
PLATFORM-BASED BEHAVIOR-LEVEL AND
SYSTEM-LEVEL SYNTHESIS

Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, Zhiru Zhang
University of California, Los Angeles

Email: {cong, fanyp, leohgl, wjiang, zhiruz}@cs.ucla.edu

Abstract— With the rapid increase of complexity in System-
on-a-Chip (SoC) design, the electronic design automation (EDA)
community is moving from RTL (Register Transfer Level)
synthesis to behavioral-level and system-level synthesis. The
needs of system-level verification and software/hardware co-
design also prefer behavior-level executable specifications, such
as C or SystemC. In this paper we present the platform-based
synthesis system, named xPilot, being developed at UCLA. The
first objective of xPilot is to provide novel behavioral synthesis
capability for automatically generating efficient RTL code from
a C or SystemC description for a given system platform and
optimizing the logic, interconnects, performance, and power
simultaneously. The second objective of xPilot is to provide a
platform-based system-level synthesis capability, including both
synthesis for application-specific configurable processors and
heterogeneous multi-core systems. Preliminary experiments on
FPGAs demonstrate the efficacy of our approach on a wide range
of applications and its value in exploring various design tradeoffs.

I. MOTIVATION

The relentless tracking of Moore’s curve by the entire
semiconductor industry has showcased the exponential scaling
of the transistor feature size by a factor of 0.7 reduction every
three years. This leads to exponentially increasing transistor
counts and results in an explosive growth in functionality and
the amount of computing power available on a single chip.
Today it is perfectly feasible to design a System-on-a-Chip
(SoC) with one billion transistors [7], and it is generally
believed that industry will continue to overcome technical
hurdles to sustain this trend for another decade. However,
the cost of developing these chips and providing production
facilities is also growing at a very fast pace. For instance,
the total development cost of a single complex, high-density
SoC at today’s 90-nm technology can easily be in the $20
to $30 million range. The ITRS 2005 edition [7] has also
emphasized that the cost of design remains the greatest threat
to continuation of the semiconductor roadmap.

Unfortunately, the progress of design technologies lags
behind that of process manufacturing technologies. The con-
stantly improving CAD tools can help to mitigate the problem
by delivering faster simulation, higher capacity formal ver-
ification, and better logic synthesis coupled with place-and-
route. However, these improvements fail to close the design
productivity gap, i.e., the number of available transistors grows
faster than the ability to meaningfully design them.

It is commonly acknowledged that the ultimate solution
is to move to the next level of abstraction beyond RTL,
and Electronic system-level (ESL) design automation has

been widely identified as the next productivity boost for the
semiconductor industry. However, despite some recent success
in ESL simulation, the transition to ESL design will not be
as well accepted as the transition to RTL without robust and
efficient behavior-level and system-level synthesis technolo-
gies that automatically synthesize high-level functional de-
scriptions into optimized software/hardware implementations.
We believe that behavior-level and system-level synthesis and
optimizations are becoming imperative steps in EDA design
flows. They provide the following combined advantages:

Better complexity management: Design abstraction is one
of the most effective methods for controlling rising complexity
and improving design productivity. For example, a recent
study from NEC [8] shows that the code density (in terms
of line counts) can be improved by nearly 10X when moved
to the behavior level. In addition, behavior-level and system-
level synthesis have the added value of allowing efficient
reuse of soft functional/behavioral IPs, which are technology-
independent and can be synthesized for different requirements.

Shorter verification/simulation cycle: System-level syn-
thesis and optimizations allow the designers to start with a
specification in a high-level programming language (HPL)
such as C or SystemC that is directly executable and simulat-
able with high speed (up to 1000X faster than RT-level simula-
tion according to [8]). More importantly, behavioral synthesis
automatically compiles the input descriptions into RTL code
through a series of formal constructive transformations. This
avoids the slow and error-prone manual process and simplifies
the design verification and debugging effort.

