
Application-Specific Instruction Generation for
Configurable Processor Architectures

Jason Cong, Yiping Fan, Guoling Han, Zhiru Zhang
Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA
{cong, fanyp, leohgl, zhiruz}@cs.ucla.edu

ABSTRACT
Designing an application-specific embedded system in nanometer
technologies has become more difficult than ever due to the rapid
increase in design complexity and manufacturing cost. Efficiency
and flexibility must be carefully balanced to meet different
application requirements. The recently emerged configurable and
extensible processor architectures offer a favorable tradeoff
between efficiency and flexibility, and a promising way to
minimize certain important metrics (e.g., execution time, code
size, etc.) of the embedded processors. This paper addresses the
problem of generating the application-specific instructions to
improve the execution speed for configurable processors. A set of
algorithms, including pattern generation, pattern selection, and
application mapping, are proposed to efficiently utilize the
instruction set extensibility of the target configurable processor.
Applications of our approach to several real-life benchmarks on
the Altera Nios processor show encouraging performance speedup
(2.75X on average and up to 3.73X in some cases).

Categories & Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS − Design Aids

General Terms
Algorithms, Performance, Design, Experimentation
Keywords
ASIP, configurable processor, compilation, technology mapping,
binate covering
1. INTRODUCTION
Embedded systems have been widely used in various fields in
today’s world. However, designing a modern embedded system in
nanometer technologies is more difficult than ever, and the
problems continue to worsen with shrinking feature sizes. Due to
the complexity and electrical design challenges posed by each
new technology generation, the design productivity gap continues
to grow larger despite the increasingly expensive CAD tools. This
urges a move toward the use of programmable and reconfigurable

solutions to allow more flexibility for accommodating
specification changes and avoiding potential design errors.
Application-Specific Instruction-set Processors (ASIPs) have
gained popularity in production chips as well as in the research
community. They offer a viable solution to tradeoff between
efficiency and flexibility for the embedded System-on-a-Chip
(SoC). Generally, an ASIP has the capability to extend the base
instruction set of a general-purpose processor with a set of
customized instructions supported by the specific hardware
resources provided on the ASIP. The hardware implementing the
specific instructions can be either runtime reconfigurable
functional units [10][5], or pre-synthesized circuits [27]. As an
example, Figure 1 (taken from Altera’s website [24]) shows the
instruction logic of a commercially available configurable
processor architecture, called Nios. The custom logic can extend
the functionality of the Nios ALU by implementing the custom
instructions for complex processing tasks as either single-cycle
(combinatorial) or multi-cycle (sequential) operations.

Figure 1. Custom instruction logic of Nios.

Selecting an optimal extended instruction set is crucial to
enhancing the performance of the ASIP. However, for the large
programs, this is a difficult task to be achieved by manual designs,
and is further complicated by various design constraints, such as
the format of the extended instructions (e.g., the number of input
and output operands), clock period, available chip area, etc. We
believe that a fully automated compilation flow is needed to
generate application-specific instructions, taking full advantage of
the extensisble capability of the ASIP.
Several techniques and tools to aid ASIP design automation have
been presented in recent years. [13] proposed a template
generation, matching, and covering algorithm. The candidate
templates are first generated by a clustering algorithm based on
the occurrence frequency. Then the directed acyclic graph (DAG)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’04, February 22–24, 2004, Monterey, California, USA

Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

covering is formulated as the maximum independent set (MIS)
problem to maximize the number of covered nodes using a
minimum number of templates. Unfortunately, the optimization
objective to minimize the number of templates may not lead to
faster execution. Moreover, real-life processors always have a
limited number of input and output operands, but this work does
not address the architecture constraints for the templates.
A more general method for application-specific instruction-set
extension is presented in [2]. The authors define the candidate
extended instruction to be a convex directed acyclic subgraph
(which is defined as a cut) with certain input and output
constraints. They use a branch and bound method to identify a
single cut in a basic block with maximum speedup. The algorithm
can be also extended to find the best set of disjoint cuts in
multiple basic blocks with maximum sum of speedup. However,
the complexity of the branch and bound algorithm grows very fast
when the number of instructions becomes large. Also, the
objective to maximize the sum of speedup of each individual cut
may not result in the minimum execution time. More importantly,
cut reuse is not considered in this work.
A complete ASIP compilation flow is proposed in [19]. The flow
contains two phases: instruction selection and instruction mapping.
The authors use either a greedy algorithm or the method in [2] to
solve the instruction selection problem. Symbolic algebra is used
to estimate the cost of every specific instruction and to map the
application to the generated instruction set. The objective of the
mapping is to decompose the polynomial representation of the
code into a minimum number of polynomial representations of the
instructions. Again, the goal to minimize the instruction number
cannot guarantee the minimum execution time, since an extended
instruction could have a latency of multiple clock cycles.
Interestingly, instruction overlapping (or operation duplication)
may also improve the resulting execution time, while most prior
works only generate extended instructions with disjoint node sets,
either during instruction selection [2][19], or DAG mapping [13].
Figure 2 shows a data flow graph in which two subgraphs share a
multiplication operation. The operation will be duplicated when
the subgraphs are implemented as two extended instructions.
Clearly, the operation duplication provides more opportunities for
speedup, as opposed to the non-overlapping constraint assumed
by previous works.

>>

*

+

&

+

*

-

Figure 2. Operation duplication.
In this paper, we propose a new performance-driven approach to
the application-specific instruction generation for the configurable
processor architectures problem (or ASIP compilation problem,
for short). The problem is solved in three steps. We first
enumerate all candidate patterns for the given data flow graph,
subject to the given constraints. Instruction set selection is then
performed in the second step. A cost function that considers the

occurrence, speedup, and area cost of a pattern is calculated to
guide the selection. In this step, a graph isomorphism algorithm is
used to count the occurrence of a certain pattern. In the final step
which is called application mapping in this paper, we map the
data flow graph into the selected patterns to minimize the total
latency by binate covering.
Our contributions in this work are as follows:
 This work transforms the application mapping problem to a

library-based technology mapping for the area minimization
problem, which has been extensively studied in the logic
synthesis domain. Any existing algorithms to solve the
minimum-area technology mapping problem, such as binate
covering [20] and tree-based decomposition [20][15], can be
applied.

 This work allows the operation duplication implicitly during
the cut enumeration and the mapping, and thus potentially
achieves a higher speedup.

 In contrast to previous works, our optimization goal is the
minimum execution time, which is the actual performance
metric of the processor.

The rest of the paper is organized as follows. We formulate the
ASIP compilation problem in Section 2. Section 3 introduces our
algorithms to solve the problems, including pattern enumeration,
pattern selection, and application mapping. Experimental setup
and results are presented in Section 4, followed by conclusions in
Section 5.

2. PROBLEM STATEMENT
Traditionally, applications are specified by programs in high-level
languages. Compilation optimization algorithms are usually
performed on the control data flow graph (CDFG) derived from
the program. A control flow graph consists of a set of basic block
nodes and control edges. Each basic block node is a data flow
graph in which operation nodes are connected by edges that
represent data dependencies. We use G(V, E) to denote a data
flow graph, which is essentially a DAG. Without loss of
generality, we assume G(V, E) contains only one source node and
one sink node. Otherwise, a new source or a new sink could be
added into the graph, and edges from the new source to the old
ones and those from the old sinks to the new sink could be
constructed to meet the assumption. In addition, We assume that
G(V, E) is already decomposed according to a given basic
instruction set, so that every node (except the source and sink)
corresponds to a basic instruction.
We define a pattern p as a cone. For a node v in the DAG, a cone
of v, denoted as Cv, is a subgraph consisting of v and its
predecessors, such that any path connecting a node in Cv and v
lies entirely in Cv. v is the root of Cv. And in our case, a trivial
pattern contains only one node and can be implemented as a basic
instruction. A non-trivial pattern satisfying given constraints
(described below) can be implemented as a special instruction.
We will not distinguish the terms pattern and extended instruction
hereafter.
Every pattern p is associated with execution time in software,
execution time in hardware, input and output numbers, and
occurrence, etc. In addition, every non-trivial pattern is also
associated with an area usage when it is implemented in custom
logic. For a trivial pattern, we define its execution time in
hardware to be equal to that in software.

