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ABSTRACT 
Designing an application-specific embedded system in nanometer 
technologies has become more difficult than ever due to the rapid 
increase in design complexity and manufacturing cost. Efficiency 
and flexibility must be carefully balanced to meet different 
application requirements. The recently emerged configurable and 
extensible processor architectures offer a favorable tradeoff 
between efficiency and flexibility, and a promising way to 
minimize certain important metrics (e.g., execution time, code 
size, etc.) of the embedded processors. This paper addresses the 
problem of generating the application-specific instructions to 
improve the execution speed for configurable processors. A set of 
algorithms, including pattern generation, pattern selection, and 
application mapping, are proposed to efficiently utilize the 
instruction set extensibility of the target configurable processor. 
Applications of our approach to several real-life benchmarks on 
the Altera Nios processor show encouraging performance speedup 
(2.75X on average and up to 3.73X in some cases). 

Categories & Subject Descriptors 
B.7.2 [Hardware]: INTEGRATED CIRCUITS − Design Aids 

General Terms 
Algorithms, Performance, Design, Experimentation 
Keywords 
ASIP, configurable processor, compilation, technology mapping, 
binate covering 
1. INTRODUCTION  
Embedded systems have been widely used in various fields in 
today’s world. However, designing a modern embedded system in 
nanometer technologies is more difficult than ever, and the 
problems continue to worsen with shrinking feature sizes. Due to 
the complexity and electrical design challenges posed by each 
new technology generation, the design productivity gap continues 
to grow larger despite the increasingly expensive CAD tools. This 
urges a move toward the use of programmable and reconfigurable 

solutions to allow more flexibility for accommodating 
specification changes and avoiding potential design errors.  
Application-Specific Instruction-set Processors (ASIPs) have 
gained popularity in production chips as well as in the research 
community. They offer a viable solution to tradeoff between 
efficiency and flexibility for the embedded System-on-a-Chip 
(SoC). Generally, an ASIP has the capability to extend the base 
instruction set of a general-purpose processor with a set of 
customized instructions supported by the specific hardware 
resources provided on the ASIP. The hardware implementing the 
specific instructions can be either runtime reconfigurable 
functional units [10][5], or pre-synthesized circuits [27]. As an 
example, Figure 1 (taken from Altera’s website [24]) shows the 
instruction logic of a commercially available configurable 
processor architecture, called Nios. The custom logic can extend 
the functionality of the Nios ALU by implementing the custom 
instructions for complex processing tasks as either single-cycle 
(combinatorial) or multi-cycle (sequential) operations. 

 
Figure 1. Custom instruction logic of Nios. 

Selecting an optimal extended instruction set is crucial to 
enhancing the performance of the ASIP. However, for the large 
programs, this is a difficult task to be achieved by manual designs, 
and is further complicated by various design constraints, such as 
the format of the extended instructions (e.g., the number of input 
and output operands), clock period, available chip area, etc. We 
believe that a fully automated compilation flow is needed to 
generate application-specific instructions, taking full advantage of 
the extensisble capability of the ASIP.  
Several techniques and tools to aid ASIP design automation have 
been presented in recent years. [13] proposed a template 
generation, matching, and covering algorithm. The candidate 
templates are first generated by a clustering algorithm based on 
the occurrence frequency. Then the directed acyclic graph (DAG) 
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covering is formulated as the maximum independent set (MIS) 
problem to maximize the number of covered nodes using a 
minimum number of templates. Unfortunately, the optimization 
objective to minimize the number of templates may not lead to 
faster execution. Moreover, real-life processors always have a 
limited number of input and output operands, but this work does 
not address the architecture constraints for the templates.  
A more general method for application-specific instruction-set 
extension is presented in [2]. The authors define the candidate 
extended instruction to be a convex directed acyclic subgraph 
(which is defined as a cut) with certain input and output 
constraints. They use a branch and bound method to identify a 
single cut in a basic block with maximum speedup. The algorithm 
can be also extended to find the best set of disjoint cuts in 
multiple basic blocks with maximum sum of speedup. However, 
the complexity of the branch and bound algorithm grows very fast 
when the number of instructions becomes large. Also, the 
objective to maximize the sum of speedup of each individual cut 
may not result in the minimum execution time. More importantly, 
cut reuse is not considered in this work. 
A complete ASIP compilation flow is proposed in [19]. The flow 
contains two phases: instruction selection and instruction mapping. 
The authors use either a greedy algorithm or the method in [2] to 
solve the instruction selection problem. Symbolic algebra is used 
to estimate the cost of every specific instruction and to map the 
application to the generated instruction set. The objective of the 
mapping is to decompose the polynomial representation of the 
code into a minimum number of polynomial representations of the 
instructions. Again, the goal to minimize the instruction number 
cannot guarantee the minimum execution time, since an extended 
instruction could have a latency of multiple clock cycles. 
Interestingly, instruction overlapping (or operation duplication) 
may also improve the resulting execution time, while most prior 
works only generate extended instructions with disjoint node sets, 
either during instruction selection [2][19], or DAG mapping [13]. 
Figure 2 shows a data flow graph in which two subgraphs share a 
multiplication operation. The operation will be duplicated when 
the subgraphs are implemented as two extended instructions. 
Clearly, the operation duplication provides more opportunities for 
speedup, as opposed to the non-overlapping constraint assumed 
by previous works. 
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Figure 2. Operation duplication. 
In this paper, we propose a new performance-driven approach to 
the application-specific instruction generation for the configurable 
processor architectures problem (or ASIP compilation problem, 
for short). The problem is solved in three steps. We first 
enumerate all candidate patterns for the given data flow graph, 
subject to the given constraints. Instruction set selection is then 
performed in the second step. A cost function that considers the 

