
ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004

Secure Program Execution via Secure Program Execution via
Dynamic Information Flow Dynamic Information Flow

TrackingTracking

G. Edward G. Edward SuhSuh, , JaeJae W. Lee, David W. Lee, David
Zhang, Zhang, SrinivasSrinivas DevadasDevadas

Massachusetts Institute of TechnologyMassachusetts Institute of Technology

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 22

Program VulnerabilitiesProgram Vulnerabilities

Program bugs cause serious security risks Program bugs cause serious security risks
Attackers can gain total control of victim processesAttackers can gain total control of victim processes
Very difficult, if not impossible, to eliminate the bugsVery difficult, if not impossible, to eliminate the bugs

Existing solutions have limitationsExisting solutions have limitations
Safe languages Safe languages rere--programming, performance hitprogramming, performance hit
Fix programs: new libraries, compilers Fix programs: new libraries, compilers

partial protection, repartial protection, re--compilationcompilation
RunRun--time monitoring: program shepherding time monitoring: program shepherding

overheadsoverheads
Other hardware solutions Other hardware solutions partial protectionpartial protection

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 33

Our GoalOur Goal

Architectural support to defeat Architectural support to defeat a broad rangea broad range of of
security exploits (possibly all)security exploits (possibly all)

Focus on attacks to Focus on attacks to gain total controlgain total control (shell)(shell)
Should work for legacy code and shared librariesShould work for legacy code and shared libraries

transparenttransparent to applications, runto applications, run--time checkstime checks
Should have Should have low overhead low overhead (performance and memory (performance and memory
space)space)

Need to find common requirements for successful Need to find common requirements for successful
security exploitssecurity exploits

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 44

Attack Model: Attack Model: Example Example -- Stack SmashingStack Smashing

Step 1. Inject Step 1. Inject malicious datamalicious data
through legitimate channelsthrough legitimate channels

Long inputLong input for buffer overflows for buffer overflows

Step 2. Bugs modify unintended Step 2. Bugs modify unintended
memory locationsmemory locations

The data flows into The data flows into bufbuf[][], ,
overwrites a return addressoverwrites a return address

Step 3. Take control overStep 3. Take control over
Jump to Jump to injected target addressinjected target address
((return address return address in the example)in the example)
Execute Execute injected code

int func(void)
{

char buf[256];
while (gets(buf)) {...}

}

injected code
Other Other

variablesvariables

bufbuf
(256 Bytes)(256 Bytes)

Return Return
AddressAddress

StackStack

Attack

Other Other
variablesvariables

MaliciousMalicious
Input dataInput data

from from
gets()gets()

StackStack

Used for
return

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 55

Observation: Observation: Common Requirements for Common Requirements for
Successful AttacksSuccessful Attacks

All attacks come from All attacks come from identifiable I/Oidentifiable I/O channelschannels
Both OS and applications explicitly manage I/OBoth OS and applications explicitly manage I/O

Malicious inputs should be used for Malicious inputs should be used for a fewa few security security
sensitive operations to take control of a processsensitive operations to take control of a process

InstructionsInstructions: executes malicious code from I/O: executes malicious code from I/O
Code pointersCode pointers: : arbitrarilyarbitrarily redirect the control flowredirect the control flow
Data pointers for storesData pointers for stores: overwrite a : overwrite a critical program critical program
variable variable ((valid_passwdvalid_passwd = 1)= 1)

In most applications, instructions and pointers In most applications, instructions and pointers
usually do not come directly from I/Ousually do not come directly from I/O