Since most existing configurable processors only have one write
port in register file (or memory) [24][8], we only consider the
instruction format with multiple inputs and single output (MISO).
Considering the limited reconfigurable resources, we introduce
area constraint for the final ASIP implementation. Let Nin be the
number of read ports in the register file of the target ASIP
architecture, A be the area constraint, and P = {p1, …, pN} be the
set of selected non-trivial patterns. We have:

(i) |IN(pi)| ≤ Nin , ∀ i;

(ii) |OUT(pi)| = 1, ∀ i;
(iii)

1
()i

i N
area p A

≤ ≤

≤∑ ,

where IN(pi) and OUT(pi) are the input set and output set of
pattern pi, and area(pi) is the area usage when pattern pi is
implemented in custom logic.
The ASIP Compilation Problem can be formulated as follows:
NOTATIONS:
 I: Basic instruction set

 S: Set of all candidate non-trivial patterns

 P: Pattern library (i.e., set of selected non-trivial patterns)

 I+: Extended instruction set, i.e., I+=I∪P
PROBLEM: Given G(V, E), constraints (i), (ii) and (iii) described
as above, and a basic instruction set I, generate a selected pattern
library P and map G to the extended instruction set I+, so that
every node v ∈ V is covered and the total execution time is
minimized, where the total execution time is the sum of the
execution time of every pattern instance used in the mapping.
We believe that the ASIP synthesis should consider the
characteristics of the applications and the extensible architecture
simultaneously. However, due to the high complexity of the task,
we divide the compilation problem into three sub-problems:
SUB-PROBLEM 1. Pattern Enumeration:
Given a G(V, E) and constraints (i) and (ii), generate all of the
patterns S satisfying the constraints.

SUB-PROBLEM 2. Instruction Set Selection:

Given a G(V, E), pattern set S, and constraint (iii), select a subset
P of S to maximize the potential speedup while satisfying the area
constraint. Note that P only contains non-trivial patterns of S.

SUB-PROBLEM 3. Application Mapping:
Given a G(V, E), basic instruction set I, and a pattern library P,
generate a mapping from G to I+ so that the total execution time
of G is minimized.

3. PROPOSED ALGORITHMS FOR ASIP
COMPILATION
We have developed the ASIP synthesis flow shown in Figure 3.
SUIF [26] is used to transform the C programs into lower-level
representation, from which a CDFG is generated. Standard
compilation optimizations, such as loop optimization, have been
applied within the transformation process. Given the CDFG and
ASIP constraints, pattern generation and instruction selection are
performed to produce a pattern library. The refined C program

using application-specific instructions is then generated by the
application mapping.
We will discuss the three sub-problems and their solutions in
detail in the following sections.

SUIF / CDFG generator

Instruction Implementation /
ASIP synthesis

Pattern Generation /
Pattern Selection

Application Mapping Pattern library

C

ASIP constraints

CDFG

Refined C

Mapped CDFG

Figure 3. Proposed ASIP compilation flow.

3.1 Pattern Enumeration
For the pattern enumeration problem, all possible application-
specific instruction patterns in a DAG should be enumerated.
Since the number of input for each cone should not exceed Nin,
each pattern generated in our algorithm is a Nin-feasible cone in a
DAG. We call a cone (or pattern) K-feasible if its input size is less
than or equal to K.
To identify all patterns with no more than Nin inputs, all Nin-
feasible cones for each node in the DAG should be enumerated. A
cut of Cv, denoted as CUT(Cv), is defined to be the set of input
nodes of Cv. CUT(Cv) is K-feasible if Cv is a K-feasible cone. We
can see that every cone of a node corresponds to a cut of the node,
and vice versa.
A cut can be represented using a product term (p-term) of the
variables associated with the nodes in the cut. A set of cuts can be
represented by a sum-of-product expression using the
corresponding p-terms. For a node u ∈ CUT(Cv), a cut of u is a
subcut of v. It is clear that a cut of v can be obtained by merging
one subcut from each of its inputs together. We can use an unate
Boolean function, called generating function, to represent all the
cuts based on this representation. For a node w, let fc(K, w) be the
generating function for all K-feasible cuts of w. For the source
node s of the DAG, we define fc(K, s) = 0. Then, we can show

()
(,) [(,)],K

c cu inputs w
f K w u f K u

∈
= ⊗ +

where operator + is Boolean OR, and ⊗K is Boolean AND while
filtering out all the p-terms with more than K variables. For a
DAG with a single sink t, all K-feasible cuts rooted at t are
enumerated by fc(K, t).
The above formulation computes K-feasible cuts for node v by
merging the cuts of the fan-ins of v and rejecting those cut
combinations that are not K-feasible. In theory, the number of K-
feasible cuts grows exponentially with respect to K. However, for
K≤5, this computation is very efficient in practice. The same
technique is used in FPGA technology mapping [6], where a
certain (homogeneous or heterogeneous) LUT library is given for
covering a gate-level network. If we regard the LUT size as the
input number constraint of the patterns, and regard the gates in the
network as operations, these two problems are equivalent.