occurrence, speedup, and area cost of a pattern is calculated to 
guide the selection. In this step, a graph isomorphism algorithm is 
used to count the occurrence of a certain pattern. In the final step 
which is called application mapping in this paper, we map the 
data flow graph into the selected patterns to minimize the total 
latency by binate covering. 
Our contributions in this work are as follows: 
 This work transforms the application mapping problem to a 

library-based technology mapping for the area minimization 
problem, which has been extensively studied in the logic 
synthesis domain. Any existing algorithms to solve the 
minimum-area technology mapping problem, such as binate 
covering [20] and tree-based decomposition [20][15], can be 
applied. 

 This work allows the operation duplication implicitly during 
the cut enumeration and the mapping, and thus potentially 
achieves a higher speedup. 

 In contrast to previous works, our optimization goal is the 
minimum execution time, which is the actual performance 
metric of the processor. 

The rest of the paper is organized as follows. We formulate the 
ASIP compilation problem in Section 2. Section 3 introduces our 
algorithms to solve the problems, including pattern enumeration, 
pattern selection, and application mapping. Experimental setup 
and results are presented in Section 4, followed by conclusions in 
Section 5.  

2. PROBLEM STATEMENT 
Traditionally, applications are specified by programs in high-level 
languages. Compilation optimization algorithms are usually 
performed on the control data flow graph (CDFG) derived from 
the program. A control flow graph consists of a set of basic block 
nodes and control edges. Each basic block node is a data flow 
graph in which operation nodes are connected by edges that 
represent data dependencies. We use G(V, E) to denote a data 
flow graph, which is essentially a DAG. Without loss of 
generality, we assume G(V, E) contains only one source node and 
one sink node. Otherwise, a new source or a new sink could be 
added into the graph, and edges from the new source to the old 
ones and those from the old sinks to the new sink could be 
constructed to meet the assumption. In addition, We assume that 
G(V, E) is already decomposed according to a given basic 
instruction set, so that every node (except the source and sink) 
corresponds to a basic instruction. 
We define a pattern p as a cone. For a node v in the DAG, a cone 
of v, denoted as Cv, is a subgraph consisting of v and its 
predecessors, such that any path connecting a node in Cv and v 
lies entirely in Cv. v is the root of Cv. And in our case, a trivial 
pattern contains only one node and can be implemented as a basic 
instruction. A non-trivial pattern satisfying given constraints 
(described below) can be implemented as a special instruction. 
We will not distinguish the terms pattern and extended instruction 
hereafter.  
Every pattern p is associated with execution time in software, 
execution time in hardware, input and output numbers, and 
occurrence, etc. In addition, every non-trivial pattern is also 
associated with an area usage when it is implemented in custom 
logic. For a trivial pattern, we define its execution time in 
hardware to be equal to that in software.  



