
Efficient Memory Integrity
Verification and Encryption for
Secure Processors

G. Edward Suh, Dwaine Clarke,
Blaise Gassend, Marten van Dijk,
Srinivas Devadas

Massachusetts Institute of Technology

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

New Security Challenges

• Current computer systems have a large Trusted
Computing Base (TCB)
– Trusted hardware: processor, memory, etc.
– Trusted operating systems, device drivers

• Future computers should have a much smaller TCB
– Untrusted OS
– Physical attacks Without additional protection, components

cannot be trusted

• Why smaller TCB?
– Easier to verify and trust
– Enables new applications

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Applications

• Emerging applications require TCBs that are secure
even from an owner

• Distributed computation on Internet/Grid computing
– SETI@home, distributed.net, and more
– Interact with a random computer on the net how can we

trust the result?
• Software licensing

– The owner of a system is an attacker
• Mobile agents

– Software agents on Internet perform a task on behalf of you
– Perform sensitive transactions on a remote (untrusted) host

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Single-Chip AEGIS Secure Processors

Trusted Environment

Memory

I/O

Check Integrity,
Encrypt

• Only trust a single chip: tamper-resistant
– Off-chip memory: verify the integrity and encrypt
– Untrusted OS: identify a core part or protect against OS attacks

• Cheap, Flexible, High Performance

Identify or
Protect against

Untrusted
OS

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Secure Execution Environments

• Tamper-Evident (TE) environment
– Guarantees a valid execution and the identity of a program; no

privacy
– Any software or physical tampering to alter the program

behavior should be detected
Integrity verification

• Private Tamper-Resistant (PTR) environment
– TE environment + privacy
– Assume programs do not leak information via memory access

patterns
Encryption + Integrity verification

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Other Trusted Computing Platforms

• IBM 4758 cryptographic coprocessor
– Entire system (processor, memory, and trusted software) in a

tamper-proof package
– Expensive, requires continuous power

• XOM (eXecution Only Memory): David Lie et al
– Stated goal: Protect integrity and privacy of code and data
– Memory integrity checking does not prevent replay attacks
– Always encrypt off-chip memory

• Palladium/NGSCB: Microsoft
– Stated goal: Protect from software attacks
– Memory integrity and privacy are assumed (only software attacks)

Memory Encryption

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Memory Encryption

Untrusted RAM

L2
Cache

Processor

ENCRYPT

DECRYPT

write

read

• Encrypt on an L2 cache block granularity
– Use symmetric key algorithms (AES, 16 Byte chunks)
– Should be randomized to prevent comparing two blocks
– Adds decryption latency to each memory access

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Direct Encryption (CBC mode): encrypt

Processor

Memory

L2 Block

B[1]

B[2]

B[3]

B[4]

RV

Random #

AESK

AESK

AESK

AESK

EB[1] EB[2] EB[3] EB[4]RV

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Direct Encryption (CBC mode): decrypt

Processor

Memory
EB[1]EB[2]EB[3]EB[4] RV

B[1]

B[2]

B[3]

B[4]

AESK
-1

AESK
-1

AESK
-1

AESK
-1

L2 Miss!!

Memory
Request

Read

• Off-chip access latency
= latency for the last chunk of an L2 block + AES + XOR

Decryption directly impacts off-chip latency

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

One-Time-Pad Encryption (OTP): encrypt

Processor

Memory

B[1]

B[2]

B[3]

B[4]

Counter

(Addr,TS,1)

(Addr,TS,2)

(Addr,TS,3)

(Addr,TS,4)

Time Stamp (TS)

AESK
-1

AESK
-1

AESK
-1

AESK
-1

One-Time-Pad (OTP)

EB[1]EB[2]EB[3]EB[4]TS

To Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

One-Time-Pad Encryption (OTP): decrypt

Processor

Memory
EB[1]EB[2]EB[3]EB[4]

B[1]

B[2]

B[3]

B[4]

AESK
-1

AESK
-1

AESK
-1

AESK
-1

L2 Miss!!

Memory
Request

Read TS

(Addr,TS,1)

(Addr,TS,2)

(Addr,TS,3)

(Addr,TS,4)

• Off-chip access latency = MAX(latency for the time stamp
+ AES, latency for an L2 block) + XOR

Overlap the decryption with memory accesses

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Effects of Encryption on Performance

• Simulations based on the SimpleScalar tool set
– 9 SPEC CPU2000 benchmarks
– 256-KB, 1-MB, 4-MB L2 caches with 64-B blocks
– 32-bit time stamps and random vectors No caching!
– Memory latency: 80/5, decryption latency: 40

• Performance degradation by encryption

8%13%Average

18%25%Worst Case

One-Time-PadDirect (CBC)

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Security and Optimizations

• The security of the OTP is at least as good as the
conventional CBC scheme
– OTP is essentially a counter-mode (CTR) encryption

• Further optimizations are possible
– For static data such as instructions, time stamps are not

required completely overlap the AES computations with
memory accesses

– Cache time stamps on-chip, or speculate the value

• Will be used for instruction encryption of Philips media
processors

Integrity Verification

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Difficulty of Integrity Verification

Untrusted RAM

Trusted
State

Processor

ENCRYPT

DECRYPT

Program

V
E
R
I
F
Y

E(124),
MAC(0x45, 124)

Address 0x45

E(120),
MAC(0x45, 120)IGNORE

write

read

Cannot simply MAC on writes and check the MAC on reads
Replay attacks

Hash trees for integrity verification

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Hash Trees

Processor

V1 V3 V4

L2 block

Data Values

Logarithmic overhead
for every cache miss

Low performance
(10x slowdown)

Cached hash trees

MISS V2READ

VERIFY

h1=h(V1.V2) h2=h(V3.V4)

root = h(h1.h2)

VERIFY

Untrusted Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Cached Hash Trees (HPCA’03)

Processor

V1 V2 V3 V4

Cache hashes in L2

L2 is trusted
Stop checking earlier

Less overhead (22%
average, 51% worst case)

Still expensive
In L2

MISS

In L2

h1=h(V1.V2) h2=h(V3.V4)

root = h(h1.h2)

VERIFY

VERIFY

MISS

VERIFY

DONE!!!