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 66

Our Protection SchemeOur Protection Scheme

I/O, other processes

Program

Vulnerability

Unintended Uses

Step 3. Detect attacks
- Check and restrict the
use of spurious values

Detect

Operating System

Step 1. OS tags
potentially malicious
inputs as spurious

Security Tags;
0 – authentic,
1 – spurious

Step 2. Processors track
the flow of the spurious
values

Dynamic Information
Flow Tracking

Processors checks
+ trap handler

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 77

Implementation OverviewImplementation Overview

I/O

Information
flow

tracker

Processor

Tag
checker

Operating System

Execution Monitor
I/O

I/O interface Trap handler

1. Which I/O to
tag spurious

2. Which flows to
track

3. When to trap

Security Policy

Traps

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004

Architectural SupportArchitectural Support

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 99

Security TagsSecurity Tags

11--bit information to indicate whether a piece of data can be trustbit information to indicate whether a piece of data can be trusteded
0 0 –– authenticauthentic
1 1 –– spuriousspurious

GranularityGranularity
One for One for each general purpose registereach general purpose register (GPR)(GPR)
One for One for each byteeach byte in memory in memory –– 12.5% overhead is a na12.5% overhead is a naïïve management ve management
MultiMulti--granularity tags granularity tags -- Only Only 1.4%1.4% space overhead, space overhead, 2.1%2.1% bandwidth bandwidth
overhead on average (based on experiments)overhead on average (based on experiments)

At the startAt the start--up, all instructions and initial data will be tagged up, all instructions and initial data will be tagged ““authenticauthentic””
During the execution, the execution monitor sets the tag for eacDuring the execution, the execution monitor sets the tag for each I/O h I/O
input according to the security policyinput according to the security policy

GPR (32 or 64 bits) 0/1 Memory (1 Byte) 0/1

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1010

Dynamic Information Flow TrackingDynamic Information Flow Tracking

Compute a new security tag for each operationCompute a new security tag for each operation
If If spuriousspurious data controls a result, the result is also data controls a result, the result is also spuriousspurious

Various types of dependencies existVarious types of dependencies exist
Direct copyDirect copy: load/store spurious data: load/store spurious data
ComputationComputation: compute from spurious data: compute from spurious data

Pointer additionsPointer additions
Other computationsOther computations

Load addressLoad address: load from spurious address: load from spurious address
Store addressStore address: store into spurious address: store into spurious address

Propagation Control Register (PCR) determines which Propagation Control Register (PCR) determines which
dependencies to trackdependencies to track

Execution monitor sets the register based on the security policyExecution monitor sets the register based on the security policy

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1111

Security Tag Computation ExamplesSecurity Tag Computation Examples

T[MEM] =
T[R3] OR T[R1]

ST R1, Imm(R2)

R1 1

Memory

Spurious

R3 0
+Imm Tag spurious

T[R2] =
T[MEM] OR T[R1]

LD R2, Imm(R1)

R1 1

Memory

Authentic

R2 1
+Imm

R1 1 R2 0

R3 1

T[R3] =
T[R1] OR T[R2]

-

SUB R3, R1, R2

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1212

Tag CheckerTag Checker

Processor traps when spurious values are used for Processor traps when spurious values are used for
sensitive operationssensitive operations

Sensitive values to be checkedSensitive values to be checked
InstructionsInstructions
Load addressesLoad addresses
Store addressesStore addresses
Jump target addressesJump target addresses

Trap Control Register (TCR) determines which Trap Control Register (TCR) determines which
uses of spurious values generate a trapuses of spurious values generate a trap

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1313

Hardware Support SummaryHardware Support Summary

11--bit tag for each GPRbit tag for each GPR
Small modification to ALUSmall modification to ALU

Tag computation (logical OR)Tag computation (logical OR)

TLB contains tag types and TLB contains tag types and
tag pointers tag pointers
Separate tag cachesSeparate tag caches

Allow parallel accesses to Allow parallel accesses to
data and tagsdata and tags
Exploit multiExploit multi--granularity tagsgranularity tags

Tags will be often less than Tags will be often less than
1/8 of data

Core

D$-L1

L2

I$-L1

D-TLB

I-TLB

T$-L2

T$-L1

Regs

Tag Types,
Pointers

Security
Tags

1/8 of data Memory Bus

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004

Security PolicySecurity Policy

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1515

Security PolicySecurity Policy

Defines Defines ““spuriousspurious”” valuesvalues
I/O channels to be taggedI/O channels to be tagged
Dependencies to be trackedDependencies to be tracked