Since most existing configurable processors only have one write 
port in register file (or memory) [24][8], we only consider the 
instruction format with multiple inputs and single output (MISO). 
Considering the limited reconfigurable resources, we introduce 
area constraint for the final ASIP implementation. Let Nin be the 
number of read ports in the register file of the target ASIP 
architecture, A be the area constraint, and P = {p1, …, pN} be the 
set of selected non-trivial patterns. We have: 

(i) |IN(pi)| ≤ Nin , ∀ i; 

(ii) |OUT(pi)| = 1, ∀ i; 
(iii) 

1
( )i

i N
area p A

≤ ≤
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where IN(pi) and OUT(pi) are the input set and output set of 
pattern pi, and area(pi) is the area usage when pattern pi is 
implemented in custom logic.  
The ASIP Compilation Problem can be formulated as follows: 
NOTATIONS:  
 I: Basic instruction set 

 S: Set of all candidate non-trivial patterns  

 P: Pattern library (i.e., set of selected non-trivial patterns) 

 I+: Extended instruction set, i.e., I+=I∪P  
PROBLEM: Given G(V, E), constraints (i), (ii) and (iii) described 
as above, and a basic instruction set I, generate a selected pattern 
library P and map G to the extended instruction set I+, so that 
every node v ∈ V is covered and the total execution time is 
minimized, where the total execution time is the sum of the 
execution time of every pattern instance used in the mapping.  
We believe that the ASIP synthesis should consider the 
characteristics of the applications and the extensible architecture 
simultaneously. However, due to the high complexity of the task, 
we divide the compilation problem into three sub-problems:  
SUB-PROBLEM 1. Pattern Enumeration: 
Given a G(V, E) and constraints (i) and (ii), generate all of the 
patterns S satisfying the constraints.  

SUB-PROBLEM 2. Instruction Set Selection: 

Given a G(V, E), pattern set S, and constraint (iii), select a subset 
P of S to maximize the potential speedup while satisfying the area 
constraint. Note that P only contains non-trivial patterns of S.  

SUB-PROBLEM 3. Application Mapping: 
Given a G(V, E), basic instruction set I, and a pattern library P, 
generate a mapping from G to I+ so that the total execution time 
of G is minimized. 

3. PROPOSED ALGORITHMS FOR ASIP 
COMPILATION 
We have developed the ASIP synthesis flow shown in Figure 3. 
SUIF [26] is used to transform the C programs into lower-level 
representation, from which a CDFG is generated. Standard 
compilation optimizations, such as loop optimization, have been 
applied within the transformation process. Given the CDFG and 
ASIP constraints, pattern generation and instruction selection are 
performed to produce a pattern library. The refined C program 

using application-specific instructions is then generated by the 
application mapping. 
We will discuss the three sub-problems and their solutions in 
detail in the following sections. 
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Figure 3. Proposed ASIP compilation flow. 

3.1 Pattern Enumeration 
For the pattern enumeration problem, all possible application-
specific instruction patterns in a DAG should be enumerated. 
Since the number of input for each cone should not exceed Nin, 
each pattern generated in our algorithm is a Nin-feasible cone in a 
DAG. We call a cone (or pattern) K-feasible if its input size is less 
than or equal to K.  
To identify all patterns with no more than Nin inputs, all Nin-
feasible cones for each node in the DAG should be enumerated. A 
cut of Cv, denoted as CUT(Cv), is defined to be the set of input 
nodes of Cv. CUT(Cv) is K-feasible if Cv is a K-feasible cone. We 
can see that every cone of a node corresponds to a cut of the node, 
and vice versa.  
A cut can be represented using a product term (p-term) of the 
variables associated with the nodes in the cut. A set of cuts can be 
represented by a sum-of-product expression using the 
corresponding p-terms. For a node u ∈ CUT(Cv), a cut of u is a 
subcut of v. It is clear that a cut of v can be obtained by merging 
one subcut from each of its inputs together. We can use an unate 
Boolean function, called generating function, to represent all the 
cuts based on this representation. For a node w, let fc(K, w) be the 
generating function for all K-feasible cuts of w. For the source 
node s of the DAG, we define fc(K, s) = 0. Then, we can show 

