
Proceedings of the 2007 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY, 20-22 June 2007

Memoization Attacks and Copy Protection in Partitioned Applications

Charles W. O’Donnell1, G. Edward Suh2, Marten van Dijk1, and Srinivas Devadas1†
1Massachusetts Institute of Technology, Cambridge, MA 02139

{cwo,marten,devadas}@mit.edu

2Cornell University, Ithaca, NY 14853
suh@csl.cornell.edu

Abstract— Application source code protection is a major
concern for software architects today. Secure platforms have
been proposed that protect the secrecy of application algo-
rithms and enforce copy protection assurances. Unfortu-
nately, these capabilities incur a sizeable performance over-
head. Partitioning an application into secure and insecure
regions can help diminish these overheads but invalidates
guarantees of code secrecy and copy protection.

This work examines one of the problems of partitioning an
application into public and private regions, the ability of an
adversary to recreate those private regions. To our knowl-
edge, it is the first to analyze this problem when considering
application operation as a whole. Looking at the fundamen-
tals of the issue, we analyze one of the simplest attacks pos-
sible, a “Memoization Attack.” We implement an efficient
Memoization Attack and discuss necessary techniques that
limit storage and computation consumption. Experimenta-
tion reveals that certain classes of real-world applications are
vulnerable to Memoization Attacks. To protect against such
an attack, we propose a set of indicator tests that enable an
application designer to identify susceptible application code
regions.

I. Introduction

Proprietary software architects have long been concerned
with Intellectual Property (IP) protection to guard trade-
secret algorithms from theft, enforce licensing agreements,
and to prevent application vandalism caused by viruses and
Trojan horses. However, the scale with which the Internet
facilitates piracy and application “cracking” has now made
IP protection a first order concern. Consequently, a num-
ber of software protection techniques have arisen, primar-
ily based on hiding application functionality, but without
strict security guarantees.

In this work we investigate state-of-the-art security sys-
tems that protect applications by partitioning code into
public and private regions of execution [27][49]. Specif-
ically, we analyze one of the most basic methods for an
adversary to determine the functionality of hidden applica-
tion code, a “Memoization Attack .” We have implemented
a Memoization Attack, run it against a number of applica-
tions, and developed methods of identifying when an arbi-
trary application might be vulnerable to such an attack.

Naively, a secure computing system can perfectly pro-
tect application IP by executing all software on an im-
penetrable T rusted Computing Base (TCB), where only
the final application results are observable. To practi-
cally achieve this one could modify a standard processor

†This work is generously supported by ITRI, Taiwan.

with hardware safeguards and encryption mechanisms, en-
crypt the application, and only allow that processor to de-
crypt and re-encrypt software instructions and data. Un-
fortunately, whole-application encryption can inhibit the
use of shared libraries, complicate upgrades and patches,
and most importantly, require the use of cryptographic re-
sources throughout all of software execution — incurring a
sizable performance and power usage penalty. Since typ-
ically only a small portion of an application is considered
sensitive IP, all of these problems can be mitigated by par-
titioning the application and only requiring the TCB for
execution of the sensitive IP.

The idea of application partitioning has been proposed
often as a performance-friendly mechanism for secure pro-
cessors [27][49], secure co-processors [59], dongles [36], and
remote servers [13] to defend against attack [2][24][35].
However, while it seems self-evident that running an en-
tire piece of software on a TCB guarantees its IP privacy
and licensing assurances, it is not clear if these guarantees
hold true for individual partitions of a partitioned applica-
tion. For example, if an adversary is able to duplicate the
functionality of IP sensitive partitions by simply observing
the execution of the remainder of the code, the IP protec-
tion is wholly invalidated. Therefore, this paper’s analysis
of this kind of software vulnerability is of great importance
to guarantee the security of partitioned applications.

In Section II, we put forth a simple adversarial model.
Section III defines what a Memoization Attack is, and
shows that it is the “best” possible attack an adversary can
mount given our model. Section IV describes one practi-
cal and efficient implementation of this attack, and Section
V describes when the attack can be effective. Using these
insights, Section VI proposes heuristic metrics that can be
used to identify whether a partitioned region of applica-
tion code is susceptible to an Memoization Attack. Section
VII discusses other work in this area and Section VIII con-
cludes.

II. Attack Model

In this work, we restrict our focus to one of the simplest
types of adversary imaginable. As will be described in Sec-
tion II-D, our adversary can only observe the execution of
a partitioned application and then attempt to reconstruct
the hidden regions that are run on a TCB using that obser-
vation. More sophisticated adversaries are easy to envision,
however, we feel it prudent to explore a very basic model

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 1

to its fullest extent. Further, the adversarial powers we
describe here can be considered necessary for a number of
more complex types of adversaries.

A. TCB and Partitioned Application Model

For the sake of clarity we will only focus on one type of
TCB model so that we can describe more concretely what
actions an adversary can and cannot take, and what con-
stitutes a partitioned applications. To this end, we look at
physically secure processors and co-processors [27][49][59]
since these represent some of the most secure methods that
exist for TCB code execution. Specifically, we choose the
aegis secure architecture [49] because of its fairly straight-
forward protocol for the execution of partitioned applica-
tions. The remainder of this paper and all of our experi-
ments assume this model for a TCB.

In the aegis secure architecture a partitioned applica-
tion is merely a combination of private encrypted regions
and public unencrypted regions of code that switch back
and forth during execution using two distinct processor
modes. Application memory is also separated into en-
crypted and unencrypted regions, conceptually forming pri-
vate and public divisions of data and code. The encrypted
portions of code can only run in a secure mode that de-
crypts instructions, executes them, and protects the secrecy
and integrity of any private data these instructions operate
on. While executing in this mode an adversary can only ob-
serve accesses to public data, and cannot observe or modify
private data or program execution. Unencrypted portions
of a partitioned application run in an insecure mode, with
no protection of the data the instructions operate on.

For simplicity, we assume that procedures and the data
structures they “own” are the fundamental units of public
and private division. We also assume that procedures do
not maintain state across calls within encrypted regions of
memory. Disallowing a procedure to maintain encrypted
state between calls allows for a more clean analysis and
is fairly realistic for a large number of procedures within
applications

B. What an Adversary Can Observe

Fig. 1 depicts a fragment of a partitioned application
while it is run on an aegis secure architecture. Progress-
ing downward is an execution trace of an application as
it switches from a public region of code to a private re-
gion and back. To reduce clutter, we only show reads and
writes to main memory and do not show any other machine
operations (such as add, etc.).