3.2 Pattern Selection
After the pattern generation, the resource cost and the execution
time of every pattern can be obtained using high-level estimation
tools. We need to meet the total reconfigurable resource constraint
(i.e., constraint (iii)) in the final hardware implementation for the
extended instructions. There are two approaches to solving this
problem. One is to use all the enumerated patterns during the
application mapping. As will be explained later, optimal code can
be generated with all the candidate patterns. However,
computation for the mapping may become unaffordable due to the
extremely large number of enumerated patterns. The other method
is to heuristically select a set of patterns satisfying the constraint
first, and then use them to cover the application.
We employ the second approach in this work and account for
pattern occurrence, speedup, and area simultaneously during the
selection decision.

3.2.1 Pattern Gain Calculation
In [13], the authors select the most frequently appearing pattern
with highest priority. However, they only consider pattern
occurrence. For less frequent patterns with substantial speedup,
the substitution of frequent patterns with these patterns may
provide more speedup. Therefore we combine speedup and
occurrence as the measurement of gain.
The speedup of a pattern is measured by comparing the estimated
cycle number of the execution on customized logic with the
estimated cycle number of the execution in software. For a trivial
pattern, the software execution time Tsw equals the hardware
execution time Thw, which is the execution time of the
corresponding basic instruction on the general-purpose processors.
The software execution time Tsw and hardware execution time Thw
(in terms of cycles) of a non-trivial pattern p is computed in
following equations:

()
()sw sw

n V p
T T n

∈

= ∑ (1)

Thw(p) = Length of the critical path of scheduled p, (2)
where V(p) is the node set of p.
Equation (1) indicates that all the instructions in a pattern need to
be executed sequentially in a basic (single-issue) pipeline
processor. Therefore, the number of cycles should be added. With
the consideration of data hazards [11] in the pipeline execution, it
is not trivial to compute the total latency. In our estimation, we
assume an ideal pipeline without any data hazards. Equation (2)
uses the critical path of a schedule to compute the latency. If a
pattern is implemented with customized logic, the inherent
instruction level parallelism (ILP) could be fully exploited.1 Here,
the critical path can be computed with different scheduling
algorithms and resource constraints, such as the number of
function units, etc. The speedup of p can be calculated as

Speedup(p) = Tsw(p) / Thw(p) (3)
To count the occurrence of each type of pattern, a graph
isomorphism algorithm is needed to identify whether two pattern
instances are identical. The graph isomorphism problem is known
to be in the set of NP (nondeterministic polynomial), but it is not
clear whether it is NP-complete [12] or not. A number of

1 We assume that the custom logic would not degrade the clock period of

the processor.

algorithms such as [21], [3], and [17] have been proposed to
compute graph isomorphism. In our system, we use the nauty
package [25] for the isomorphism test. The pattern size is
normally small because of architecture constraints, so the graph
isomorphism test is fairly fast.
Combining potential speedup and occurrence together, the gain of
pattern p is defined as

Gain(p) = Speedup(p) × Occurrence(p) (4)

3.2.2 Selection under Area Constraint
The selection of the most profitable instructions under area
constraint can be formulated as a 0-1 knapsack problem.
0-1 Knapsack Problem: Given n items and weight W, and the ith
item is associated with value vi and weight wi, select a subset of
items to maximize the total value, while the total weight does not
exceed W.
In our problem, the gain and area cost of a pattern corresponds to
the value and the weight of the item, respectively, and the area
constraint corresponds to W. A dynamic programming algorithm
can be applied to solve this problem optimally, with the
complexity of O(nW).

