ECE/ENGRD 2300 Digital Logic & Computer Organization Spring 2025

Course Overview

Zhiru Zhang School of Electrical and Computer Engineering

Cornell University

Today's Lecture

Part 1. About this course

One of the ECE core courses and serves as a gateway to *computer engineering* (CE)

Part 2. Digital abstraction

Digital Computers are Everywhere

Changing Every Aspect of Our Life

many more (to come)

Digital (Super)Intelligence?

Google's AlphaGo defeated top Go player Lee Sedol on March 12, 2016

Source: www.economist.com/science-and-technology/2016/03/12/showdown

AlphaGo training is reported to use 1920 CPUs, 280 GPUs, and additional TPUs

Digital (Super)Intelligence?

•••

Try talking with ChatGPT, our new AI system which is optimized for dialogue. Your feedback will help us improve it.

		1	
		ople)	
		of N Pe	5
		ity (1 o	
		Rar	
			1
			3
	openai.com		
	ChatGPT: Optimizing Language Models for Dialogue		
	We've trained a model called ChatGPT which interacts in a conversational way.		
H	lere's how much it costs to run Oper	nAI's	
0	chot CDT ob oth ot more down		
ب	natGP1 chatbot per day		
t m	night cost around \$3 million per month for OpenAI to run ChatGPT.		
	AI bot ChatGPT writes smart essays		
	- should professors warry?		
	- should professors worry:		

The bot is free for now and can produce uncannily natural, well-referenced writing in response to homework questions.

Training GPT-4 is estimated to cost at over \$10 million

Model vs. Rarity and Estimated IQ 14000 10:157 12000 10000 ity (1 of N Pe 8000 6000 4000 2000 IQ: 141 IQ: 139 IQ: 115 10:123 IQ: 135 opt4o o1 preview ol pro o3 min 03

Al IQs skyrocketed in 2024

send an email from codelessearnmore@gmail.com to frank@codelessearnmore.com with
¹²
the subject "Email sent by ChatGPT" and the content "ChatGPT rocks!" using Python

To send an email from <u>codelessearnmore@gmail.com</u> to <u>frank@codelessearnmore.com</u> with the subject "Email sent by ChatGPT" and the content "ChatGPT rocks!" using Python, you can use the `smtplib` module to send the email. Here is an example of how you can do this:

import smt

Lecture 1: 6

Copy code

How is a Digital Computer Composed?

Our Plan to Tackle the Complexity

- Understand how things work, <u>bottom-up</u>
- Encapsulate our understanding using appropriate <u>abstractions</u>
- Develop <u>hands-on</u> experience by implementing digital circuits on a real FPGA board

Textbook

- We will use the RISC-V edition of the Harris & Harris (H&H) book
 - Cornell library also has an e-book of the 2nd edition (MIPS), which works as an alternative for most readings

Class Resources

- Course Website
 - <u>https://www.csl.cornell.edu/courses/ece2300/</u>
 - Lecture slides, syllabus, and other handouts
- Ed Discussion
 - Announcements and Q&A
 - Links to lecture recordings
- CMSX: Course Management System
 - Assignments and grades
 - Electronic submissions required

Teaching Assistants

- PhD TAs
 - Andrew Butt (atb78)
 - Hank Chen (bc546)
- MEng TAs
 - Jay Chawrey (jpc369)
 - Xingze (Aki) Xu (xx353)

To reach entire staff:

<ece2300-staff-L@cornell.edu>

- Undergrad TAs
 - Anthony Song (abs343)
 - Abigail Kim (ahk89)
 - Cynthia Shao (cys36)
 - Juhyoung Lee (jl3896)
 - Kaelem Bent (kab472)
 - Mohammad Al-Labadi (maa366)
 - Md Shad (mss464)
 - Nimish Goel (ng449)
 - Nathan Rakhlin (npr29)
 - Stephen Barlett (sjb336)
 - Srinithi Krishnamoorthy (sk2693)
 - Rachel Lee (sl2847)
 - Stanley Shen (ss3679)
 - Simeon Turner (smt259)
 - Wei Zheng (wz328)
 - Zarif Karim (zk67)
 - Zachary Jessup (zsj5)

Seeking Help After Class

Ed Discussion

- Questions on lectures, assignments, and labs
- Monitored by instructor & TAs
- Staff email
 - Grading related questions to instructor & TAs
- Instructor email
 - Private matters/appointment
- Office hours
 - Instructor: Thursday, 4:30-6:00pm (Online)
 - TA office hours to be announced soon (In-person)

Grading

- Participation: 3%
 Prelim 1: 14%
- Quizzes: 5% Prelim 2: 16%
- Homework: 12%
 Final: 20%
- Labs: 30%

Participation (3%)

- Participating in-class activities
 - Asking & answering questions in class
 - Live challenges, polls, and discussion
- Contributing to online discussion forum
 Posting questions & helping other students
- A rough rubric
 - Active = 3pts
 - Somewhat engaged = 2pts
 - Little impression = 0-1pt

Labs and Homework (42%)

• Labs (30%)