Beginning in box I a public region of code executes and
performs some arbitrary procedure. Note that, this being
a public procedure, all accesses to memory can only touch
regions of memory that are also public. Since this is un-
encrypted code executing on a conventional processor, an
adversary can inspect everything involved with the proce-
dure. The procedure itself can be read to determine its

time

Application

Execution Trace

Memory

Public

Memory

Public

r1 r2 r3 r4

Private Procedure

Returns with

Return Register

Private Procedure

Called with
Argument Registers

Observable

Memory Buses

write (,)

write (,)

read ()

write (,)

priv−read ()

read ()

write (,)

read ()

read ()

(,)

(,)

(,)

priv−write (,)

(,)

Memory

Private

r11

Unobservable

Main Memory

(,)

I

II

III

A
B

C
D

K
L

Address

Value

G
H

A

C

E F
E F

G

Z Y

X

I J
W

X
Z Y

I J

K

NM

O P
O P

M N

Fig. 1. Partitioned application input/output visibility.

control flow, the processor state can be examined cycle-
by-cycle, and all memory requests and responses can be
sniffed.

At the end of box I the procedure calls a private region of
code (box II) and transfers control to the TCB to execute
that private procedure. This call requires procedure argu-
ments to be passed to the TCB, as shown by the registers
“r1,” etc. in Fig. 1 (as defined by the application binary
interface and including the stack and frame pointers). Sim-
ilarly, once the procedure completes, a return value is also
passed back from the TCB to the conventional processor.
Since the private procedure was encrypted, an adversary
cannot inspect the code directly to determine its control
flow, nor can it examine the processor state cycle-by-cycle
since its a TCB. Further, this TCB model hides any ac-
cesses to its private memory stack that the private proce-
dure makes.

Therefore, the only information an adversary can observe
relating to the private code is the arguments passed into
the procedure, the return value passed back from the pro-
cedure, and any accesses to public memory that the private
procedure makes (since public memory requests cannot be
hidden by the TCB and the values within public memory
are unencrypted). All three of these can be described as
a collection of Address/Value (AV) pairs, where the “Ad-
dress” indicates a memory address or argument register
identifier, and the “Value” is the actual data being ac-
cessed. Once the private procedure returns to execution
of public code (box III), the adversary can again observe
everything.

C. Adversary Goals

Principally, IP secrecy and copy protection depends on
preventing an adversary from discovering the contents of a
partitioned application’s private code. However, it is criti-
cal to note that an adversary does not need to exactly de-
termine the contents of a private region of code, but must
only reproduce a private procedure’s effect on the system

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 2

sufficiently well as to allow the entire partitioned applica-
tion to continue to function as designed . Therefore, an ad-
versary’s most simple goal is to replace “authentic” private
procedures with indistinguishable “counterfeit” procedures
that can reproduce the adversary’s desired “functionality”
and “utility” of the partitioned application as a whole.

Ultimately, the only functionality that matters to an ad-
versary is the set of application outputs that result from
some set of inputs he is interested in. If the set of in-
puts are time-dependent, then the adversary may further
only be interested in reproducing functionality for a limited
amount of time. To this extent, an adversary need not un-
derstand each private procedure, but must only duplicate
its external effects. For example, assume a fragment of an
application performing the power function f(x, p) = xp is
made secret. If an adversary only ever cares about execu-
tions when p = 3 then his only interest is in duplicating
code that performs f(x, 3) = x3.

Consequently, this limited sense of duplication of func-
tionality is exactly what we should be concerned with when
analyzing possible attacks on a partitioned application.
This can be formally defined as Temporal Application Op-
eration Equivalence (T-AOE).

Definition 1: T-AOE(APP ′, APP ′′, 〈Λ〉, ts, ω): Assume two
applications APP ′ and APP ′′ begin execution at time 0
and finish execution at the same time H. During each unit
of time between 0 and H, both applications are given the
same, new vector of inputs Λt chosen from some set of
many input vectors, the total available input set 〈Λ〉. These
applications are T-AOE at some time ts for the length of
time ω if, during the period [ts, ts +ω], the responses or re-
sults of both applications Ψ′

t and Ψ′′
t , are exactly equivalent

(assuming 0 ≤ ts ≤ H and (ts + ω) ≤ H).
Given this definition, the adversary we are concerned

with aspires to create a counterfeit private region of code
for a specific partitioned application that maximizes T-
AOE time ω (ideally, ω → (H−ts)). This ω can be thought
of as the adversary’s “time-till-failure.”

D. Adversarial Powers

Unfortunately, any realistic adversary we try to model
involves a human who has some innate prior knowledge
about the application under attack that can make the pro-
cess of recreating a hidden region of code trivial. For all we
know, the adversary may even be the author of the original
source code for a private procedures.

Given the inability to formally capture such knowledge,
we will simply treat a private procedure as a mathematical
function with inputs and outputs the adversary is capable
of observing. Our adversary has no understanding of the
purpose of a private procedure and can only obtain knowl-
edge of the code’s functionality by observing the procedure
arguments, the public memory accesses, and the procedure
output of an authentic application run on a TCB. Note,
although it seems probable for a real-world attack, our ad-

time time

Application

Observation Phase

Public Code

Public Code

Public Code

Create Counterfeit Code

Record Data

Application
Authentic

Private Code

Public Code

Public Code

Public Code

Counterfeit

Emulation Phase

Private Procedures

Replace

Fig. 2. Basic technique a Memoization Attack.

versary does not analyze the available public code at all to
infer any “meaning” to the application. This would again
prove quite troublesome to model.

To formally specify these powers, we say that for each
call to a private procedure, an adversary is aware of an in-
put set λ of memory reads and the procedure’s arguments,
and an output set ψ of memory writes and the procedure’s
return value. These can be thought of as a vector of data
values indexed by addresses or register numbers. Combin-
ing these vectors forms a single input/output relationship
pair (λ,ψ). An adversary observing multiple calls to a
private procedure can collect a multiple number of pairs.

III. Memoization Attacks

A “Memoization Attack” is the name we give to an
attack that uses an authentic private procedure’s in-
put/output relationship pairs to create an alternate coun-
terfeit version. Fig. 2 shows one way a Memoization Attack
can be performed. The adversary begins by running an au-
thentic application using a TCB for some amount of time.
During this time all input/output relationship pairs (λ,ψ)
of the private procedures are observed and stored into a
single “Interaction Table.” At some point the adversary
stops executing the authentic application on the TCB and
constructs replacement private procedures using the inter-
action table that was captured. He can then continue to
execute the application using these counterfeit private pro-
cedures. Whenever a counterfeit procedure is called, the set
of inputs λ are read, and the interaction table is searched
for a match. If a match is found the counterfeit procedure
returns the corresponding output set ψ, emulating the pro-
cedure, and continues execution of the application. Other-
wise the application fails and terminates. The application
continues running as long as calls to the counterfeit pro-
cedure are completed correctly, agreeing with our previous
definition of failure under T-AOE.