3.3 Application Mapping
After a pattern library is generated, application mapping covers
each node with the extended instruction set to minimize the
execution time. The execution time of a mapped DAG is defined
as the sum of the execution time of the pattern instances covering
the DAG. For each non-trivial pattern instance p, the execution
time is Thw(p); for trivial pattern instance p, it is Tsw(p). Therefore,
the execution time T of the mapped DAG is

: non-trivial : trivial
() ()hw sw

p p
T T p T p= +∑ ∑

The optimal mapping refers to the covering with minimum
execution time.
THEOREM: The application mapping problem is equivalent to the
minimum-area technology mapping problem.
The basic idea of the proof is as follows:
Library-based technology mapping [18] transforms a technology-
independent logic network into a bounded network, i.e., into an
interconnection of components that are instances of element of a
given library. For minimum-area technology mapping, the total
area after mapping needs to be minimized.
Given an instance of the minimum-area technology mapping
problem with a logic network N and cell library L, we can make
the transformations to the application mapping problem with a
subject graph G and extended instruction library I+ as follows: (1)
G is constructed by directly making a copy of N; (2) I+ is
constructed by interpreting every component of L as a pattern, and
the area value of each component as the execution time of the
corresponding pattern. Since the total execution time after
application mapping is the sum of the execution time of all the
pattern instances covering the subject graph, it is obvious that a
minimum execution time solution for the application mapping
problem is also a minimum-area solution for the original
technology mapping problem.
Vice versa, we can also reduce the application mapping problem
to the minimum-area technology mapping problem in a similar
way. Therefore, these two problems are equivalent.

COROLLARY: The application mapping problem is NP-hard.
Since library-based technology mapping for the area minimization
problem is proven to be NP-hard [14], the application mapping
problem is NP-hard as well, according to the above theorem.
Several approaches have been proposed for minimum-area
technology mapping. In [20] the DAG is partitioned into a forest
of trees for DAG covering. Then a tree pattern matching
automation is used to match the individual trees. Dynamic
programming, based on the approach of [1] is used to achieve the
minimum area mapping. In [20] and [16] binate covering is
applied to a DAG covering problem. Although binate covering is
an NP-hard problem, much effort has been spent on this because
of its wide application. In [4] and [9] an exact solution based on
branch and bound algorithm was discussed. The work in [7] has
provided better lower-bound computation and two new pruning
techniques for an exact solver.
In this work, we use the binate covering approach because it
produces the exact solutions with affordable runtimes for the size
of our problem instances. We review min-cost binate covering
briefly as follows:
Binate Covering Problem: Given a Boolean function f(x1,…,xn):
{0,1}n {0,1} in conjunctive normal form (CNF), and a function C
which associates a nonnegative cost with the assignment of
variable xk to a value v (denoted as xk(v), v∈{0,1}), find an
assignment of (x1, …, xn) to (v1, … ,vn) which evaluates f to 1 and
the cost is minimized, where the cost is computed as

1
[()]n

k kk
C x v

=∑ .

Here we use the example DAG in Figure 4 and patterns in Table 1
to illustrate the clause generation. Table 1 lists all the patterns and
their functionality, cost and covered nodes. p0, p1, p2, p3 and p4 are
trivial patterns. p5, p6, p7 and p8 are patterns of a multiplication
followed by an addition. p9 and p10 consist of two parallel
multiplications followed by an addition. The cost is directly set to
be the execution time. To solve the DAG covering problem, two
sets of clauses need to be generated:
 Each node vi that fans out to the sink node must be covered

by at least one pattern. In our example, since n4 and n5 are
the fan-ins of the sink node, the covering clauses should be
created as (p3+p5+p6+p9) and (p4+p7+p8+p10), which means
that n3 can be covered by any of the patterns among p3, p5, p6
and p9, and n4 can be covered by any pattern among p4, p7, p8
and p10.

