Secure Program Execution via
Dynamic Information Flow
Tracking

G. Edward Suh, Jae W. Lee, David
Zhang, Srinivas Devadas

Massachusetts Institute of Technology

e

CSAIL ASPLOS XI, October 11, 2004

Program Vulnerabilities

= Program bugs cause serious security risks
e Attackers can gain total control of victim processes
e Very difficult, if not impossible, to eliminate the bugs

m Existing solutions have limitations
e Safe languages - re-programming, performance hit
e Fix programs: new libraries, compilers
—> partial protection, re-compilation
e Run-time monitoring: program shepherding
- overheads
e Other hardware solutions = partial protection

W

ASPLQOS XI, October 11, 2004 2 ‘;‘
CSAIL

Our Goal

m Architectural support to defeat a broad range of
security exploits (possibly all)
e Focus on attacks to gain total control (shell)
e Should work for legacy code and shared libraries
-> transparent to applications, run-time checks

e Should have low overhead (performance and memory
space)

= Need to find common requirements for successful
security exploits

Wﬂ’t

ASPLOS XI, October 11, 2004 ‘u
3 CSAIL

Attack Model: Example - Stack Smashing

m Step 1. Inject malicious data int func(void)
through legitimate channels {

e Long input for buffer overflows char buf[256];

while (gets(buf)) {...}

m Step 2. Bugs modify unintended
memory locations

e The data flows into buf[], Stack Stack
overwrites a return address

Used for
return
Return | |} e
Address Malicious
m Step 3. Take control over Imout date

e Jump to injected target address Attack

. from
(return address in the example) buf gets ()
e EXxecute injected code (256 Bytes)
Other Other
variables variables

ASPLQOS XI, October 11, 2004

Observation: Common Requirements for
Successful Attacks

m All attacks come from identifiable /O channels
e Both OS and applications explicitly manage 1/O

= Malicious inputs should be used for a few security
sensitive operations to take control of a process
e Instructions: executes malicious code from |/O
e Code pointers: arbitrarily redirect the control flow

e Data pointers for stores: overwrite a critical program
variable (valid_passwd = 1)

= |In most applications, instructions and pointers
usually do not come directly from 1/O

ﬂ/t

ASPLOS XI, October 11, 2004 ‘u
5 CSAIL

Our Protection Scheme

l/O, other processes

|

{Operating System

C I
Vulnerability ||
@rogram
Detect

Unintended Usé¢s

ASPLQOS XI, October 11, 2004

Step 1. OS tags
potentially malicious
inputs as spurious

Step 2. Processors track
the flow of the spurious
values

Step 3. Detect attacks
- Check and restrict the
use of spurious values

>

>

I

Security Tags;
0 — authentic,
1 — spurious

Dynamic Information
Flow Tracking

Processors checks
+ trap handler

 Ggah

CSAIL

Implementation Overview

Security Policy

1. Which 1/O to
tag spurious

2. Which flows to
track |

3. When to trap

/O

Operating System

— Execution Monitor

—— =

I/O interface

Trap handler

‘e PN
/

R ¢ / 1 || Traps |

ASPLQOS XI, October 11, 2004

° .
Information
flow Lt
checker
er
Processor |

Architectural Support

Security Tags

= 1-bit information to indicate whether a piece of data can be trusted

e 0 - authentic
e 1 - spurious

m Granularity

e One for each general purpose register (GPR)
e One for each byte in memory — 12.5% overhead is a naive management

e Multi-granularity tags - Only 1.4% space overhead, 2.1% bandwidth

overhead on average (based on experiments)

GPR (32 or 64 bits)

0/1

Memory (1 Byte)

0/1

input according to the security policy

ASPLQOS XI, October 11, 2004

At the start-up, all instructions and initial data will be tagged “authentic”
During the execution, the execution monitor sets the tag for each 1/O