To determine just how powerful this attack can be, let us
first assume there exists an adversary with infinite mem-
ory and computational power, but who must also abide by
the restrictions on adversarial powers discussed in Section

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 3

II. Note, while this adversary may have infinite general
purpose computational power, we assume that he cannot
decrypt private procedures and is restricted to the use of a
real TCB to run authentic applications. Therefore what an
adversary can observe from the execution of an authentic
application remains the same as in a Memoization Attack
since this is essentially defined by our model (although with
infinite memory this adversary can save everything). Our
question is then: can this omnipotent adversary mount a
different type of attack that can outperform a Memoization
Attack (that is, have a longer ω value for T-AOE).

Now let us assume that this adversary observes L calls
to an authentic private procedure, somehow creates and in-
serts his own counterfeit procedure, and continues running
the application. No matter how the counterfeit procedure
is constructed, when the counterfeit procedure is called
during emulation only one of two things can happen. If
the exact set of inputs λ had been seen during the obser-
vation phase, then the adversary can simply return the set
of corresponding outputs ψ that it had saved. However, if
the set of inputs to the counterfeit procedure contain any
new elements, then the adversary must rely on some other
knowledge to decide what to output. Unfortunately, the
only knowledge the adversary has is the set of input/output
relationship pairs already seen. In the absence of any other
knowledge, there’s no reason to believe there’s any correla-
tion between prior input/output relationship pairs and the
current input. Such a correlation requires a “prior” or an
abstract learning model. Therefore this adversary’s best
option is simply to uniformly guess the values within the
output set.

If the maximum number of outputs the procedure re-
turns is σ, and the number of possible different outputs
is κ, then the probability of the adversary guessing every
output correctly is (1/κ)σ. Assuming each set of inputs is
uniformly selected from the set of all possible inputs, Γ,
the probability of an adversary correctly emulating a new
call to a counterfeit procedure is

Pcall =
(

L

|Γ|
)

+
(

1 − L

|Γ|
) (

1
κ

)σ

.

Assuming an extremely large set Γ, the probability of
a guess being correct is practically zero, which makes this
attack look quite the same as a Memoization Attack. Fur-
ther, the probability of an adversary successfully emulat-
ing ω calls is simply a sequence of Bernoulli trials, so
Pω = (Pcall)ω. Therefore, even an adversary with ac-
cess to unlimited memory and unlimited computational
power cannot do better than simply memoizing every in-
put/output relationship pair he observes. Given no innate
knowledge of a private procedure, nor any idea of its output
distribution, an attack as simple as a Memoization Attack
is also the best attack possible.

Note, we do not consider adversaries with knowledge of
a non-uniform output distribution of a private procedure.
These adversaries may be able to increase their probability

of success when guessing, but algorithmic effort to increase
this probability likely exhibits diminishing returns. That
is, it is our intuition that the computation time required to
approximate the output distribution grows exponentially
as a function of this approximation’s accuracy.

IV. Implementing Memoization

To investigate the feasibility of a Memoization Attack,
we implemented a tool that is capable of observing the exe-
cution of a partitioned application, constructing an interac-
tion table, replacing all private procedures with counterfeit
procedures, and re-running the partitioned application on
alternate inputs. Although building such a tool may sound
easy, a naive implementation (as will be first described)
would run quite slowly, and require orders of magnitude
more storage than typically found on computer worksta-
tions. Therefore, we present here some of the tactics used
to streamline the implementation so that it can be executed
efficiently.

A. System Setup

To create a tool that performs a Memoization Attack,
we created a special functional simulator for our chosen
TCB (an aegis processor). Binary applications are run
on the simulator, using some input data set, while attack-
specific tasks are performed in the background whenever
a transition is encountered from a public to a private pro-
cedure. In an attack, the simulator is first started in an
observation mode, which saves an interaction table to disk
as the application is run. The simulator is then restarted,
using a different input data set, and uses the saved interac-
tion table to emulate all private procedures. An assembly
rewriting tool was constructed to automate the separation
of public and private procedures in compiled applications.

B. Creating an Interaction Table

At first glance, creating an interaction table sounds quite
simple: observe an application execute and create a flat
mapping of each private procedure’s inputs and corre-
sponding outputs. However, emulating a private procedure
with such a flat lookup does not work on real systems. The
problem is: at the moment when a private procedure is first
called an adversary cannot know all of the input values to
that private procedure. This is because the procedure it-
self determines what memory addresses are to be read as
inputs during execution. This is what we call “Input Self-
Determination,” and is demonstrated in Fig. 3. As we
can see in the figure, an adversary cannot know whether

?

BA C D

Memory Addresses

{A}

{A,B}

{A,C}

{A,B,C}

{A,C,B}

Input Set =

Z = read(A)

X = read(B)

if (Z)

else
X = read(C)

write (D,X)

priv_proc():

Fig. 3. At call-time, inputs unknown due to self-determination.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 4

Register Input

(Address, Value)
Pair

Register Output

time

r1 = 0xfff4

Call N

r8 = 0x0

r1 = 0xfff4

Call 2

r8 = 0x2

r11 = 0x0

r1 = 0xfff4

r8 = 0x7

r11 = 0x1

Call 1

read (0x4012, 0x1)

write (0x4452, 0x1e)

write (0x4460, 0xf0)

read (0x4012, 0x0)

write (0x4452, 0x62)

write (0x4450, 0x20)

read (0x4020, 0x8)

write (0x4210, 0x4)

r11 = 0x0

Fig. 4. Basic private procedure interaction table.

address B is actually part of the input set until we know
the value at address A.

Therefore, our interaction table must contain more infor-
mation than just the input/output relationship pairs; the
table must keep information about the temporal ordering
of those pairs as they occurred during the execution of the
authentic application. One way to visualize such a table is
shown in Fig. 4, where each “column” represents a call to
the procedure which holds an ordered list of A/V pairs.

C. Emulation using an Interaction Table

Once an adversary has created an interaction table of the
type discussed in Section IV-B, he can quite easily emulate
any private procedure that is run on inputs he has already
seen. We show how this emulation can be done in Fig. 5.
When a private procedure is called, the input arguments
(registers r1, etc.) are matched against the previously seen
arguments found at the beginning of each column (inde-
pendent procedure call) in the table. The set of columns
with matching arguments then constitutes a set of candi-
date previously observed procedure calls that the current
procedure call might be an exact copy of. Notice, the next
row of all the candidate columns is the same and dictates
whether a memory read or write happened in the previ-
ously observed calls. If the next row is a write, the write
is performed and the following row is inspected (which will
still be the same for all columns). However, if the next row
is a read, there exists a new input value and the set of can-
didate rows can possibly be reduced. This continues until
a row contains the procedure’s return value, in which case
the emulation succeeds, or the set of candidate columns is
reduced to zero, in which case the emulation fails.

D. Compressing an Interaction Table

The method for creating an interaction table described
in Section IV-B is sound and will work on procedures
that have very few inputs or are called only a few times.
However, because of the way it maintains order informa-
tion, this table’s size will grow unmanageably when dealing
with procedures that have numerous inputs (many mem-
ory reads) or procedures that are called often with many
different values for their inputs.