Rapid system exploration: With the coexistence of micro-
processors, DSPs, memories and custom logic on a single
chip, more software elements are involved in the process of
designing a modern embedded system. One of the fundamental
challenges of system-level design is the hardware/software
partitioning, a task that is too complex to be feasible at the RT
level. HPL-based design methodologies (especially C-based
designs) offer a promising solution to this problem. With
the aid of behavior-level synthesis, the software programming
languages can also be used to specify functionality in hard-
ware. In this flow, designers can quickly experiment with
different hardware/software boundaries by co-simulating the
HPL descriptions and the automatically synthesized HDLs.

Higher quality of results: VLSI designs in current semi-
conductor technologies are limited by interconnect in both
delay and power. However, since the interconnects are deter-

xPilot

Behavioral
Synthesis

Processor &
Architecture

Synthesis

SSDM

(System Synthesis
Data Model)

SoC

Interface
Synthesis

Analysis

Mapping

Profiling

Processor Cores
+ Executables

Drivers + Glue Logic Custom Logic

xPilot front endxPilot front end

SystemC/CSystemC/C Platform Description & Platform Description &
ConstraintsConstraints

Fig. 1. xPilot system-level synthesis framework.

mined by downstream physical design tools, it is very difficult
for designers to make accurate estimation at the RT level. To
achieve timing and power closure, designers have to adjust
the initial RTL in an ad hoc manner and iterate over the time-
consuming synthesis and layout process. We believe that by
integrating automatic high-level optimizations together with
physical planning, we can optimize the logic and interconnects
simultaneously and achieve higher quality of results (QoR).

In this paper we present the xPilot synthesis system being
developed at UCLA. The goal of xPilot is to provide novel
platform-based synthesis technologies to simultaneously opti-
mize the logic, interconnects, performance, and power (which
becomes much more difficult for human designers), so that we
can improve both design productivity and quality of results.

The reminder of this paper is organized as follows: Sec-
tion II presents an overview of the xPilot infrastructure and the
main features of current xPilot implementation. Section III and
Section IV briefly discuss the system front end and highlight
the behavioral synthesis engine, respectively. The preliminary
experimental results are reported in Section V.

II. XPILOT SYSTEM OVERVIEW

The overall design flow of the xPilot system is shown in
Figure 1. xPilot accepts synthesizable C or SystemC as input.
The behavioral description is first parsed and optimized by
our front end complier. Currently, we use the UIUC LLVM
compiler [6] to parse in C/SystemC code. LLVM consists of
a GCC-based C/C++ front end, a virtual instruction set, a
link-time optimization framework, and various back ends for
common target machines. We leverage the GCC-based com-
piler front end to obtain an LLVM intermediate representation
(IR). On top of this IR, we first recover certain high-level pro-
gramming constructs from the low-level virtual instruction set.
We then perform elaboration to extract the processes, ports,
channels and their interconnection topologies, and construct
our system-level synthesis data model (SSDM)—the internal
data model of xPilot.

The basic building blocks in SSDM are processes and
channels. A process describes the behavior of one module, and

each process uses a control data flow graph (CDFG) to cap-
ture its behavior. Each process interacts with other processes
through ports and channels. Each channel implements one or
more interfaces to capture certain communication protocols.
Altogether, an SSDM defines a process network to model
the concurrent behavior of a complex system. On top of this
powerful data model, various analysis, simulation and profiling
passes can be performed.

We currently rely on the designers to manually partition
the application into software and hardware based on the
performance analysis. Once the hardware/software partitioning
is available, we invoke the xPilot behavioral synthesis engine
to compile the hardware portion of the design to the custom
logics. Specifically, xPilot performs platform-based synthesis
and optimizations during scheduling and resource binding;
these construct an optimized state transition diagram (STG)
and an associated datapath model. At the back end, xPilot
generates RT-level VHDL together with the associated con-
straint files (e.g., multicycle path constraints, physical location
constraints, etc.) to leverage the existing logic synthesis and
physical design toolset. Additionally, xPilot also generates
RT-level SystemC code for fast co-simulation with other
software/hardware modules specified in SystemC.

