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Program Vulnerabilities

= Program bugs cause serious security risks
e Attackers can gain total control of victim processes
e Very difficult, if not impossible, to eliminate the bugs

m Existing solutions have limitations
e Safe languages - re-programming, performance hit
e Fix programs: new libraries, compilers
—> partial protection, re-compilation
e Run-time monitoring: program shepherding
- overheads
e Other hardware solutions = partial protection
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Our Goal

m Architectural support to defeat a broad range of
security exploits (possibly all)
e Focus on attacks to gain total control (shell)
e Should work for legacy code and shared libraries
-> transparent to applications, run-time checks

e Should have low overhead (performance and memory
space)

= Need to find common requirements for successful
security exploits
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Attack Model: Example - Stack Smashing

m Step 1. Inject malicious data int func(void)
through legitimate channels {

e Long input for buffer overflows char buf[256];

while (gets(buf)) {...}

m  Step 2. Bugs modify unintended
memory locations

e The data flows into buf[], Stack Stack
overwrites a return address

Used for
return
Return | |} e
Address Malicious
m Step 3. Take control over Imout date

e Jump to injected target address Attack

. from
(return address in the example) buf gets ()
e EXxecute injected code (256 Bytes)
Other Other
variables variables
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Observation: Common Requirements for
Successful Attacks

m All attacks come from identifiable /O channels
e Both OS and applications explicitly manage 1/O

= Malicious inputs should be used for a few security
sensitive operations to take control of a process
e Instructions: executes malicious code from |/O
e Code pointers: arbitrarily redirect the control flow

e Data pointers for stores: overwrite a critical program
variable (valid_passwd = 1)

= |In most applications, instructions and pointers
usually do not come directly from 1/O

ﬂ/t
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Our Protection Scheme

l/O, other processes

|

{Operating System

C I
Vulnerability ||
@rogram
Detect

Unintended Usé¢s
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Step 1. OS tags
potentially malicious
inputs as spurious

Step 2. Processors track
the flow of the spurious
values

Step 3. Detect attacks
- Check and restrict the
use of spurious values

>

>

I

Security Tags;
0 — authentic,
1 — spurious

Dynamic Information
Flow Tracking

Processors checks
+ trap handler
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Implementation Overview

Security Policy

1. Which 1/O to
tag spurious

2. Which flows to
track |

3. When to trap

/O

Operating System

— Execution Monitor

—— =

I/O interface

Trap handler
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/

R ¢ / ........... 1 || Traps |
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Architectural Support




Security Tags

= 1-bit information to indicate whether a piece of data can be trusted

e 0 - authentic
e 1 - spurious

m  Granularity

e One for each general purpose register (GPR)
e One for each byte in memory — 12.5% overhead is a naive management

e Multi-granularity tags - Only 1.4% space overhead, 2.1% bandwidth

overhead on average (based on experiments)

GPR (32 or 64 bits)

0/1

Memory (1 Byte)

0/1

input according to the security policy
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At the start-up, all instructions and initial data will be tagged “authentic”
During the execution, the execution monitor sets the tag for each 1/O
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Dynamic Information Flow Tracking

= Compute a new security tag for each operation
e If spurious data controls a result, the result is also spurious

m Various types of dependencies exist
e Direct copy: load/store spurious data

e Computation: compute from spurious data
m Pointer additions
m Other computations

e Load address: load from spurious address
e Store address: store into spurious address

m Propagation Control Register (PCR) determines which
dependencies to track

e Execution monitor sets the register based on the security policy

W

ASPLOS XI, October 11, 2004 ‘u
10 CSAIL



Security Tag Computation Examples

SUB R3, R1, R2 LD R2, Imm(R1) ST R1, Imm(R2)
= ~ B rR1 1] [ rR2 ] rR1 1] [ R3 o
/ +Himm | +imm Tag spurious
a7 [ sowens |
! Memory Memory
R3 l
T[R3] = T[RZ] = T[MEM] -
T[R1] OR T[R2] T[MEM] OR T[R1] T[R3] OR T[R1]

"_l ]
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Tag Checker

= Processor traps when spurious values are used for
sensitive operations

m Sensitive values to be checked
e |nstructions
e Load addresses
e Store addresses
e Jump target addresses

m [rap Control Register (TCR) determines which
uses of spurious values generate a trap

Wﬂ’t
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Hardware Support Summary