Defines illegal uses of spurious valuesDefines illegal uses of spurious values
Trap conditionsTrap conditions
Software checks in the handlerSoftware checks in the handler

Can be general for many programs, or customized Can be general for many programs, or customized
for each programfor each program

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1616

Take 1: Maximum SecurityTake 1: Maximum Security

UntrustedUntrusted I/OI/O
ALLALL

Tracked DependenciesTracked Dependencies
ALLALL

Trap ConditionTrap Condition
InstructionInstruction
Jump target addressJump target address
Store address Store address

Trap HandlerTrap Handler
Terminate the process

False alarms
from spurious

pointers

Need to balance security
and false positivesTerminate the process

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1717

Where Are Spurious Pointers From?Where Are Spurious Pointers From?

I/O inputs are often used as I/O inputs are often used as offsets for pointer offsets for pointer
tablestables after a bound checkafter a bound check

PTR_nPTR_n
……

PTR_3PTR_3
PTR_2PTR_2
PTR_1PTR_1

1

1

LDA Dep.

0

0

0

0

Comp Dependency

Base PTR 0 +

Bound Check
0 ≤ offset < n *4

Offset 1 Jump Table
Spurious Jump Pointer

From I/O

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1818

Take 2: Allow Legitimate Uses Take 2: Allow Legitimate Uses

UnstrustedUnstrusted I/OI/O
ALLALL

Tracked DependenciesTracked Dependencies
ALL but pointer offsetsALL but pointer offsets

Trap ConditionTrap Condition
InstructionInstruction
Jump target addressJump target address
Store address Store address

Trap HandlerTrap Handler
Terminate the processTerminate the process

For pointer additions
such as

[4*r1+r2] in x86,
s4addq r1, r2, r3

(r3 r2+4*r1) in Alpha

The new tag =
T[r2]

assuming the bound
check is done.

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 1919

Example Example –– Stack SmashingStack Smashing

Registers

LD R1, Imm(SP)
- Load a return address

Data 0

Inst 0

Inst 0

Inst 0

Data 0

Ret Adr 0

I/O 1

I/O 1

I/O 1

I/O 1I/O 1
JR R1 - Return Trap –

spurious jump
target addressTag Check

Processor
Memory

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004

EvaluationEvaluation

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2121

Simulation FrameworksSimulation Frameworks

BochsBochs (Intel x86)(Intel x86)
Keyboard and network I/O are tagged spuriousKeyboard and network I/O are tagged spurious
Used to evaluate the effectiveness of our schemeUsed to evaluate the effectiveness of our scheme
x86 applications on x86 applications on DebianDebian Linux (3.0r0)Linux (3.0r0)

SimpleScalarSimpleScalar (Alpha)(Alpha)
All I/O are tagged spuriousAll I/O are tagged spurious
simsim--fast: functional evaluations (false alarms, space fast: functional evaluations (false alarms, space
overheads for tags)overheads for tags)
simsim--outorderoutorder: performance evaluations: performance evaluations
SPEC CPU2000 benchmarksSPEC CPU2000 benchmarks

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2222

Detecting Security AttacksDetecting Security Attacks

Buffer overflow Buffer overflow testbedtestbed (by (by WilanderWilander, 2003), 2003)
Covers all 20 combinations possible in practiceCovers all 20 combinations possible in practice

Overwrite technique: direct, pointer redirectionOverwrite technique: direct, pointer redirection
Buffer location: stack, heap/BSS/dataBuffer location: stack, heap/BSS/data
Attack targets: return address, base pointer, function pointer, Attack targets: return address, base pointer, function pointer, and and
longjmplongjmp buffersbuffers

The best protection scheme in 2003 detected only 50%The best protection scheme in 2003 detected only 50%

Format string attacks (from TESO security group)Format string attacks (from TESO security group)
Overflow a buffer or use %n conversion specification Overflow a buffer or use %n conversion specification