To solve this issue, we instead imagine the structure
keeping track of the ordering of inputs and outputs as a
tree. Instead of each column representing a unique call to
the procedure, the root of the tree represents the begin-
ning of any call to the private procedure and each branch

r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read (0x4072, 0x12)

read (0x4012, 0x5)

read (0x4100, 0x64)

write (0x4440, 0xe4)

r1 = 0xfff4

read (0x4084, 0x1d)

read (0x4080, 0xfe)

r1 = 0xfff4
r3 = 0x7

r11 = 0x4

read (0x4012, 0x5)

read (0x4100, 0x54)

r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read (0x4072, 0x12)

read (0x4012, 0x5)

Column 2 Column 3 Column 4

r11 = 0x8

r3 = 0x3

write (0x4432, 0xe0)

read (0x4100, 0x54)

read (0x4072, 0x30)

write (0x4400, 0x0)

read (0x4088, 0x20)

Emulation Procedure:

Column 1

Candidate Columns

Read r1 = 0xfff4
r3 = 0x7

1 { 1, 2, 4 }

Read3

Read (0x4012, 0x5)2 { 1, 2, 4 }

Read (0x4100, 0x64)4

Write (0x4440, 0xe4)5 { 2 }

r11 = 0x1Write6

(0x4072, 0x12)

{ 2 }

{ 1, 2 }

{ 2 }

Fig. 5. Emulation steps using a basic interaction table.

leaving the root is one possible execution path. Such a
tree can reduce the amount of redundant data found in our
interaction table (as might have been noticed in Fig. 5).

An example of what this tree might look like is shown in
Fig. 6. Notice that since only memory reads can change
an execution path, each “tree node” contains the memory
address of the next read that should be performed in that
one execution path, as well as any writes that must be
made before that next read occurs. A private procedure
can be emulated using this tree in much the same way as
an interaction table is used as described in Section IV-C.

Although this tree drastically reduces the amount of data
we must save to perform a Memoization Attack, it still con-
tains some redundancies. The actual data structure used in
the implementation of our attack tool is significantly more
complicated, and is basically a full, possibly cyclic graph
that intelligently keeps track of unique paths from a single
start node to many possible end nodes.

The motivation for this is based on the following obser-
vation: when a tree keeps track of inputs and outputs to
a private procedure, loops within a single call can create

0x4100

r3

Next address
to be read

List of writes
to be performed

0x3

0x4100

r3

0x4072

0x7
(0x4410, 0x1e)

0x7
(0x4420, 0x60)

0x20

0x4088

r1

0xfff4

r3 r3

0x4072

0x4100

0x1

0x4100

0x2

0x4100

0x3

Tree node

Address to

be read

Value read

(0x4420, 0x5c)

Observed Sequences

0xffc0

0x4104
(0x4424, 0x0)

r3 = 0x7 r3 = 0x7
write (0x4410, 0x1e)

r1 = 0xfff4

read (0x4100, . . .)
. . .

r1 = 0xffc0

. . .

r1 = 0xffc0

write (0x4420, 0x60)
read (0x4072, 0x2)

r1 = 0xfff4
r3 = 0x3

read (0x4100, . . .)
. . .

r3 = 0x3
write (0x4420, 0x5c)

read (0x4088, . . .)
read (0x4100, 0x20)

r3 = 0x7
write (0x4410, 0x1e)
read (0x4072, 0x1)

r1 = 0xfff4

.
read (0x4104, . . .)read (0x4100, . . .)
write (0x4424, 0x0)

Fig. 6. Interaction tree representing compressed Fig. 5 data.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 5

an extremely deep and repetitive tree, even when the same
memory addresses and values are being read over and over.
Further, often multiple calls to a private procedure that
differ in their initial arguments can later exhibit identical
input and output traces for long periods of time. For exam-
ple, a procedure that takes two input arguments, computes
many values using the first argument, but only uses the
second argument at the very end of the procedure. When
using a tree data structure this would create two separate,
but nearly identical branches from the root. To construct
the graph data structure useful for emulation, we use a
unique-numbering method that pinpoints divergences and
convergences of execution traces. More details are given in
a related thesis [40].

V. Effectiveness of Memoization

After running our implementation of a Memoization At-
tack on a number of applications in the SPEC CPU2000
[20] suite, we found that two particular types of partitioned
applications are susceptible to this attack. By this we mean
that an adversary has a good chance of successfully emu-
lating the private procedures of a partitioned application,
given an arbitrary or naive partitioning of that application
into public and private regions. The two classes of applica-
tions can be identified by the types of inputs they require to
accomplish their task, applications with Partially Repeated
Input Sets and applications with Composite Input Sets .

A. Applications with Partially Repeated Input Sets

The first class of partitioned applications we found to be
susceptible to a Memoization Attack are those with private
procedures that are called when the exact same inputs are
given to a single execution of an application over and over
(such as a repeated common function like “save”), or those
that have private procedures that are only ever called when
the application reads identical inputs on every execution
(such as fixed runtime flags or a common data set).

To illustrate this class, we examined the “Parser” appli-
cation found in the SPEC CPU2000 suite, and assumed a
partitioning scheme that only treats individual procedures
as private or public. Parser executes in two stages, first
it processes a fixed dictionary file, and second it analyzes
sentences for their grammatic structure using that dictio-
nary. During the analysis, it can also accept special direc-
tives from a user that perform standard, repeatable oper-
ations. These two traits (two stage execution and special
directives) are indicative of an application with partially
repeated input sets.

To test whether a Memoization Attack would succeed, we
designated the special command() procedure in main.c to
be private. We then observed the application while sending
the !echo directive (that sets whether to display output to
the screen) which uses the special command() procedure.
Parser was then run on new input data and we were able
to emulate the call the !echo without any problems.

Next, the is equal() procedure in read-dict.c was
made private and observed the application when run on
the standard dictionary file and the input file “smred.in”
taken from MinneSPEC [41]. This procedure is only called
while Parser reads the dictionary file. In our attack, we
were able to correctly emulate this procedure when execut-
ing the entire Parser application on much larger input files
mdred.in and lgred.in. Both attacks proved successful.
Further, Table I shows that the storage requirements for
the interaction table (or actually graph, cf. Section IV-D)
are not large at all.

TABLE I

Size of memoized private procedures

Metric
Parser Parser

special command() is equal()

Total number of
283 5

nodes in graph
Size on disk

26,972 3,042,968
(in Bytes)

Maximum number of inputs
743 5

per call

B. Applications with Composite Input Sets

The second class of partitioned applications we found
susceptible to Memoization Attacks are those that contain
private deeply “inner” procedures (such as libraries) that
are only fed a finite number of unique inputs (due to the
control flow of the calling procedures), no matter what ex-
ternal inputs are given to the application as a whole. In
this case a Memoization Attack might succeed by simply
observing an authentic application run on any large set of
inputs, hoping to “cover” or “saturate” the set of inputs
to the inner procedure. Because these “saturating” proce-
dures are often not immediately apparent (unlike, perhaps,
those mentioned in Section V-A) this class of applications
represents a significant problem for a software architecture
who would like to prevent Memoization Attacks.