( )
( , ) [ ( , )],K

c cu inputs w
f K w u f K u

∈
= ⊗ +  

where operator + is Boolean OR, and ⊗K is Boolean AND while 
filtering out all the p-terms with more than K variables. For a 
DAG with a single sink t, all K-feasible cuts rooted at t are 
enumerated by fc(K, t).  
The above formulation computes K-feasible cuts for node v by 
merging the cuts of the fan-ins of v and rejecting those cut 
combinations that are not K-feasible. In theory, the number of K-
feasible cuts grows exponentially with respect to K. However, for 
K≤5, this computation is very efficient in practice. The same 
technique is used in FPGA technology mapping [6], where a 
certain (homogeneous or heterogeneous) LUT library is given for 
covering a gate-level network. If we regard the LUT size as the 
input number constraint of the patterns, and regard the gates in the 
network as operations, these two problems are equivalent. 



3.2 Pattern Selection 
After the pattern generation, the resource cost and the execution 
time of every pattern can be obtained using high-level estimation 
tools. We need to meet the total reconfigurable resource constraint 
(i.e., constraint (iii)) in the final hardware implementation for the 
extended instructions. There are two approaches to solving this 
problem. One is to use all the enumerated patterns during the 
application mapping. As will be explained later, optimal code can 
be generated with all the candidate patterns. However, 
computation for the mapping may become unaffordable due to the 
extremely large number of enumerated patterns. The other method 
is to heuristically select a set of patterns satisfying the constraint 
first, and then use them to cover the application. 
We employ the second approach in this work and account for 
pattern occurrence, speedup, and area simultaneously during the 
selection decision.  

3.2.1 Pattern Gain Calculation 
In [13], the authors select the most frequently appearing pattern 
with highest priority. However, they only consider pattern 
occurrence. For less frequent patterns with substantial speedup, 
the substitution of frequent patterns with these patterns may 
provide more speedup. Therefore we combine speedup and 
occurrence as the measurement of gain. 
The speedup of a pattern is measured by comparing the estimated 
cycle number of the execution on customized logic with the 
estimated cycle number of the execution in software. For a trivial 
pattern, the software execution time Tsw equals the hardware 
execution time Thw, which is the execution time of the 
corresponding basic instruction on the general-purpose processors. 
The software execution time Tsw and hardware execution time Thw 
(in terms of cycles) of a non-trivial pattern p is computed in 
following equations: 

( )
( )sw sw

n V p
T T n

∈

= ∑     (1) 

Thw(p) = Length of the critical path of scheduled p,  (2) 
where V(p) is the node set of p.  
Equation (1) indicates that all the instructions in a pattern need to 
be executed sequentially in a basic (single-issue) pipeline 
processor. Therefore, the number of cycles should be added. With 
the consideration of data hazards [11] in the pipeline execution, it 
is not trivial to compute the total latency. In our estimation, we 
assume an ideal pipeline without any data hazards. Equation (2) 
uses the critical path of a schedule to compute the latency. If a 
pattern is implemented with customized logic, the inherent 
instruction level parallelism (ILP) could be fully exploited.1 Here, 
the critical path can be computed with different scheduling 
algorithms and resource constraints, such as the number of 
function units, etc. The speedup of p can be calculated as  

Speedup(p) = Tsw(p) / Thw(p)     (3) 
To count the occurrence of each type of pattern, a graph 
isomorphism algorithm is needed to identify whether two pattern 
instances are identical. The graph isomorphism problem is known 
to be in the set of NP (nondeterministic polynomial), but it is not 
clear whether it is NP-complete [12] or not. A number of 

                                                                 
1 We assume that the custom logic would not degrade the clock period of 

the processor. 

algorithms such as [21], [3], and [17] have been proposed to 
compute graph isomorphism. In our system, we use the nauty 
package [25] for the isomorphism test. The pattern size is 
normally small because of architecture constraints, so the graph 
isomorphism test is fairly fast.  
Combining potential speedup and occurrence together, the gain of 
pattern p is defined as 

Gain(p) = Speedup(p) × Occurrence(p)   (4) 

3.2.2 Selection under Area Constraint 
The selection of the most profitable instructions under area 
constraint can be formulated as a 0-1 knapsack problem.  
0-1 Knapsack Problem: Given n items and weight W, and the ith 
item is associated with value vi and weight wi, select a subset of 
items to maximize the total value, while the total weight does not 
exceed W. 
In our problem, the gain and area cost of a pattern corresponds to 
the value and the weight of the item, respectively, and the area 
constraint corresponds to W. A dynamic programming algorithm 
can be applied to solve this problem optimally, with the 
complexity of O(nW).  