 Any satisfying assignment to the clauses formed so far
guarantees that each node fanning out to the sink node is
covered by a pattern pi. In addition, we must ensure that the
appropriate inputs are available to each chosen pattern pi. For
example, the inputs of p3, which are p5 and p6, should be
covered. Precisely, assume that pattern pi with m inputs has
nodes ni1, ni2, …, nim as inputs. If pattern pi is chosen, one of
the patterns which root at nij must also be chosen for each
input j, j=1, …, m. Let sij be the clause which is a Boolean
sum of all the patterns whose root is nij. Selecting pi implies
that sij must be satisfied for j=1, …, m. This can be written as
pi→sij and be further translated to ¬pi+sij. For node n3 in
Figure 4, we generate the clauses (¬p3+p0), (¬p3+p1) in the
case where we choose p3. Similarly, clauses (¬p5+p1),
(¬p6+p0) are generated in the cases where patterns p5 and p6
are chosen, respectively. If node vi can be covered by pi1, …,

pik with m1, …, mk inputs respectively, there are

1

k
ll

m
=∑ such clauses.

n 4 n 5

n 1 n 3

x 1 x 2 x 3 x 4 x 5

*

+ +

s in k

n 2 **

Figure 4. Example graph for DAG-covering.

To cover the DAG, all the clauses should be satisfied. Therefore
the Boolean function f is defined as the product of all the clauses.
For the example in Figure 4, f = (p3+p5+p6+p9) (p4+p7+p8+p10)
(¬p3+p0) (¬p3+p1) (¬p4+p1) (¬p4+p2) (¬p5+p1) (¬p6+p0)
(¬p7+p2) (¬p8+p1). Suppose that the cost for every variable in the
negative form is 0. It is easy to verity that f is satisfied by
selecting p0, p1, p2, p3 and p4 with a cost 1+1+2+2+2=8. f is also
satisfied by selecting p9 and p10 with a minimum cost 3+3=6.

Table 1. A list of patterns.
Pattern Function Cost Covers

p0 + 1 n1
p1 + 1 n2

p2 * 2 n3

p3 * 2 n4

p4 * 2 n5

p5 *+ 3 n4, n1

p6 *+ 3 n4, n2

p7 *+ 3 n5, n2

p8 *+ 3 n5, n3

p9 (*) + (*) 3 n4, n2, n1

p10 (*) + (*) 3 n5, n3, n2

After binate covering, we have selected patterns for each node in
the DAG. In this step the graph is transformed to a new DAG in
which each node is a pattern instance. The nodes covered by the
same pattern instance will be collapsed to a new node, and the
input and output edges of the pattern will be connected to the new
node. If a non-root node of a pattern belongs to or fans out to
other patterns, the node needs to be duplicated. For the example in
Figure 4, if p9 and p10 are selected to cover the DAG, node n2 will
be automatically duplicated, and the mapping solution is shown in
Figure 5.

*+ *

s in k

*+ *

x 1 x 2 x 3 x 4 x 5

Figure 5. A mapping solution for the example.

4. EXPERIMENTAL RESULTS
We implemented our algorithms in a C++/Unix environment. The
C examples used in the experiments are DSP applications from
[23] and [22].

Figure 6 shows the relationships between pattern size and
occurrence. The trend is quite consistent for these benchmarks.
Basically, there are more small patterns than large ones in a DAG.
In this experiment, there are few patterns with more than seven
operations.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10Pattern Size

O
cc

ur
re

nc
e

fft_br
iir
fir
pr
dir
mcm

Figure 6. Pattern size vs. number of pattern

instances (2-input patterns).
Intuitively, the number of legal patterns becomes larger when the
architectural constraints are relaxed. In Figure 7, the number of
patterns increases when the input constraint changes from two to
four. The bars corresponding to 3- and 4-input constraints indicate
the increments of pattern numbers over those with 2-input
constraint.

0

200

400

600

800

1000

1200

1400

1600

fft_br iir fir pr dir mcm

Pa
tte

rn
 In

sta
nc

e
N

um
be

r

4 inputs
3 inputs
2 inputs

Figure 7. Number of pattern instances under

different input size constraints.

4.1 Estimated Speedup
Figure 8 shows the estimated speedups of the compilation results
versus the original code executed with the basic instruction set. In
theory, in order to obtain an accurate estimation of the execution
time for a program running on a processor, we should consider the
run-time schedule of the operations and its impact on the
processor’s pipeline. This could be achieved by simulating the
executions on the processor model. However, since we only try to
obtain the estimated execution time for comparisons, in our
experiment configuration we use an approximate throughput value
for every instructions, for example, we assume that a 32-bit
multiplication needs two cycles to complete, and an addition
needs one cycle. The execution time of the extended instructions
is estimated using the method discussed in Section 3.2.1. Since
the number of the pattern types is small for these examples, no
more than nine, we ignore the area constraint and use all the
patterns generated for application mapping in this experiment.
The results shown in Figure 8 indicate that for these examples, a
major portion of the speedup is obtained from the 2-input special

instructions. Figure 8 also shows that we could achieve more than
4.5 times speedup with the 3-input pattern constraint, and more
than 7.5 times with the 4-input constraint.