To test whether a Memoization Attack would succeed
on this class of applications we attempted to emulate a
few procedures from the Gzip and Parser applications in
the SPEC CPU2000 suite, assuming a partitioning scheme
that only treats individual procedures as private or public.
Table II summarizes the results.

In our attack of Gzip, we attempt to emulate a number
of procedures using the input file ref.log after observing
the execution of Gzip on just the ref.random input file,
both the ref.random and ref.graphic input files, and so
on. Even though there is virtually no overlap between these
inputs, we found that the bi reverse() procedure can be
emulated almost entirely correctly. Of the 1, 797 calls made
to bi reverse() while processing ref.log, 1, 741 of the
calls contained the exact same procedure inputs as had
been observed when running Gzip on the first four input
files.

Similarly, our attack on Parser attempted to emu-
late a number of procedures using the the mdred.in and
smred.in input files after observing the execution of the

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 6

TABLE II

Success of a Memoization Attack on applications with composite input sets

Gzip procedure Percentage of correct procedure calls while emulating ref.log after observing input set(s) ref.*
(Lines of assembly) {random} {random,graphic} {random, graphic,program} {random,graphic,program,source}
bi reverse (11) 38% (681/1797) 76% (1362/1797) 84% (1518/1797) 97% (1741/1797)
huft build (438) 0% (0/27) 0% (0/27) 0% (0/27) 0% (0/27)

Parser procedure Percentage of correct procedure calls after observing input set lgred.in
(Lines of assembly) emulating mdred.in emulating smred.in

contains one (123) 33% (1136/3485) 0% (0/71)

application using the lgred.in input file. Although none
of the procedures could be fully emulated after memoiz-
ing input/output relationships pairs from lgred.in, it is
clear that there are still many duplicated procedure calls
between the two unrelated input files. It might even be pos-
sible for an adversary to fully emulate the contains one()
procedure if he simply observes a large enough set of ap-
plication inputs from an input file.

From this experimentation we see that a Memoization
Attack may be able to succeed even when application in-
puts seen during emulation are completely unrelated to ap-
plication inputs recorded during observations.

VI. Identifying Vulnerable Applications

In Section V we have shown that a Memoization Attack
can succeed on certain classes of applications. This may
be useful information for an attacker, however, we would
rather help software architects avoid such attacks through
their choice of what procedures to make private and what
procedures to make public.

Ideally, we would like to have some test that tells us
whether a particular private procedure can be easily emu-
lated via a Memoization Attack. The simplest test could
be to just run our a Memoization Attack on that proce-
dure. However, to run this attack on all procedures in an
application would be computationally infeasible. Instead,
information theoretic analyses could be applied, but these
might also prove ineffective for practical applications be-
cause of their assumptions on entropy, complexity, input
space, and “learnability” may be too general. [12][53][54].

Thus, we propose the use of two heuristics, or “indica-
tors of insecurity,” that speculate upon the likelihood that
a private procedure can be emulated in a partitioned ap-
plication. Importantly, these indicators focus on the inter-
action of the procedure with the application, rather than
the procedure itself. While these tests are not absolute, a
procedure that passes them can be given a high confidence
that it is immune to a Memoization Attack. Such methods
of identifying negative results are used often in problems
that do not have a clear positive indicator, for example,
tests determining the “randomness” of a random number
generator [23][31][33].

A. Indicator I: Input Saturation

Our first test, Input Saturation tracks whether a private
procedure is only ever fed a finite number of distinct inputs

(AV pairs) by the rest of its application. A simple way to
detect this is to run an application using successively more
inputs, and observe whether the number of distinct inputs
fed to a procedure is linearly related to the number of in-
puts fed to the application, or if the number of distinct
inputs fed to that procedure saturates at some level. Pro-
cedures that are input saturating are likely easy to emulate
through a Memoization Attack (assuming a correlation be-
tween the number of unique input AV pairs and the total
number of ordered sets of input AV pairs — in reality this
correlates well, but not 100% of the time).

Many techniques exist that can estimate the number of
unique input AV pairs given to a procedure, however, we
simply created a tool that counts and efficiently stores this
number while an application is run on a specific input set.
Given a large enough input set, this method quickly sepa-
rates input saturating procedures from those that are not.

As a case example we used this tool to identify input
saturating procedures in the SPEC CPU2000 application
Gzip. Fig. 7 plots the number of unique AV pairs that are
fed to the Gzip procedure ct tally() during Gzip’s execu-
tion on five large, orthogonal input sets. For normalization
purposes, the x-axis represents the number of calls made to
the procedure instead of time. We call this a “cumulative
input density” plot, and use it as a helpful visualization of
when a procedure might be input saturating.

In Fig. 7, we see that the rate of increase in the number
of unique AV pairs decreases as more input sets are applied.
In fact, the input set ref.log did not cause any new AV

83,226
81,228

72,455

60,000

47,074

40,000

30,000

20,000

10,000

8.3x1087.3x1086.2x1085.0x1084.0x1083.3x1082.0x1081.0x1080

N
um

be
r

of
 u

ni
qu

e
A

V
 p

ai
rs

 r
ea

d

Number of procedure calls

ref.random

ref.graphic

ref.program

ref.source

ref.log

Unique AV pairs read by ct_tally()

Fig. 7. Cumulative input density plot of unique AV pairs for Gzip’s
ct tally, when run on a large input set.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 7

 1

 0.8

 0.6

 0.4

 0.2

 0
 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 N
um

be
r

of
 u

ni
qu

e
A

V
 p

ai
rs

 r
ea

d

Normalized Number of procedure calls

Unique AV pairs read by ct_tally()
Unique AV pairs read by bi_reverse()
Unique AV pairs read by huft_build()
Unique AV pairs read by build_tree()

Unique AV pairs read by longest_match()

Fig. 8. Cumulative input density plots from Gzip.

pairs to be fed to the procedure, implying that an adversary
might be able to emulate ct tally() on ref.log given the
observation of the prior four input sets.

To numerically quantify the information in the cumu-
lative input density plot we can use two specific metrics.
First, the “average input delta” (Avg.IΔ%) can tell us the
percentage increase in the number of unique AV pairs input
to a procedure from call to call. This gives an estimate of
how many procedure calls are expected before a new input
is seen, and correlates exactly to ω in the formulation of
T-AOE in Section II-C. Second, the “saturation weight”
(SW) is a single number that gives an idea of the shape
of the cumulative input density plot. If the function w(c)
represents the number of total unique inputs after the cth

call out of N calls, then SW is the normalized sum

SW =
1

Nw(N)

N∑
c=0

w(c).