Since the original design specification is written in a C-
based language, it is relatively straightforward to generate the
software code for embedded processors. During the software
code generation step, we also generate the application-specific
instruction set for the extensible microprocessors. A pattern
generation, selection, and covering algorithm has been devel-
oped [3] to automatically identify and generate the custom in-
structions. We are also developing an microprocessor-network
synthesis and mapping algorithm for homogeneous and/or
heterogeneous multiprocessor systems to exploit task-level
parallelism and further speed up the software implementation.

In order to integrate the microprocessors and custom logics
together, an interface synthesis module is being developed to
generate the software drivers and glue logics.

III. XPILOT FRONT END

xPilot accepts synthesizable C or SystemC as input. C
language is effective for describing sequential behavior within
one single process of the entire system. SystemC, on the
other hand, provides the capability to capture many hardware-
specific features such as process-level parallelism and the
communication/synchronization among concurrent modules.

Our front end compiler translates design descriptions written
in C or SystemC into SSDM—the internal data model of
xPilot. Currently, we use the UIUC LLVM compiler [6] to
parse in C/SystemC code. On top of the LLVM intermediate
representation, we first recover certain high-level programming
constructs from the low-level virtual instruction set, then
perform elaboration to extract the processes, ports, channels
and their interconnection topologies, and construct our SSDM
accordingly based on this information.

Several analysis and optimization passes will be performed
during this stage, including traditional compilation techniques

such as dead code elimination, and hardware-specific passes
such as bitwidth analysis. We observe that the bitwidth
analysis can be very beneficial for many designs, since the
operations and variables can use the function units and the
registers with the minimal widths.

Another major task at the front end is platform characteri-
zation. Specifically, we characterize the delay, area, and power
for each type of available resource (e.g., functional units,
memories, steering logic, etc.) under different input/output
operand count and bitwidth configurations. We also capture
the layout information of the target platform to facilitate
our physical-aware synthesis. The heterogeneous resources
distribution map and the interconnect delay/power lookup
tables are also collected.

IV. BEHAVIORAL SYNTHESIS ENGINE

In this section we will highlight the xPilot behavioral
synthesis engine, including scheduling and resource binding.

A. Scheduling

Scheduling, which exploits parallelism in the behavior-level
design and determines the time at which different computa-
tions and communications are performed, is recognized as one
of the most important problems in behavioral synthesis. How-
ever, the existing scheduling techniques either have limited
efficiency in a specific class of application or lack general
support of various design constraints. To address the above
deficiencies, We have developed a new scheduling algorithm,
which consists of three main steps.

First, we convert a rich set of scheduling constraints into a
system of difference constraints. In particular, for dependency
constraints, we can exactly model data dependencies and
control dependencies. For timing constraints, we can precisely
transform the frequency constraint, relative I/O timing con-
straints, and latency constraints. Since resource-constrained
scheduling problem is intractable in general, we heuristically
convert the resource constraints into difference constraints. Us-
ing this formulation, the consistency of the constraint system
can be checked efficiently by solving a single-source shortest
path problem.

Second, we express the scheduling objective as a linear
function so that the global optimization can be performed by
linear programming. In addition, the matrix formed by the con-
straint equations has a special property that guarantees integral
solution. Under this unified mathematical framework, we can
apply a variety of powerful optimizations by reformulating the
objective function. Specifically, we can generalize As-Soon-
As-Possible and As-Late-As-Possible schedules, and optimize
the worst-case longest-path latency, the expected average-case
latency, and the overall slack distribution.

Third, after we obtain the integer results by the LP solver,
we can directly translate this solution into an actual schedule
in STG representation.

