-2.7)

Lecture 2: 29