Looking closer at our example, we’ve run Gzip on a
smaller version of the same inputs and highlighted five of
its procedures to demonstrate different levels of input sat-
uration typical in applications. Fig. 8 shows a cumulative
input density plot for these procedures executing on the five
inputs (normalizing total calls and inputs between proce-
dures to make comparison easier), and Table III gives their
average input delta and saturation weight values.

Inspecting the plots in Fig. 8, we see that the two
ct tally() and bi reverse() procedures are probably in-

put saturating, and would be susceptible to a Memoization
Attack, while the build tree() and longest match()
procedures are probably not. It is less clear if
huft build() is input saturating since it does not ap-
pear to plateau overall, but does plateau for each workload.
We attempted a full Memoization Attack on huft build()
(Table II) and found that we could not successfully emulate
the procedure. This may suggest that, conservatively, only
“strongly” saturating procedures might be vulnerable.

The SW values for these procedures also agree with our
conjectures, giving values close to 1.0 for easily emulated
procedures. However, the Avg.IΔ% values do not show a
correlation. This is important to note: Avg.IΔ% only es-
timates ω for one specific procedure and has little meaning
when used for comparison.

Finally, Table III also shows the average input delta
and saturation weight values of the Gzip ct tally() pro-
cedure using the larger version of the input set. Over
the smaller input set, this larger input set causes a dras-
tic decrease in SW from 0.87 to 0.77, lowering it to lev-
els near huft build() (0.72). However, huft build()
shows very little susceptibility to a Memoization Attack
and ct tally() shows very high susceptibility (as men-
tioned earlier, no new inputs are seen when the input set
ref.log is applied). This underscores the need for multi-
ple metrics and a conservative interpretation when making
final security decisions.

B. Indicator II: Output Weighting

Our second test, Output Weighting, tracks the values
that a private procedure outputs and those values’ useful-
ness to the application as a whole. In essence, this deter-
mines how important a private procedure is to the entire
application. Output Weighting is possibly a better test
than input saturation since it indicates how important a
private procedure is to the entire application.

Since an adversary only cares about whole-application
functionality, partitioning an application by making less
important procedures private may lead to a more success-
ful Memoization Attack. For example, assume during a
memoization attack that an adversary cannot return the
correct outputs for a private procedure call but continues
running. If the previous values in memory still produce the
correct behavior (because of range checks, etc.) then the

TABLE III

Rate of input saturation for five Gzip procedures

Procedure
Total unique inputs seen after execution on the input set(s) ref.*

Avg.
SW{random} {random,graphic} {random,graphic, {random,graphic, {random,graphic,

IΔ%
program} program,source} program,source,log}

ct tally (large input) 47,074 72,455 81,228 83,226 83,226 9.7x10−9 0.77
ct tally (small input) 2,304 2,550 2,768 2,836 2,837 6.9x10−7 0.87

bi reverse 569 580 580 580 581 6.3x10−5 0.99
huft build 0 2,500 3,170 3,510 3,586 7.4x10−3 0.72

build tree 11,873 23,611 29,945 32,103 32,672 5.9x10−3 0.51
longest match 4.78 M 8.33 M 10.13 M 11.19 M 11.61 M 2.7x10−6 0.51

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 8

TABLE IV

Output weights for six Gzip procedures

Procedure
Tot. uniq. Tot. uniq. Public Φ(·)

reads writes readers weight
inflate codes 4,240,569 5,151,281 9 390,657

ct tally 2,837 4,214,758 4 1,343,144
bi reverse 581 259 2 93
huft build 3,586 59,224 4 96
build tree 32,672 21,000 4 2

longest match 11,610,835 515 1 13,010

adversary will still be content. This “low importance” of
the outputs of the private procedure has allowed a Mem-
oization Attack to succeed. Another good example arises
when a private procedure’s outputs are only ever used by
a single, simple public procedure that is itself easily emu-
lated. In this case, the inputs and outputs of the private
procedure do not matter, and a Memoization Attack can
succeed by simply emulating the simple public procedure
wrapping the private procedure. The output weighting of
a private procedure should be able to identify both cases
as susceptible to a Memoization Attack.

Tracing the entire flow of data throughout an applica-
tion and deriving “usefulness” information is again a hard
task. Therefore we suggest a simple test that estimates
how much “usefulness” public procedures derive from the
outputs of a private procedure. This test recognizes that a
private procedure can only impact the outputs of the en-
tire application if its own outputs are passed along and or
used by other public procedures. This test is called the the
“output weight” Φ(·) of a procedure, and is defined by

Φ(η) =
∑

∀(ιi,κi)∈η

κi

ιi
.

Here η is a set of pairs (ι, κ), where ι is the number of
unique outputs written by a private procedure and read by
a public procedure, and κ is of the total number of unique
outputs from that public procedure. For example, if five
public procedures use the outputs of one private procedure
as their input, then |η| = 5. Here the fraction κi/ιi indi-
cates the impact of a private procedure’s outputs on the
outputs of public procedures. In other words, this indi-
cates how the utility of a private procedure’s outputs is
“amplified” as the outputs are used by the rest of the ap-
plication. A very large value of κi/ιi implies that a private
procedure’s outputs are important.

As with input saturation, the output weight of a proce-
dure can be estimated using many techniques. However,
for simplicity we made a tool that efficiently tabulated the
number of unique outputs that are transferred between pro-
cedures while an application is run on some input set. From
these tabulations we can compute the output weight, as
shown in Fig. 9 where the number of unique outputs out
of the inflate codes() procedure in Gzip are used to de-
termine an output weight of Φ(·) = 390, 657.

Looking again at our Gzip example, Table IV gives the
computed output weight of six select procedures from an
execution of Gzip on the small version of the same five input

sets. We also show the number of unique reads and write
a private procedure performs, and the number of public
procedures that read what that private procedure writes.

We see from Table IV that procedures inflate codes()
and ct tally() produce many unique outputs that are
then fed to other procedures that in turn produce many
unique outputs . If this trend continues, it is highly likely
that the outputs of the application as a whole will de-
pend significantly on the outputs of inflate codes() and
ct tally(). Alternately, the outputs of the bi reverse(),
huft build(), build tree(), and longest match() pro-
cedures only produce a limited number of unique output
AV pairs, and these outputs are passed to procedures that
do not produce many more unique outputs. Therefore, it
might be easy for an adversary to perform a Memoization
function on these latter four procedures

C. Interpreting Indicators

The two indicators presented are not absolute and are
not the only possible metrics of whether an application is
susceptible to a Memoization Attack. In practice a software
architect should apply as many tests as possible, including
more complicated tests, before confidently labeling a pri-
vate procedure safe from attack. Further, the indicator
results should be viewed in tandem. As seen in the exam-
ples, the set of “safe” procedures determined by the input
saturation test does not perfectly overlap with the set of
“safe” procedures determined by the output weighting test.
Ultimately, no test can rule out the possibility of a Mem-
oization Attack since this attack depends directly on the
input set applied to the application. Thus, the amount of
testing performed is yet another design choice when parti-
tioning an application into private and public regions.

