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New Security Challenges

• Current computer systems have a large Trusted 
Computing Base (TCB)
– Trusted hardware: processor, memory, etc.
– Trusted operating systems, device drivers

• Future computers should have a much smaller TCB
– Untrusted OS
– Physical attacks Without additional protection, components 

cannot be trusted

• Why smaller TCB? 
– Easier to verify and trust
– Enables new applications



MICRO36 — December 3-5, 2003G. Edward Suh  — MIT Computer Science and Artificial Intelligence Laboratory

Applications

• Emerging applications require TCBs that are secure 
even from an owner

• Distributed computation on Internet/Grid computing
– SETI@home, distributed.net, and more
– Interact with a random computer on the net how can we 

trust the result?
• Software licensing

– The owner of a system is an attacker
• Mobile agents

– Software agents on Internet perform a task on behalf of you
– Perform sensitive transactions on a remote (untrusted) host
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Single-Chip AEGIS Secure Processors

Trusted Environment

Memory

I/O

Check Integrity,
Encrypt

• Only trust a single chip: tamper-resistant
– Off-chip memory: verify the integrity and encrypt
– Untrusted OS: identify a core part or protect against OS attacks

• Cheap, Flexible, High Performance

Identify or
Protect against

Untrusted
OS
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Secure Execution Environments

• Tamper-Evident (TE) environment 
– Guarantees a valid execution and the identity of a program; no 

privacy 
– Any software or physical tampering to alter the program 

behavior should be detected
Integrity verification

• Private Tamper-Resistant (PTR) environment
– TE environment + privacy
– Assume programs do not leak information via memory access 

patterns
Encryption + Integrity verification
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Other Trusted Computing Platforms

• IBM 4758 cryptographic coprocessor
– Entire system (processor, memory, and trusted software) in a 

tamper-proof package
– Expensive, requires continuous power

• XOM (eXecution Only Memory): David Lie et al
– Stated goal: Protect integrity and privacy of code and data
– Memory integrity checking does not prevent replay attacks
– Always encrypt off-chip memory 

• Palladium/NGSCB: Microsoft
– Stated goal: Protect from software attacks
– Memory integrity and privacy are assumed (only software attacks)



Memory Encryption
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Memory Encryption

Untrusted RAM

L2 
Cache

Processor

ENCRYPT

DECRYPT

write

read

• Encrypt on an L2 cache block granularity
– Use symmetric key algorithms (AES, 16 Byte chunks)
– Should be randomized to prevent comparing two blocks
– Adds decryption latency to each memory access
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Direct Encryption (CBC mode): encrypt
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Direct Encryption (CBC mode): decrypt
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• Off-chip access latency 
= latency for the last chunk of an L2 block  + AES + XOR

Decryption directly impacts off-chip latency
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One-Time-Pad Encryption (OTP): encrypt
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One-Time-Pad Encryption (OTP): decrypt
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• Off-chip access latency = MAX( latency for the time stamp
+ AES, latency for an L2 block ) + XOR

Overlap the decryption with memory accesses
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Effects of Encryption on Performance

• Simulations based on the SimpleScalar tool set
– 9 SPEC CPU2000 benchmarks
– 256-KB, 1-MB, 4-MB L2 caches with 64-B blocks
– 32-bit time stamps and random vectors No caching!
– Memory latency: 80/5, decryption latency: 40

• Performance degradation by encryption

8%13%Average

18%25%Worst Case

One-Time-PadDirect (CBC)
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Security and Optimizations

• The security of the OTP is at least as good as the 
conventional CBC scheme
– OTP is essentially a counter-mode  (CTR) encryption 

• Further optimizations are possible 
– For static data such as instructions, time stamps are not 

required completely overlap the AES computations with 
memory accesses

– Cache time stamps on-chip, or speculate the value

• Will be used for instruction encryption of Philips media 
processors 



Integrity Verification
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Difficulty of Integrity Verification

Untrusted RAM

Trusted
State

Processor

ENCRYPT

DECRYPT

Program
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Address 0x45
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write

read

Cannot simply MAC on writes and check the MAC on reads
Replay attacks

Hash trees for integrity verification
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Hash Trees

Processor

V1 V3 V4

L2 block

Data Values

Logarithmic  overhead 
for every cache miss

Low performance
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Untrusted Memory
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Cached Hash Trees (HPCA’03)

Processor

V1 V2 V3 V4

Cache hashes in L2

L2 is trusted
Stop checking earlier

Less overhead ( 22% 
average, 51% worst case)

Still expensive
In L2
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VERIFY
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Untrusted Memory
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Can we do better?