3.3 Application Mapping  
After a pattern library is generated, application mapping covers 
each node with the extended instruction set to minimize the 
execution time. The execution time of a mapped DAG is defined 
as the sum of the execution time of the pattern instances covering 
the DAG. For each non-trivial pattern instance p, the execution 
time is Thw(p); for trivial pattern instance p, it is Tsw(p). Therefore, 
the execution time T of the mapped DAG is  

: non-trivial : trivial
( ) ( )hw sw

p p
T T p T p= +∑ ∑  

The optimal mapping refers to the covering with minimum 
execution time.  
THEOREM: The application mapping problem is equivalent to the 
minimum-area technology mapping problem. 
The basic idea of the proof is as follows:  
Library-based technology mapping [18] transforms a technology-
independent logic network into a bounded network, i.e., into an 
interconnection of components that are instances of element of a 
given library. For minimum-area technology mapping, the total 
area after mapping needs to be minimized.  
Given an instance of the minimum-area technology mapping 
problem with a logic network N and cell library L, we can make 
the transformations to the application mapping problem with a 
subject graph G and extended instruction library I+ as follows: (1) 
G is constructed by directly making a copy of N; (2) I+ is 
constructed by interpreting every component of L as a pattern, and 
the area value of each component as the execution time of the 
corresponding pattern. Since the total execution time after 
application mapping is the sum of the execution time of all the 
pattern instances covering the subject graph, it is obvious that a 
minimum execution time solution for the application mapping 
problem is also a minimum-area solution for the original 
technology mapping problem.  
Vice versa, we can also reduce the application mapping problem 
to the minimum-area technology mapping problem in a similar 
way. Therefore, these two problems are equivalent. 



COROLLARY: The application mapping problem is NP-hard. 
Since library-based technology mapping for the area minimization 
problem is proven to be NP-hard [14], the application mapping 
problem is NP-hard as well, according to the above theorem. 
Several approaches have been proposed for minimum-area 
technology mapping. In [20] the DAG is partitioned into a forest 
of trees for DAG covering. Then a tree pattern matching 
automation is used to match the individual trees. Dynamic 
programming, based on the approach of [1] is used to achieve the 
minimum area mapping. In [20] and [16] binate covering is 
applied to a DAG covering problem. Although binate covering is 
an NP-hard problem, much effort has been spent on this because 
of its wide application. In [4] and [9] an exact solution based on 
branch and bound algorithm was discussed. The work in [7] has 
provided better lower-bound computation and two new pruning 
techniques for an exact solver.  
In this work, we use the binate covering approach because it 
produces the exact solutions with affordable runtimes for the size 
of our problem instances. We review min-cost binate covering 
briefly as follows: 
Binate Covering Problem: Given a Boolean function f(x1,…,xn): 
{0,1}n {0,1} in conjunctive normal form (CNF), and a function C 
which associates a nonnegative cost with the assignment of 
variable xk to a value v (denoted as xk(v), v∈{0,1}), find an 
assignment of (x1, …, xn) to (v1, … ,vn) which evaluates f to 1 and 
the cost is minimized, where the cost is computed as 

1
[ ( )]n

k kk
C x v
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Here we use the example DAG in Figure 4 and patterns in Table 1 
to illustrate the clause generation. Table 1 lists all the patterns and 
their functionality, cost and covered nodes. p0, p1, p2, p3 and p4 are 
trivial patterns. p5, p6, p7 and p8 are patterns of a multiplication 
followed by an addition. p9 and p10 consist of two parallel 
multiplications followed by an addition. The cost is directly set to 
be the execution time. To solve the DAG covering problem, two 
sets of clauses need to be generated: 
 Each node vi that fans out to the sink node must be covered 

by at least one pattern. In our example, since n4 and n5 are 
the fan-ins of the sink node, the covering clauses should be 
created as (p3+p5+p6+p9) and (p4+p7+p8+p10), which means 
that n3 can be covered by any of the patterns among p3, p5, p6 
and p9, and n4 can be covered by any pattern among p4, p7, p8 
and p10. 