VII. Related Work

Only a few studies [6][7][8][17][28] have specifically ex-
amined software secrecy and modification of application
code to prevent an adversary from determining its con-
tents, sometimes suggesting techniques with which to de-
cipher these contents. To counter such techniques obfusca-
tion transforms have been proposed that make an applica-
tion incomprehensible, but still functionally correct [9][10].
Unfortunately, it has been proven that cryptographically
secure obfuscation is generally impossible for a large fam-
ily of functions [4] (although a few specific families have
been shown to be obfuscatable [29][56]).

A more popular way of concealing application instruc-
tions is through encryption. Homomorphic encryption
schemes [45][46] allow meaningful computations to be per-
formed on encrypted data, but are not general enough
for practical use. Instead, many have suggested us-
ing a small trusted computing base to decrypt cipher-
text applications and to execute instructions confidentially
[3][22][32][38]. This idea of using specialized security hard-
ware and secure coprocessors has seen many manifestations

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 9

4,183,777

64
8

46 247

7

1424

4

81

4,757,022

24 8

1,213,401

243
75

56,339

Uniq−reads: 5,905,400 / 78,683,800

Uniq−writes: 261 / 32,800

Uniq−writes: 1,234 / 8,976
Uniq−reads: 921 / 8,108

Uniq−writes: 560 / 17,396

Uniq−reads: 534 / 17,239
Uniq−writes: 247 / 6,804
Uniq−reads: 140 / 3,036

Uniq−writes: 318 / 21,172
Uniq−reads: 574 / 22,517

Uniq−writes: 4,609,247 / 24,745,259
Uniq−reads: 2,439,169 / 24,782,375

Uniq−reads: 96 / 860

Uniq−reads: 2,650,792 / 28,619,384

Uniq−writes: 11,942,800 / 24,732,447
Uniq−reads: 10,828,238 / 24,765,895

Uniq−writes: 59,224 / 2,620,180
Uniq−reads: 3,586 / 4,300,496

Uniq−writes: 3,773 / 564,916
Uniq−reads: 14,966 / 709,514

inflate_dynamic()

flush_window()

inflate_fixed() inflate_block() inflate()

inflate_codes()

Uniq−writes: 5,151,281 / 40,591,375
Uniq−reads: 4,240,569 / 136,621,025

spec_read() huft_build()

inflate_stored()

unzip()

Uniq−writes: 46 / 840

spec_write()

fill_inbuf()

Uniq−writes: 3,121,972 / 15,904,885

Fig. 9. The unique outputs of the inflate codes() procedure in Gzip used to compute its output weighting of Φ(·) = 390, 657.

[14][25][58][59][61].
Recently, physically secure architectures have been pro-

posed that reduce this trusted computing base to a sin-
gle chip while also supporting application partitioning
[27][49][50][51]. These allow applications to be encrypted
and executed on a processor without revealing any informa-
tion to even the device owner. Even though these architec-
tures encrypt application instructions, additional methods
must still be employed to defend against side-channel at-
tacks [1][15][16][62].

Application encryption can be used for copy protection
(by bind software execution to a specific key), but con-
cepts of watermarking [10][55], renewability [30], online-
verification [11][13], and hardware assisted authentication
[18][26][37][43] have also all been suggested as means to
enforce basic software licensing. Unfortunately, many of
these methods suffer from the same fundamental problem:
they add extra code to the application. While it may be ex-
tremely difficult, a motivated adversary can almost always
remove this extra code.

Architectural support for application partitioning is not
a new concept [48][59], however we believe that this paper
is the first analysis of the problem of code secrecy when
considering application operation as a whole. Program slic-
ing has been proposed [60] as a means to prevent piracy,
however it does not address the possibility that program se-
crecy may not be guaranteed in a partitioned application.
Other compiler and language support for secure partition-
ing has been proposed [5][44], but focuses on a different
problem of application etiquette and information flow.

Finally, the indicators discussed are basically an anal-
ysis of code complexity. Many empirical software com-
plexity metrics have been developed over the years [19][21]
[34][39][42][47][52]. Of these, one [57] does discuss the com-
plexity of de-constructing an application, but does not fo-
cus on security. Deeper investigation of many of the prob-
lems examined here can be found in a related thesis [40].

VIII. Conclusions

Application partitioning has been suggested by a num-
ber of works as a means to allow an application to run
efficiently on a TCB while preserving security guarantees.
We have investigated the problem of maintaining IP se-

crecy and copy protection in a partitioned application by
looking at how to prevent an adversary from duplicating
the functionality or utility of a private partition. Impor-
tantly, this analysis often depends more on the make-up
of the entire application than it does on the make-up of
a private partition. This is formalized by the adversarial
goal of Temporal Application Operation Equivalence.

To tackle this question we have analyzed the simplest
form of attack, a Memoization Attack. This attack tabu-
lates input/output relationships seen during legitimate ex-
ecutions of a private partition, and replays what had been
saved when it later emulates that private partition. Under
certain assumptions this attack is the best an adversary can
possibly perform. We implemented a full Memoization At-
tack, and described some necessary techniques that allow
this attack to run with reasonable storage and computa-
tion time restrictions. Running this attack on real-world
applications, two classes of partitioned applications were
found that are susceptible to Memoization Attacks.

To help software architects identify vulnerable classes of
partitioned applications during development we proposed
two efficient tests that can be used to identify an applica-
tion’s susceptibility to a Memoization Attack. These tests
were implemented efficiently and run on an example appli-
cation to demonstrate their usefulness.

This has only been an initial step in the investigation of
the security hazards inherent in partitioned applications.
There are also many complicating issues that can be ex-
plored on this topic, such as the ease with which private
libraries can be attacked (since multiple input sets are used
in a predictable way), or if multiple versions of an applica-
tion can makes it any easier on an adversary.

Ultimately, the question of whether or not an adversary
can duplicate an unseen private partition is problematic at
best. The exact security of a system can only be guaran-
teed in terms of the adversarial model it defends against.
Further, such concepts like “human intuition” do not easily
fit into models, even though this is often the most impor-
tant factor when performing such attacks. Therefore, our
approach in answering this question is to begin with a sim-
ple, practical, but universal attack model that can then be
built upon by more complicated attack models that address
specific domains of human-injected knowledge.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 10

References

[1] J. Agat. Transforming out timing leaks. In 27th ACM Principles
of Programming Languages, January 2000.

[2] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant
devices. In IWSP: LNCS, volume 1361, pages 125–136, 1997.