- Five labs in total
- Prelab: write-up of your (partial) design
- Lab section: implement and test your design
- Report (labs 3 & 4): write up your findings
- Homework (12%)
 - Eight problem sets in total

Exams and Quizzes (55%)

• **Prelims (30%)**

- Thursday, February 27, in class
- Thursday, April 10, 7:30pm @ Goldwin Smith G76
- Final Exam (20%)
 - Date TBD
- Quizzes (5%)
 - You will need to answer pop quiz questions in most lectures, using Google Forms
 - Make-up quizzes can be arranged if you miss lectures due to legitimate reasons
 - Four lowest scores will be dropped

Important Policies

Late Policy

- We collect assignments the instant they are due

- Late submissions = 0 points
- Applies to homework, prelabs, and lab reports
- Total <u>10 slip days</u>, intended to cover minor illnesses or "crunch time"
 - At most TWO slip days for prelab
 - If you have a serious illness or family emergency, contact me

Regrade Policy

Submit regrade form to course staff
 <ece2300-staff-L@cornell.edu> within one week if you
 feel a grading mistake has been made

How to Do Well in This Class

- Attend every lecture and participate
- Read the book sections before class
- Keep up with the week to week assignments
- Seek help if necessary

Academic Integrity

- <u>https://cuinfo.cornell.edu/aic.cfm</u>
- Discussion of homework and lab concepts? YES
- Misrepresenting someone else's work as your own is prohibited
 - Getting someone else's work? NO
 - Sharing your work with others? NO
 - Finding solutions on the web? NO
 - Outsourcing lab/homework to AI? NO
- Buying or selling course materials to commercial vendors (including Internet sites)? NO

Course Schedule

Date	Lecture	Reading	Lab	HW/Exam
Tue 1/21	1: Course Overview [slides] [syllabus]	1.1-1.4.2, 1.5-1.6.2, 2.1-2.3		
Thu 1/23	2: Boolean Algebra [slides]	2.4-2.7		HW 1 out
Tue 1/28	3: Combinational Logic Minimization [slides]	1.7		
Wed 1/29			Lab 1 out	
Thu 1/30	4: CMOS Logic [slides]	2.8		HW 2 out
Fri 1/31				Due: HW 1
Tue 2/4	5: Combinational Building Blocks [slides]	3.1-3.2		
Thu 2/6	6: Sequential Logic: Clocks, Latches, FFs [slides]	4.1-4.5 (skip VHDL), 5.4		HW 3 out
Fri 2/7			Due: Lab 1	Due: HW 2
Tue 2/11	7: More Sequential Logic, Verilog [slides]	3.4, 4.6	Lab 2 out	
Thu 2/13	8: Finite State Machines (FSMs) 1 [slides]	4.9		
Fri 2/14				Due: HW 3

A tentative schedule is on <u>course website</u>

Course Content

- Binary numbers and logic gates
- Boolean algebra and combinational logic
- Sequential logic and state machines
- Binary arithmetic
 Memories
 Digital
 Logic
- Instruction set architecture
- Processor organization
- Caches and virtual memory
- Input/output
- Advanced topics

Computer Organization

Where This Course Sits in the "Stack"

Binary Digital Systems

- <u>Digital</u> system: Finite number of values
- <u>Binary</u> (base 2) system
 Use two states: 0 and 1
- Basic unit of information: the binary digit, or bit
 - Two values: 0 and 1
- 0 and 1 represented by voltages
- Key advantage: efficient circuits (cheap, small, fast, low power)

0 and 1 Don't Have to be Exact

- O and 1 represented by voltage ranges (logic levels)
- Electronic circuits do not need to be perfect
- We can tolerate some noise and computers still work

Binary Encoding is Ubiquitous

• <u>Activity</u>: Look around and identify one item that can be represented using a binary digit

Binary Encoding is Ubiquitous

• <u>Activity</u>: Look around and identify one item that can be represented using a binary digit

Can We Represent More Than 2 Values?

- Yes just use multiple bits
 - A collection of 2 bits gives 4 possible values
 - 00, 01, 10, 11
 - A collection of 3 bits gives 8 possible values
 - 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits gives 2ⁿ possible values

Positional Number Representation

Recall positional notation for decimal numbers

Similar positional system for binary

$$101 \\ 2^{2} 2^{1} 2^{0} \\ 1x4 + 0x2 + 1x1 = 5$$
 base 2 (binary)

Exercise: Binary-to-Decimal Conversion

- White stone = 0
- Black stone = 1
- Convert the first row into a decimal number

From Stones to Numbers

- White stone = 0
- Black stone = 1

$1*2^3+1*2^2+0*2^1+1*2^0$ = 8 + 4 + 0 + 1 = 13

Logic Gates

• Logic gates are functions: take one or more binary inputs and produce a binary output

Build a 1-Bit Adder

- Inputs: A, B and C_{in} (carry-in)
- Outputs: S (sum) and Cout (carry-out)

Build a Multi-Bit Adder

Build a Programmable Microprocessor

Build a Complete Computer

Before Next Class

- Read the syllabus!
- H&H 1.1-1.4.2, 1.5-1.6.2

Next Time

Boolean Algebra (H&H 2.1-2.3)