Untrusted Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Can we do better?

• Some applications only require to verify memory accesses after
a long execution
– Distributed computation
– No need to check after each memory access

• Can we just check a sequence of accesses?

Job Dispatcher

Processor’s
Private Key

Secure Processor

RESULT

RESULT

enter_aegis

Execute

Get results

Verify results

- H(Prog)

- signature

Program,
Data

Processor’s
Public Key

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Log Hash Integrity Verification: Idea

• At run-time, maintain a log of reads and writes
– Reads: make a ‘read’ note with (address, value) in the log
– Writes: make a ‘write’ note with (address, value) in the log

• check: go thru log, check each read has the most recent value
written to the address

• Problem!!: Log grows use cryptographic hashes

Write 1 at 0x40Write 2 at 0x50Write (0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1) Read 2 from 0x50Read 1 from 0x40

Checker Log

Write (0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1)

Write (0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1)

Untrusted Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Log Hash Algorithms: Run-Time

WriteHash

(0x40, 0, 0)

(0x50, 0, 0)

(0x40, 10, 1)

Timer: 0 Processor

Initialize (all zero)

Read 2 from 0x50Cache Miss!!

Read 0 from 0x40

ReadHash

(0x40, 0, 0)

Timer: 1

Cache eviction

Write 10 at 0x40

Only one
additional time

stamp access for
each memory

access

• Use set hashes as compressed logs
– Set hash: maps a set to a fixed length string
– ReadHash: a set of read entries (addr, val, time) in the log
– WriteHash: a set of write entries (addr, val, time) in the log

• Use Timer (time stamp) to keep the ordering of entries

Untrusted Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Log Hash Algorithms: Integrity Check

• Read all the addresses that are not in a cache

• Compare ReadHash and WriteHash (same set?)

WriteHash

(0x40, 0, 0)

(0x50, 0, 0)

(0x40, 10, 1)

Timer: 0 Processor

ReadHash

(0x40, 0, 0)

(0x40, 10, 1)

(0x50, 0, 0)

Timer: 1=? Read 2 from 0x50Read all

Untrusted Memory

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Checking Overhead of Log Hash Scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10
Off-chip Accesses

IP
C

LHash LHash-RT CHTree

• Integrity check requires reading the entire memory space
being used
– Cost depends on the size and the length of an application

• For long programs, the checking overhead is negligible
– Amortized over a long execution time

SWIM, 1MB L2,
Uses 192MB

Better than Hash Trees
for programs w/ more than

10 million accesses

Check overhead is negligible
for programs w/ more than a

billion accesses

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Performance Comparisons

• Overhead for TE environments
– Integrity verification

• Overhead for PTR environments
– Integrity verification + encryption

4%22%Average

15%52%Worst Case

LHashCHTree

10%31%Average

23%59%Worst Case

LHash + OTPCHTree + CBC

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Summary

• Untrusted owners are becoming more prevalent
– Untrusted OS, physical attacks requires a small TCB

• Single-chip secure processors require off-chip protection
mechanisms: Integrity verification and Encryption

• OTP encryption scheme reduces the overhead of
encryption in all cases
– Allows decryption to be overlapped with memory accesses
– Cache or speculate time stamps to further hide decryption latency

• Log Hash scheme significantly reduces the overhead of
integrity verification for certified execution when programs
are long enough

MICRO36 — December 3-5, 2003G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Questions?

More Information at www.csg.lcs.mit.edu

	Efficient Memory Integrity Verification and Encryption for Secure Processors
	New Security Challenges
	Applications
	Single-Chip AEGIS Secure Processors
	Secure Execution Environments
	Other Trusted Computing Platforms
	Memory Encryption
	Direct Encryption (CBC mode): encrypt
	Direct Encryption (CBC mode): decrypt
	One-Time-Pad Encryption (OTP): encrypt
	One-Time-Pad Encryption (OTP): decrypt
	Effects of Encryption on Performance
	Security and Optimizations
	Difficulty of Integrity Verification
	Hash Trees
	Cached Hash Trees (HPCA¡¯03)
	Can we do better?
	Log Hash Integrity Verification: Idea
	Log Hash Algorithms: Run-Time
	Log Hash Algorithms: Integrity Check
	Checking Overhead of Log Hash Scheme
	Performance Comparisons
	Summary
	Questions?
	Conventional Tamper-Proof Packages
	Incremental Multiset Hash (Asiacrypt`03)
	Log Hash Algorithms: Integrity Check
	One-Time-Pad Encryption (OTP)
	Secure Context Manager (SCM)
	SCM: Program Start-Up
	SCM: On-Chip Protection
	Digital Rights Management
	Run-time Performance
	Performance Implication: TE processing
	Effects of Encryption on Performance