 (gah

CSAIL

Dynamic Information Flow Tracking

= Compute a new security tag for each operation
e If spurious data controls a result, the result is also spurious

m Various types of dependencies exist
e Direct copy: load/store spurious data

e Computation: compute from spurious data
m Pointer additions
m Other computations

e Load address: load from spurious address
e Store address: store into spurious address

m Propagation Control Register (PCR) determines which
dependencies to track

e Execution monitor sets the register based on the security policy

W

ASPLOS XI, October 11, 2004 ‘u
10 CSAIL

Security Tag Computation Examples

SUB R3, R1, R2 LD R2, Imm(R1) ST R1, Imm(R2)
= ~ B rR1 1] [rR2] rR1 1] [R3 o
/ +Himm | +imm Tag spurious
a7 [sowens |
! Memory Memory
R3 l
T[R3] = T[RZ] = T[MEM] -
T[R1] OR T[R2] T[MEM] OR T[R1] T[R3] OR T[R1]

"_l]
ASPLOS Xl, October 11, 2004 m

Tag Checker

= Processor traps when spurious values are used for
sensitive operations

m Sensitive values to be checked
e |nstructions
e Load addresses
e Store addresses
e Jump target addresses

m [rap Control Register (TCR) determines which
uses of spurious values generate a trap

Wﬂ’t

ASPLOS XI, October 11, 2004 ‘u
12 CSAIL

Hardware Support Summary

= 1-bit tag for each GPR

= Small modification to ALU . S TLB | e
| ore | ’
e Tag computation (logical OR) | - 1.+ 7 Pointers
: . ||Regs || «— D-TLB| -7
= TLB contains tag types and | ————
tag pointers N e
| 18- D$-L1 | o [T$L1| |
m Separate tag caches J — §
o Allow parallel accesses to | — * i paed™
data and tags g L 512
o Exploit multi-granularity tags 5
= Tags will be often lessthan | ——————— !
1/8 of data Memory Bus
ASPLOS Xl, October 11, 2004 13 {P‘;‘” J

Security Policy

Security Policy

m Defines “spurious” values
e |/O channels to be tagged
e Dependencies to be tracked

m Defines illegal uses of spurious values
e Trap conditions
e Software checks in the handler

m Can be general for many programs, or customized
for each program

W

ASPLOS XI, October 11, 2004 ‘u
15 CSAIL

Take 1: Maximum Security

m Untrusted I/O
e ALL

m [racked Dependencies
e ALL

m Trap Condition
e Instruction
e Jump target address
e Store address

m [rap Handler

e Terminate the process

4 N

ASPLQOS XI, October 11, 2004

False alarms
from spurious

pointers
- J

rA A
m

Need to balance security
and false positives

Wﬂ’t

fallz s

16 CSAIL

Where Are Spurious Pointers From™?

m |/O inputs are often used as offsets for pointer
tables after a bound check

Comp Dependency - IR
PTR 1 [o
Base PTR
1 PTR_2 [o
PTR 3 o
Bound Check
0 < offset <n
PTR n |0
2 =/
[Offset .] Jump Table
Spurious Jump Pointer

From I/O

ASPLQOS XI, October 11, 2004

Take 2: Allow Legitimate Uses

“ Un:EEUSted /o For pointer additions\
® _ such as

m Tracked Dependencies [4*r1+r2] in x86,
e ALL but pointer offsets < sd4addq r1, r2, r3

m Trap Condition ™ (r3 € r2+4*r1) in Alpha
e Instruction

e Jump target address
e Store address

m Trap Handler assuming the bound

e Terminate the process \ check is done. /

18 T CSAIL

The new tag =
T[r2]

ASPLOS XI. October 11, 2004 Ll

Example — Stack Smashing

JR R1 - Ret TfaP\/ Data 19 1
spurious jump /0 7
Tag Check\ target address i = 1 i
/0 [|[pata [@]
:VO 1 Inst 0l
; ilnst 0
K\ Registers P / — =

Processor K /

Memory

W

ASPLOS XI, October 11, 2004 ‘u
19 CSAIL

Evaluation

ASPLQOS XI, October 11, 2004

Simulation Frameworks

= Bochs (Intel x86)

e Keyboard and network |/O are tagged spurious
e Used to evaluate the effectiveness of our scheme
e x86 applications on Debian Linux (3.0r0)