 Any satisfying assignment to the clauses formed so far 
guarantees that each node fanning out to the sink node is 
covered by a pattern pi. In addition, we must ensure that the 
appropriate inputs are available to each chosen pattern pi. For 
example, the inputs of p3, which are p5 and p6, should be 
covered. Precisely, assume that pattern pi with m inputs has 
nodes ni1, ni2, …, nim as inputs. If pattern pi is chosen, one of 
the patterns which root at nij must also be chosen for each 
input j, j=1, …, m. Let sij be the clause which is a Boolean 
sum of all the patterns whose root is nij. Selecting pi implies 
that sij must be satisfied for j=1, …, m. This can be written as 
pi→sij and be further translated to ¬pi+sij. For node n3 in 
Figure 4, we generate the clauses (¬p3+p0), (¬p3+p1) in the 
case where we choose p3. Similarly, clauses (¬p5+p1), 
(¬p6+p0) are generated in the cases where patterns p5 and p6 
are chosen, respectively. If node vi can be covered by pi1, …, 

pik with m1, …, mk inputs respectively, there are 

1

k
ll

m
=∑ such clauses.  
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Figure 4. Example graph for DAG-covering. 

To cover the DAG, all the clauses should be satisfied. Therefore 
the Boolean function f is defined as the product of all the clauses. 
For the example in Figure 4, f = (p3+p5+p6+p9) (p4+p7+p8+p10) 
(¬p3+p0) (¬p3+p1) (¬p4+p1) (¬p4+p2) (¬p5+p1) (¬p6+p0) 
(¬p7+p2) (¬p8+p1). Suppose that the cost for every variable in the 
negative form is 0. It is easy to verity that f is satisfied by 
selecting p0, p1, p2, p3 and p4 with a cost 1+1+2+2+2=8. f is also 
satisfied by selecting p9 and p10 with a minimum cost 3+3=6. 

Table 1. A list of patterns. 
Pattern Function Cost Covers 

p0 + 1 n1 
p1 + 1 n2

p2 * 2 n3

p3 * 2 n4

p4 * 2 n5

p5 *+ 3 n4, n1

p6 *+ 3 n4, n2

p7 *+ 3 n5, n2

p8 *+ 3 n5, n3

p9 (*) + (*) 3 n4, n2, n1

p10 (*) + (*) 3 n5, n3, n2

 
After binate covering, we have selected patterns for each node in 
the DAG. In this step the graph is transformed to a new DAG in 
which each node is a pattern instance. The nodes covered by the 
same pattern instance will be collapsed to a new node, and the 
input and output edges of the pattern will be connected to the new 
node. If a non-root node of a pattern belongs to or fans out to 
other patterns, the node needs to be duplicated. For the example in 
Figure 4, if p9 and p10 are selected to cover the DAG, node n2 will 
be automatically duplicated, and the mapping solution is shown in 
Figure 5.  
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Figure 5. A mapping solution for the example. 

4. EXPERIMENTAL RESULTS 
We implemented our algorithms in a C++/Unix environment. The 
C examples used in the experiments are DSP applications from 
[23] and [22]. 



Figure 6 shows the relationships between pattern size and 
occurrence. The trend is quite consistent for these benchmarks. 
Basically, there are more small patterns than large ones in a DAG. 
In this experiment, there are few patterns with more than seven 
operations.  
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Figure 6. Pattern size vs. number of pattern  

instances (2-input patterns). 
Intuitively, the number of legal patterns becomes larger when the 
architectural constraints are relaxed. In Figure 7, the number of 
patterns increases when the input constraint changes from two to 
four. The bars corresponding to 3- and 4-input constraints indicate 
the increments of pattern numbers over those with 2-input 
constraint.  
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Figure 7. Number of pattern instances under  

different input size constraints. 