• Some applications only require to verify memory accesses after 
a long execution 
– Distributed computation
– No need to check after each memory access

• Can we just check a sequence of accesses?

Job Dispatcher

Processor’s 
Private Key

Secure Processor

RESULT

RESULT

enter_aegis

Execute

Get results

Verify results

- H(Prog)

- signature 

Program,
Data
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Log Hash Integrity Verification: Idea

• At run-time, maintain a log of reads and writes
– Reads: make a ‘read’ note with (address, value) in the log 
– Writes: make a ‘write’ note with (address, value) in the log 

• check: go thru log, check each read has the most recent value 
written to the address

• Problem!!: Log grows use cryptographic hashes

Write 1 at 0x40Write 2 at 0x50Write ( 0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1) Read 2 from 0x50Read 1 from 0x40

Checker Log

Write ( 0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1)

Write ( 0x40, 1)

Write (0x50, 2)

Read (0x50, 2)

Read (0x40, 1)

Untrusted Memory
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Log Hash Algorithms: Run-Time

WriteHash

(0x40, 0, 0)

(0x50, 0, 0)

(0x40, 10, 1)

Timer: 0 Processor

Initialize (all zero)

Read 2 from 0x50Cache Miss!!

Read 0 from 0x40

ReadHash

(0x40, 0, 0)

Timer: 1

Cache eviction

Write 10 at 0x40

Only one 
additional time 

stamp access for 
each memory 

access

• Use set hashes as compressed logs
– Set hash: maps a set to a fixed length string
– ReadHash: a set of read entries (addr, val, time) in the log 
– WriteHash: a set of write entries (addr, val, time) in the log

• Use Timer (time stamp) to keep the ordering of entries

Untrusted Memory
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Log Hash Algorithms: Integrity Check

• Read all the addresses that are not in a cache 

• Compare ReadHash and WriteHash (same set?)

WriteHash

(0x40, 0, 0)

(0x50, 0, 0)

(0x40, 10, 1)

Timer: 0 Processor

ReadHash

(0x40, 0, 0)

(0x40, 10, 1)

(0x50, 0, 0)

Timer: 1=? Read 2 from 0x50Read all

Untrusted Memory
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Checking Overhead of Log Hash Scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10
Off-chip Accesses

IP
C

LHash LHash-RT CHTree

• Integrity check requires reading the entire memory space 
being used
– Cost depends on the size and the length of an application

• For long programs, the checking overhead is negligible 
– Amortized over a long execution time

SWIM, 1MB L2,
Uses 192MB

Better than Hash Trees 
for programs w/ more than 

10 million accesses

Check overhead is negligible 
for programs w/ more than a 

billion accesses



MICRO36 — December 3-5, 2003G. Edward Suh  — MIT Computer Science and Artificial Intelligence Laboratory

Performance Comparisons

• Overhead for TE environments
– Integrity verification

• Overhead for PTR environments
– Integrity verification + encryption

4%22%Average

15%52%Worst Case

LHashCHTree

10%31%Average

23%59%Worst Case

LHash + OTPCHTree + CBC
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Summary

• Untrusted owners are becoming more prevalent
– Untrusted OS, physical attacks requires a small TCB

• Single-chip secure processors require off-chip protection 
mechanisms: Integrity verification and Encryption

• OTP encryption scheme reduces the overhead of 
encryption in all cases
– Allows decryption to be overlapped with memory accesses
– Cache or speculate time stamps to further hide decryption latency

• Log Hash scheme significantly reduces the overhead of 
integrity verification for certified execution when programs 
are long enough
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Questions?

More Information at www.csg.lcs.mit.edu
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