Experiments on a set of real-life behavioral designs show
that our scheduler achieves 15% shorter latency on average

when compared to the scheduler of SPARK [5], a state-of-
the-art academic high-level synthesis system. The technical
details of our scheduling algorithm are discussed in [4].

B. Resource Binding

In the resource binding stage, we focus on the optimization
of interconnects and multiplexors to improve the quality of
results using a distributed register-file microarchitecture.

At the RT level, large number of discrete registers may
result in wide multiplexors and a complicated interconnect
structure. To address this problem, register files can be used,
which replace the multiplexors with the dedicated decoding
logic. However, due to the limited number of read and write
ports, a centralized register file may not provide sufficient
bandwidth for the applications with multiple concurrent data
reads and writes. Distributed register files are required for such
applications. The usage of distributed register files is further
encouraged for modern FPGA and Structured ASIC platforms,
which have rich on-chip distributed memory IP blocks.

We propose a distributed register-file microarchitecture
(DRFM), which consists of multiple islands. Each island
contains a local register file, a functional unit pool, and data-
routing logic. In DRFM, each register file allows a variable
number of read ports but only a fixed number (typically
one) of write ports. The DRFM-based resource binding tries
to minimize the inter-island connections. This will simplify
the data-routing logic in each island and reduce the overall
complexity of the resulting datapath. Our heuristic approach
uses a weighted bipartite matching algorithm to gradually bind
operation set to the target DRFM. Each binding step handles
a set of compatible operations and binds them onto different
islands, with the objective to minimize the amount of newly
introduced inter-island connections.

Our DRFM study on the Virtex-II FPGAs shows more than
2X logic area reduction when compared to the traditional
discrete-register-based approach [5], with a faster clock period
(27% improvement on average). The technical details of our
resource binding algorithm are available in [2].

V. EXPERIMENTAL RESULTS

The xPilot system is implemented in a C++/Linux environ-
ment. In this paper we report the results of targeting the field-
programmable SoC platforms (e.g., Altera and Xilinx FPGAs).

A. Test Examples

We tested xPilot hardware synthesis through several real-
life behavioral designs from different application domains. As
listed in Table I, PR and MCM are two DSP kernels with pure
additions/subtractions and multiplications. CACHE is a cache
controller implementation which is a pure control-intensive
design with cycle-accurate I/O operations. MOT ION performs
the motion compensation algorithm for the MPEG-1 decoder.
This design has multiple branches and a modest amount of
computations. IDCT implements the inverse discrete cosine
transform algorithm used in the JPEG standard, and DWT
implements the discrete wavelet transform algorithm adopted

in the JPEG2000 standard. These two benchmarks contain
a large amount of computations and memory accesses. The
EDGELOOP design is extracted from the H.264 decoder. It
features a mix of computation, control branches, loops and
memory accesses.

TABLE I

C VS. RTL VHDL CODE SIZES

Design C lines VHDL lines LE Fmax(MHz)

PR 90 600 1349 178.7
MCM 161 1260 2402 152.6

CACHE 295 1277 371 161.6
MOTION 130 1200 888 161.2

IDCT 236 7388 9351 162.9
DWT 180 1371 1862 147.3

EDGELOOP 329 7296 7440 100.1

B. Advantage of xPilot Synthesis: Code Size Reduction

In Table I the second and third columns report the compar-
ison on code sizes before and after behavioral synthesis for
the seven test cases. In this experiment we target the Altera
Stratix FPGAs using Quartus II v4.2 as the downstream RTL
synthesis and physical design tool.

On average, the code size of the synthesized RTL designs
is about one order of magnitude larger than the corresponding
C code. If we assume design complexity is proportional to the
code line count, we can expect more than a 10× reduction
in design effort by rising to the behavioral level and applying
our behavioral synthesis tool.