Detects and stops Detects and stops ALLALL security attacks testedsecurity attacks tested
So far, all known attacks directly inject pointers or So far, all known attacks directly inject pointers or
instructions instructions lenient tag propagation does not matterlenient tag propagation does not matter

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2323

No False AlarmsNo False Alarms

Common x86 applications Common x86 applications
DebianDebian Linux 3.0 (keyboard, network marked spurious)Linux 3.0 (keyboard, network marked spurious)
System commands: System commands: lsls, cp, vi, ping, etc., cp, vi, ping, etc.
openSSHopenSSH server/clientserver/client

Dynamically generated codeDynamically generated code
A simple http server (TinyHttpd2) A simple http server (TinyHttpd2) –– marked spuriousmarked spurious
SUNSUN’’ss JAVA SDK 1.3 JAVA SDK 1.3 HotSpotHotSpot VM with JITVM with JIT

SPEC2000 CPU benchmarksSPEC2000 CPU benchmarks
Input files are marked spuriousInput files are marked spurious

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2424

Performance DegradationPerformance Degradation

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

am
m

p

ap
pl

u

ap
si ar
t

cr
af

ty

eo
n

eq
ua

ke ga
p

gc
c

gz
ip

m
cf

m
es

a

m
gr

id

pa
rs

er

si
xt

ra
ck

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e

av
e

N
or

m
al

iz
ed

 IP
C

512KB
1MB
2MB
4MB

Various L2 sizes with 1/8 tag caches Various L2 sizes with 1/8 tag caches –– 1.1%1.1% degradation on averagedegradation on average
PessimisticPessimistic overhead: baseline case gets 12.5% larger caches if it helpsoverhead: baseline case gets 12.5% larger caches if it helps

0.82
0.78

0.95

With the same cache sizes, the
performance degradation is less

than 0.1% in the worst case.

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2525

ConclusionConclusion

Dynamic information flow tracking provides a powerful tool Dynamic information flow tracking provides a powerful tool
for system securityfor system security

Tells whether a value came from Tells whether a value came from untrusteduntrusted I/O or notI/O or not
Can restrict the use of potentially malicious input valuesCan restrict the use of potentially malicious input values

Our protection scheme is effective against large class of Our protection scheme is effective against large class of
attacksattacks

Stops both buffer overflow and format string attacksStops both buffer overflow and format string attacks
No false alarms for realNo false alarms for real--world applicationsworld applications

The overhead of tagging can be smallThe overhead of tagging can be small
1.4% space, 2.1% bandwidth, 1.1% performance overhead1.4% space, 2.1% bandwidth, 1.1% performance overhead

Many extensions are possibleMany extensions are possible
Automatically identify bound checks and strictly follow dependenAutomatically identify bound checks and strictly follow dependencies cies
Combine with static analysisCombine with static analysis
Other applications such as protecting private information or Other applications such as protecting private information or
debuggingdebugging

ASPLOS XI, October 11, 2004ASPLOS XI, October 11, 2004 2626

Questions?Questions?

Our websiteOur website
http://http://www.csg.csail.mit.eduwww.csg.csail.mit.edu

Contact InfoContact Info
Edward Suh (Edward Suh (suh@mit.edusuh@mit.edu))

	Secure Program Execution via Dynamic Information Flow Tracking
	Program Vulnerabilities
	Our Goal
	Attack Model: Example - Stack Smashing
	Observation: Common Requirements for Successful Attacks
	Our Protection Scheme
	Implementation Overview
	Architectural Support
	Security Tags
	Dynamic Information Flow Tracking
	Security Tag Computation Examples
	Tag Checker
	Hardware Support Summary
	Security Policy
	Security Policy
	Take 1: Maximum Security
	Where Are Spurious Pointers From?
	Take 2: Allow Legitimate Uses
	Example ? Stack Smashing
	Evaluation
	Simulation Frameworks
	Detecting Security Attacks
	No False Alarms
	Performance Degradation
	Conclusion
	Questions?
	Efficient Tag Management
	Future Works
	Candidates for Dynamic Protection
	Discussion on Untracked Dependencies