0

1

2

3

4

5

6

7

8

fft_br iir fir pr dir mcm

Sp
ee

du
p

4-inputs
3-inputs
2-inputs

Figure 8. Speedup under different input size constraints.

4.2 Validation on Nios
To validate our estimates, we use a commercial reconfigurable
system Altera’s Nios [24] to implement the ASIPs. We used
the Stratix version Nios 3.0 system board running at 50 MHz and
Altera’s Quartus II 3.0 for synthesis and physical design of the
custom logic. The Nios processor is able to implement five special
instruction formats, each of which could have up to 2048
instructions. Stratix DSP blocks are employed to implement the
fast multiplications in custom logic. 2 Table 2 lists several
resource numbers of the Stratix EP1S40 device and its usage
when a standard Nios (without custom logic) is implemented on it.
In our experimentation with the Nios system, we select the MUL
option, which configures the processor with the fastest multiplier
implementation. We also configure the processor to be fully
pipelined and optimized for performance.

Table 2. Resource usage of Nios on Stratix EP1S40.
 Logic Elements On-chip Memory Bits DSP Elements

Stratix EP1S40 41,250 3,423,744 112
Standard Nios 6,730 (16.3%) 669,696 (19.6%) 2 (1.8%)

Table 3 shows the results of the speedup and resource overhead
when the special instructions are implemented to custom logic,
compared to the system running on the basic instruction set. The
results show consistent speedups with those we estimated. 3
Specifically, a maximum speedup of 3.73X and an average
speedup of 2.75X are achieved for these examples. The average
resource overheads are 2.54% in logic element and 1.77% in on-
chip memory.

5. CONCLUSIONS
In this paper, novel algorithms addressing application-specific
instruction compilation have been discussed. A pattern
enumeration algorithm is used to generate instruction candidates,
subject to certain port constraints. The pattern library is selected
to maximize the potential speedup subject to a total area
constraint. We formulate the mapping from the original data flow
graph to the extended instruction set as the same problem as the

2 The optimization during the implementation of extended instructions on

the custom logic also influences the final speedup. Currently, the
extended instructions are implemented by hand for high quality.

3 The disparities are due to the ignoring of the impact of the pipeline and
memory/cache during the execution time estimation.

area minimization problem for Boolean network mapping. The
novelties of this work reside in: (1) transforming the instruction
mapping problem into a minimum-area logic covering problem,
and allowing many existing algorithms to solve this problem; (2)
considering operation duplication implicitly during cut
enumeration and mapping; and (3) using the actual performance
metric, execution time, as the optimization objective.
Experimental results have shown the efficacy of our algorithms.

ACKNOWLEDGMENT
This research is partially funded by MARCO/DARPA Gigascale
Silicon Research Center (GSRC), National Science Foundation
under award CCR-0096383, and Altera Corporation under the
California MICRO program.

REFERENCES
[1] A. Aho and S. C. Johnson, “Optimal Code Generation for

Expression Trees,” Journal of the ACM, vol. 23, pp. 488-501, Jul.
1976.

[2] K. Atasu, L. Pozzi, and P. Ienne, “Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Constraints,” in
Proceedings of the 40th DAC Design Automation Conference, pp.
256-261, Jun. 2003.

[3] L. Babai and E. M. Luks, “Canonical Labeling of Graphs,” in
Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pp. 171-183, Dec. 1983.

[4] R. K. Brayton and F. Somenzi, “Boolean Relations and the
Incomplete Specification of Logic Networks,” in Proceedings of the
1989 International Conference on Computer-Aided Design, pp. 316-
319, Nov. 1989.

[5] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp
Architecture and C Compiler,” IEEE Computer, vol. 33(4), pp. 62-
69, Apr. 2000.