= 1-bit tag for each GPR

= Small modification to ALU . S TLB | e
| ore | ’
e Tag computation (logical OR) | - 1.+ 7 Pointers
: . ||Regs || «— D-TLB| -7
= TLB contains tag types and | ————
tag pointers N e
| 18- D$-L1 | o [T$L1| |
m Separate tag caches J — §
o Allow parallel accesses to | — * i paed™
data and tags g L 512
o Exploit multi-granularity tags 5
= Tags will be often lessthan | ——————— !
1/8 of data Memory Bus
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Security Policy




Security Policy

m Defines “spurious” values
e |/O channels to be tagged
e Dependencies to be tracked

m Defines illegal uses of spurious values
e Trap conditions
e Software checks in the handler

m Can be general for many programs, or customized
for each program

W
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Take 1: Maximum Security

m Untrusted I/O
e ALL

m [racked Dependencies
e ALL

m Trap Condition
e Instruction
e Jump target address
e Store address

m [rap Handler

e Terminate the process

4 N
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False alarms
from spurious

pointers
- J

rA A
m

Need to balance security
and false positives
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Where Are Spurious Pointers From™?

m |/O inputs are often used as offsets for pointer
tables after a bound check

Comp Dependency - IR
PTR 1 [o
Base PTR
1 PTR_2 [o
PTR 3 o
Bound Check
0 < offset <n
PTR n |0
2 =/
[ Offset .] Jump Table
Spurious Jump Pointer

From I/O

ASPLQOS XI, October 11, 2004




Take 2: Allow Legitimate Uses

“ Un:EEUSted /o For pointer additions\
® _ such as

m Tracked Dependencies [4*r1+r2] in x86,
e ALL but pointer offsets < sd4addq r1, r2, r3

m Trap Condition ™ (r3 € r2+4*r1) in Alpha
e Instruction

e Jump target address
e Store address

m Trap Handler assuming the bound

e Terminate the process \ check is done. /

18 T CSAIL

The new tag =
T[r2]
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Example — Stack Smashing

JR R1 - Ret TfaP\/ Data 19 1
spurious jump /0 7
Tag Check\ target address i = 1 i
/0 [|[pata [@]
:VO 1 Inst 0l
; ilnst 0
K\ Registers P / — =

Processor K /

Memory

W
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Evaluation
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Simulation Frameworks

= Bochs (Intel x86)

e Keyboard and network |/O are tagged spurious
e Used to evaluate the effectiveness of our scheme
e x86 applications on Debian Linux (3.0r0)

= SimpleScalar (Alpha)
e All I/O are tagged spurious

e sim-fast: functional evaluations (false alarms, space
overheads for tags)

e sim-outorder: performance evaluations
e SPEC CPU2000 benchmarks

Wﬂ’t

ASPLOS XI, October 11, 2004 o1 ‘u
CSAIL



Detecting Security Attacks

m Buffer overflow testbed (by Wilander, 2003)

e Covers all 20 combinations possible in practice
m Overwrite technique: direct, pointer redirection
m Buffer location: stack, heap/BSS/data

m Attack targets: return address, base pointer, function pointer, and
longjmp buffers

e The best protection scheme in 2003 detected only 50%

m Format string attacks (from TESQO security group)
e Overflow a buffer or use %n conversion specification

m Detects and stops ALL security attacks tested

e So far, all known attacks directly inject pointers or
iInstructions -2 lenient tag propagation does not matte?F .
Al
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No False Alarms

= Common x86 applications
e Debian Linux 3.0 (keyboard, network marked spurious)
e System commands: Is, cp, vi, ping, etc.
e openSSH server/client

= Dynamically generated code

e A simple http server (TinyHttpd2) — marked spurious
e SUN’s JAVA SDK 1.3 HotSpot VM with JIT

m SPEC2000 CPU benchmarks

e Input files are marked spurious

Wﬂ’t
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Normalized IPC

Performance Degradation

m Various L2 sizes with 1/8 tag caches — 1.1% degradation on average
e Pessimistic overhead: baseline case gets 12.5% larger caches if it helps
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Conclusion

= Dynamic information flow tracking provides a powerful tool
for system security

e Tells whether a value came from untrusted 1/O or not
e Can restrict the use of potentially malicious input values
m Qur protection scheme is effective against large class of
attacks
e Stops both buffer overflow and format string attacks
e No false alarms for real-world applications
m The overhead of tagging can be small
e 1.4% space, 2.1% bandwidth, 1.1% performance overhead

= Many extensions are possible
e Automatically identify bound checks and strictly follow dependencies
e Combine with static analysis

e Other applications such as protecting private information or
debugging

ﬁ%ﬁﬂj
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Questions?

m QOur website
http://www.csg.csail.mit.edu

m Contact Info
Edward Suh (suh@mit.edu)
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