4.1 Estimated Speedup 
Figure 8 shows the estimated speedups of the compilation results 
versus the original code executed with the basic instruction set. In 
theory, in order to obtain an accurate estimation of the execution 
time for a program running on a processor, we should consider the 
run-time schedule of the operations and its impact on the 
processor’s pipeline. This could be achieved by simulating the 
executions on the processor model. However, since we only try to 
obtain the estimated execution time for comparisons, in our 
experiment configuration we use an approximate throughput value 
for every instructions, for example, we assume that a 32-bit 
multiplication needs two cycles to complete, and an addition 
needs one cycle. The execution time of the extended instructions 
is estimated using the method discussed in Section 3.2.1. Since 
the number of the pattern types is small for these examples, no 
more than nine, we ignore the area constraint and use all the 
patterns generated for application mapping in this experiment.  
The results shown in Figure 8 indicate that for these examples, a 
major portion of the speedup is obtained from the 2-input special 

instructions. Figure 8 also shows that we could achieve more than 
4.5 times speedup with the 3-input pattern constraint, and more 
than 7.5 times with the 4-input constraint.  
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Figure 8. Speedup under different input size constraints. 

4.2 Validation on Nios 
To validate our estimates, we use a commercial reconfigurable 
system  Altera’s Nios [24] to implement the ASIPs. We used 
the Stratix version Nios 3.0 system board running at 50 MHz and 
Altera’s Quartus II 3.0 for synthesis and physical design of the 
custom logic. The Nios processor is able to implement five special 
instruction formats, each of which could have up to 2048 
instructions. Stratix DSP blocks are employed to implement the 
fast multiplications in custom logic. 2   Table 2 lists several 
resource numbers of the Stratix EP1S40 device and its usage 
when a standard Nios (without custom logic) is implemented on it. 
In our experimentation with the Nios system, we select the MUL 
option, which configures the processor with the fastest multiplier 
implementation. We also configure the processor to be fully 
pipelined and optimized for performance. 

Table 2. Resource usage of Nios on Stratix EP1S40. 
 Logic Elements On-chip Memory Bits DSP Elements

Stratix EP1S40 41,250 3,423,744 112 
Standard Nios 6,730 (16.3%) 669,696 (19.6%) 2 (1.8%) 
 
Table 3 shows the results of the speedup and resource overhead 
when the special instructions are implemented to custom logic, 
compared to the system running on the basic instruction set. The 
results show consistent speedups with those we estimated. 3 
Specifically, a maximum speedup of 3.73X and an average 
speedup of 2.75X are achieved for these examples. The average 
resource overheads are 2.54% in logic element and 1.77% in on-
chip memory.  

5. CONCLUSIONS  
In this paper, novel algorithms addressing application-specific 
instruction compilation have been discussed. A pattern 
enumeration algorithm is used to generate instruction candidates, 
subject to certain port constraints. The pattern library is selected 
to maximize the potential speedup subject to a total area 
constraint. We formulate the mapping from the original data flow 
graph to the extended instruction set as the same problem as the 
                                                                 
2 The optimization during the implementation of extended instructions on 

the custom logic also influences the final speedup. Currently, the 
extended instructions are implemented by hand for high quality. 

3 The disparities are due to the ignoring of the impact of the pipeline and 
memory/cache during the execution time estimation.  



area minimization problem for Boolean network mapping. The 
novelties of this work reside in: (1) transforming the instruction 
mapping problem into a minimum-area logic covering problem, 
and allowing many existing algorithms to solve this problem; (2) 
considering operation duplication implicitly during cut 
enumeration and mapping; and (3) using the actual performance 
metric, execution time, as the optimization objective. 
Experimental results have shown the efficacy of our algorithms.  
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Table 3. Speedup and resource overhead on Nios implementations.  
Speedup Resource Overhead  Extended 

Instruction # Estimation Nios LE Memory DSP Block
fft_br 9 3.28 2.65 408 6.06% 65,536 9.79% 16 

iir 7 3.18 3.73 255 3.79% 4,736 0.71% 40 
fir 2 2.40 2.14 51 0.76% 1,024 0.15% 8 
pr 2 1.57 1.75 71 1.05% 0 0.00% 14 
dir 2 3.28 3.02 54 0.80% 0 0.00% 16 

mcm 4 4.75 3.22 186 2.76% 0 0.00% 56 
Average  3.08 2.75 - 2.54% - 1.77% - 

 