[6] J. Cong, C.Wu, and Y. Ding, “Cut Ranking and Pruning: Enabling a
General and Efficient FPGA Mapping Solution,” in Proceedings of
the 7th ACM/SIGDA International Symposium of FPGAs, pp. 29-35,
Feb. 1999.

[7] O. Coudert, “On Solving Binate Covering Problems,” in
Proceedings of the 33rd Design Automation Conference, pp. 197-
202, Jun. 1996.

[8] R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,”
IEEE Micro, vol. 20(2), pp. 60-70, Mar. 2000.

[9] A. Grasselli and F. Luccio, “A Method for Minimizing the Number
of Internal States in Incompletely Specified Machines,” IEEE
Transactions on Electronic Computers, vol. 14(3), pp. 350-359, Jun.
1965.

[10] S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao, “The Chimaera
Reconfigurable Functional Unit,” in Proceedings of Annual IEEE
Symposium on Field-Programmable Custom Computing Machines,
pp. 87-96, Apr. 1997.

[11] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A
Quantitative Approach, Second Edition,” Morgan Kaufmann
Publishers, San Francisco, 1996.

[12] R. M. Karp, “Reducibility Among Combinatorial Problems,” Tech.
Rep #3, EECS Department, University of California, Berkeley, Apr.
1972.

[13] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzaden,
“Instruction Generation for Hybrid Reconfigurable Systems,” ACM
Transactions on Design Automation of Electronic Systems, vol. 7, pp.
605-627, Oct. 2002.

[14] K. Keutzer and D. Richards, “Computational Complexity of Logic
Synthesis and Optimization,” in Proceedings of International
Workshop on Logic Synthesis, May 1989.

[15] K. Keutzer, “DAGON: Technology Binding and Local Optimization
by DAG Matching,” in Proceedings of the 24th Design Automation
Conference, pp. 341-347, Jun. 1987.

[16] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction
Selection Using Binate Covering for Code Size Optimization,” in
Proceedings of International Conference on Computer Aided Design,
pp. 393-399, Nov. 1995.

[17] B. D. McKay, “Practical Graph Isomorphism,” Congressus
Numerantium, vol 30, pp. 45-87, 1981.

[18] G. D. Micheli, “Synthesis and Optimization of Digital Circuits,”
McGraw-Hill, 1994.

[19] A. Peymandoust, L. Pozzi, P. Ienne, and G. De Micheli, “Automatic
Instruction-Set Extension and Utilization for Embedded Processors,”
in Proceedings of the 14th International Conference on Application-
specific Systems, Architectures and Processors, Jun. 2003.

[20] R. L. Rudell, “Logic Synthesis for VLSI Design,” Ph.D. Thesis, U.
C. Berkeley, ERL Memo 89/49, 1989.

[21] D. C. Schmidt and L. E. Druffel, “A Fast Backtracking Algorithm to
Test Directed Graphs for Isomorphism Using Distance Matrices,”
Journal of the ACM, vol. 23 no. 3, pp. 433-445, Jul. 1976.

[22] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” IEEE Transactions on VLSI Systems, vol.
3, no. 1, pp. 2-19, Mar. 1995.

[23] V. Zivojinovic, J. M. Velarde, C. Schlager, and H. Meyr, “DSPStone
− A DSP-oriented Benchmarking Methodology,” in Proceedings of
International Conference on Signal Processing Application
Technology, pp. 715-720, Oct. 1994.

[24] Altera Corp., http://www.altera.com.
[25] Nauty Package, http://cs.anu.edu.au/people/bdm/nauty.
[26] SUIF Compiler, http://suif.stanford.edu.
[27] Tensilica Inc., http://www.tensilica.com.

Table 3. Speedup and resource overhead on Nios implementations.
Speedup Resource Overhead Extended

Instruction # Estimation Nios LE Memory DSP Block
fft_br 9 3.28 2.65 408 6.06% 65,536 9.79% 16

iir 7 3.18 3.73 255 3.79% 4,736 0.71% 40
fir 2 2.40 2.14 51 0.76% 1,024 0.15% 8
pr 2 1.57 1.75 71 1.05% 0 0.00% 14
dir 2 3.28 3.02 54 0.80% 0 0.00% 16

mcm 4 4.75 3.22 186 2.76% 0 0.00% 56
Average 3.08 2.75 - 2.54% - 1.77% -