C. Advantage of xPilot Synthesis: Design Tradeoffs

TABLE II

DESIGN TRADEOFF IN XPILOT

Target State Fmax Cycle Latency LE
Cycle time MHz (ns)

9ns 34 123.56 4830 39.1 1777
7ns 36 147.28 5211 35.4 1862

5.5ns 51 183.62 6926 37.8 1926

One of the advantages offered by behavioral synthesis tools
is their ability to explore design tradeoffs among several design
metrics, such as latency, area, and frequency. Currently, xPilot
accepts user-specified assignments of target frequency and
optimization preference (speed or area). Table II shows a set of
design points that xPilot generates for the DWT design. When
we decrease the target cycle time from 9ns to 7ns to 5.5ns, as
expected, the resulting state numbers, execution cycle counts,
and LE counts increase accordingly. In this case, the optimal
latency appears on the second setting (7ns).

D. Advantage of xPilot Synthesis: Shorter Simulation Cycle

We also performed experiments on the DWT design to
show the efficiency of high-level verification/simulation. In
fact, running this module in C specification for 100,000 rounds
takes only one second, while the Modelsim v6.0 simulation

on the RTL VHDL generated by xPilot using the same input
stimulus takes about 2300 seconds.
E. Advantage of xPilot Synthesis: Faster Design Exploration

As one case study on system-level design, we have imple-
mented a Motion-JPEG encoder on a Xilinx XUP Virtex-II Pro
development board. The original C design is obtained from the
UC Berkeley Metropolis group [1].

In this experiment we evaluated the performance of two
alternative design implementations. The first model uses five
MicroBlaze soft-core processors to implement the five major
modules of Motion-JPEG encoder, i.e., preprocessing, DCT,
quantization, Huffman encoding, and table modification. These
MicroBlazes communicate through FIFOs and execute on the
incoming image blocks in a pipelined fashion. In the second
model, we use xPilot to synthesize the software DCT in C into
hardware VHDLs and replace the corresponding MicroBlaze
with our own custom hardware DCT block. After the hardware
synthesis process, which only takes a few seconds, we are
able to obtain a 38% faster implementation using the second
model. In fact, the hardware DCT module itself is at least 6X
faster than the software counterpart, but the overall speedup
is limited by the I/O bandwidth.

F. Advantage of xPilot Synthesis: Better QoR

We made comparisons with SPARK [5] on our benchmark
suite targeting Xilinx Virtex-II FPGAs. After scheduling and
resource binding, xPilot achieves nearly 40% better perfor-
mance (in final latency) with 2× area reduction on average.
The full consideration and detailed characterization of the tar-
get platform partly contribute to the significant improvement.

ACKNOWLEDGMENTS

This research is partially supported by the Semiconductor Research
Corporation, the Gigascale Silicon Research Center, the National
Science Foundation, and grants from Altera Corporation, Magma
Design Automation, Inc., and Xilinx, Inc. under the California
MICRO program.

REFERENCES

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Paserone, and A. L.
Sangiovanni-Vincentelli. Metropolis: an Integrated Electronic System
Design Environment. IEEE, 36(4):45–52, April 2003.

[2] J. Cong and Y. Fan. Platform-Based Resource Binding Using a Dis-
tributed Register-File Microarchitecture. to appear in Proc. International
Conference on Computer-Aided Design, 2006.

[3] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-Specific Instruction
Generation for Configurable Processor Architectures. In Proc. Interna-
tional Symposium on FPGAs, pages 183–189, 2004.

[4] J. Cong and Z. Zhang. An Efficient and Versatile Scheduling Algorithm
Based On SDC Formulation. In Proc. Design Automation Conference,
2006.

[5] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits. Springer, May
2004.

[6] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proc. International Symposium
on Code Generation and Optimization, Palo Alto, California, Mar 2004.

[7] Semiconductor Industry Association. International Technology Roadmap
for Semiconductors, 2005 Edition.

[8] K. Wakabayashi. C-Based Behavioral Synthesis and Verification Analysis
on Industrial Design Examples. In Proc. ASPDAC, pages 344–348, Jan.
2004.