= SimpleScalar (Alpha)
e All I/O are tagged spurious

e sim-fast: functional evaluations (false alarms, space
overheads for tags)

e sim-outorder: performance evaluations
e SPEC CPU2000 benchmarks

Wﬂ’t

ASPLOS XI, October 11, 2004 o1 ‘u
CSAIL

Detecting Security Attacks

m Buffer overflow testbed (by Wilander, 2003)

e Covers all 20 combinations possible in practice
m Overwrite technique: direct, pointer redirection
m Buffer location: stack, heap/BSS/data

m Attack targets: return address, base pointer, function pointer, and
longjmp buffers

e The best protection scheme in 2003 detected only 50%

m Format string attacks (from TESQO security group)
e Overflow a buffer or use %n conversion specification

m Detects and stops ALL security attacks tested

e So far, all known attacks directly inject pointers or
iInstructions -2 lenient tag propagation does not matte?F .
Al

ASPLOS XI, October 11, 2004 —
22 CSAIL

No False Alarms

= Common x86 applications
e Debian Linux 3.0 (keyboard, network marked spurious)
e System commands: Is, cp, vi, ping, etc.
e openSSH server/client

= Dynamically generated code

e A simple http server (TinyHttpd2) — marked spurious
e SUN’s JAVA SDK 1.3 HotSpot VM with JIT

m SPEC2000 CPU benchmarks

e Input files are marked spurious

Wﬂ’t

ASPLOS XI, October 11, 2004 ‘u
23 CSAIL

Normalized IPC

Performance Degradation

m Various L2 sizes with 1/8 tag caches — 1.1% degradation on average
e Pessimistic overhead: baseline case gets 12.5% larger caches if it helps

1.05

1

0.05 [N || EIHTH O OO OO OO | 1

0.9 m{{{1®![tH!FEH|H OB R R LR O.95 L[|

0. 8NEHH | AT = E12KB ||

0 0.82 1| HIINMN L With the same cache sizes, the mg
0.78 performance degradation is less vs

ASPLQOS XI, October 11, 2004

equake

than 0.1% in the worst case.

|8 e -

wn

Conclusion

= Dynamic information flow tracking provides a powerful tool
for system security

e Tells whether a value came from untrusted 1/O or not
e Can restrict the use of potentially malicious input values
m Qur protection scheme is effective against large class of
attacks
e Stops both buffer overflow and format string attacks
e No false alarms for real-world applications
m The overhead of tagging can be small
e 1.4% space, 2.1% bandwidth, 1.1% performance overhead

= Many extensions are possible
e Automatically identify bound checks and strictly follow dependencies
e Combine with static analysis

e Other applications such as protecting private information or
debugging

ﬁ%ﬁﬂj
ASPLOS XI, October 11, 2004 =iy !

25 T CSAIL

Questions?

m QOur website
http://www.csg.csail.mit.edu

m Contact Info
Edward Suh (suh@mit.edu)

ASPLQOS XI, October 11, 2004

	Secure Program Execution via Dynamic Information Flow Tracking
	Program Vulnerabilities
	Our Goal
	Attack Model: Example - Stack Smashing
	Observation: Common Requirements for Successful Attacks
	Our Protection Scheme
	Implementation Overview
	Architectural Support
	Security Tags
	Dynamic Information Flow Tracking
	Security Tag Computation Examples
	Tag Checker
	Hardware Support Summary
	Security Policy
	Security Policy
	Take 1: Maximum Security
	Where Are Spurious Pointers From?
	Take 2: Allow Legitimate Uses
	Example ? Stack Smashing
	Evaluation
	Simulation Frameworks
	Detecting Security Attacks
	No False Alarms
	Performance Degradation
	Conclusion
	Questions?
	Efficient Tag Management
	Future Works
	Candidates for Dynamic Protection
	Discussion on Untracked Dependencies