[3] D. Aucsmith. Tamper Resistant Software: An Implementation.
In Proceeding of the 1st Information Hiding Workshop, 1996.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im)possibility of obfuscating
programs. CRYPTO’01: LNCS, 2139:1–18, 2001.

[5] D. Brumley and D. Song. Privtrans: Automatically partitioning
programs for privilege separation. In 13th USENIX, Aug. 2004.

[6] E. J. Byrne. Software reverse engineering: a case study. Software
Practice and Experience, 21(12):1349–1364, 1991.

[7] E. J. Chikofsky and J. H. C. II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[8] S. C. Choi and W. Scacchi. Extracting and restructuring the
design of large systems. IEEE Software, 7(1):66–71, 1990.

[9] C. Collberg, C. Thomborson, and D. Low. A taxonomy of ob-
fuscating transformations. Technical Report 148, Department of
Computer Science, University of Auckland, July 1997.

[10] C. S. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation: Tools for software protection. IEEE
Transactions on Software Engineering, 28(8):735–746, 2002.

[11] M. Corporation. Technical Overview of Windows Rights Man-
agement Services. Microsoft white paper, Apr. 2005.

[12] T. M. Cover and J. A. Thomas. Elements of Information Theory.
John Wiley and Sons, 1991.

[13] O. Dvir, M. Herlihy, and N. N. Shavit. Virtual Leashing:
Internet-Based Software Piracy Protection. In 25th ICDCS,
pages 283–292, 2005.

[14] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhancing secu-
rity in the memory management unit. In EUROMICRO, 1999.

[15] O. Goldreich. Towards a theory of software protection and sim-
ulation by oblivious rams. In ACM STOC, pages 182–194, 1987.

[16] O. Goldreich and R. Ostrovsky. Software Protection and Simu-
lation on Oblivious RAMs. J. of the ACM, 43(3):431–473, 1996.

[17] J. R. Gosler. Software protection: Myth or reality? In
CRYPTO’85 (LNCS No. 218), pages 140–157, 1986.

[18] T. C. Group. TCG Specification Architecture Overview Revision
1.2. http://www.trustedcomputinggroup.com/home, 2004.

[19] W. A. Harrison and K. I. Magel. A complexity measure based
on nesting level. SIGPLAN Not., 16(3):63–74, 1981.

[20] J. L. Henning. SPEC CPU2000: Measuring CPU performance
in the new millennium. IEEE Computer, July 2000.

[21] S. Henry and D. Kafura. Software structure metrics based on in-
formation flow. IEEE Trans. on Soft. Eng., 7(5):510–518, 1981.

[22] S. T. Kent. Protecting Externally Supplied Software in Small
Computers. PhD thesis, Massachusetts Institute of Tech., 1980.

[23] S. Kim, K. Umeno, and A. Hasegawa. On the NIST Statistical
Test Suite for Randomness. In IEICE Technical Report, Vol.
103, No. 449, pp. 21-27, 2003.

[24] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis.
Lecture Notes in Computer Science, 1666:388–397, 1999.

[25] M. Kuhn. The TrustNo1 Cryptoprocessor Concept. Technical
Report, Purdue University, April 1997, 1997.

[26] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and
Z. Wang. Architecture for protecting critical secrets in micro-
processors. In ISCA, pages 2–13, 2005.

[27] D. Lie. Architectural Support for Copy and Tamper-Resistant
Software. PhD thesis, Stanford University, 2003.

[28] R. Lutz. Recovering high-level structure of software systems
using a minimum description length principle. In AICS, 2002.

[29] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and
techniques for obfuscation. In EUROCRYPT, pages 20–39, 2004.

[30] M. Jakobsson, M.K. Reiter. Discouraging software piracy using
software aging. In DRM (CCS-8 Workshop), pages 1–12, 2002.

[31] G. Marsaglia and W. W. Tsang. Some difficult-to-pass tests of
randomness. Journal of Statistical Software, 7(3):1–8, 2002.

[32] T. Maude and D. Maude. Hardware protection against software
piracy. Communications of the ACM, 27(9):950–959, 1984.

[33] NIST Special Publication 800-22. A statistical test suite for ran-
dom and pseudorandom number generators for cryptographic
applications. IT Laboratory of NIST, May 2000.

[34] McCabe. A complexity measure. IEEE Trans. on Soft. Eng.,
2(4):308–320, Dec. 1976.

[35] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Examining
smart-card security under the threat of power analysis attacks.
IEEE Transactions on Computers, 51(5):541–552, 2002.

[36] Microcosm. DinkeyDongle. www.microcosm.co.uk, 2007.
[37] Microsoft. Next-Generation Secure Computing Base.

www.microsoft.com/resources/ngscb/default.mspx, 2007.
[38] C. Morgan. How Can We Stop Software Piracy. BYTE, 6(5):6–

10, May 1981.
[39] J. C. Munson and T. M. Khoshgoftaar. Measurement of data

structure complexity. Journal of System Software, 20(3):217–
225, 1993.

[40] C. W. O’Donnell. Secure Application Partitioning for Intellec-
tual Property Protection. Master’s thesis, Massachusetts Insti-
tute of Technology, Aug. 2005.

[41] A. J. K. Osowski and D. J. Lilja. MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research. Computer Architecture Letters, 1, 2002.

[42] E. I. Oviedo. Control Flow, Data Flow, and Program Complex-
ity. In Proceedings of COMPSAC, pages 145–152, 1980.

[43] P. England, B. Lampson, J. Manferdelli, M. Peinado, B. Will-
man. A trusted open platform. Computer, 36(7):55–62, 2003.

[44] S. Zdancewic, L. Zheng, N. Nystrom, A. Myers. Secure program
partitioning. ACM Trans. Comp. Sys., 20(3):283–328, 2002.

[45] T. Sander and C. F. Tschudin. On Software Protection via Func-
tion Hiding. Lecture Notes in Comp. Sci., 1525:111–123, 1998.

[46] T. Sander and C. F. Tschudin. Towards mobile cryptography. In
Proc. of the IEEE Symposium on Security and Privacy, 1998.

[47] S.R. Chidamber, C.F. Kemerer. A metrics suite for object ori-
ented design. IEEE Trans. on Soft. Eng., 20(6):476–493, 1994.

[48] S.R. White, L. Comerford. Abyss: An architecture for software
protection. IEEE Trans. on Soft. Eng., 16(6):619–629, 1990.

[49] G. E. Suh. AEGIS: A Single-Chip Secure Processor. PhD thesis,
Massachusetts Institute of Technology, 2005.

[50] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
aegis: Architecture for Tamper-Evident and Tamper-Resistant
Processing. In 17th ICS, June 2003.

[51] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design
and Implementation of the aegis Single-Chip Secure Processor
Using Physical Random Functions. In 32nd ISCA, June 2005.

[52] K.-C. Tai. A program complexity metric based on data flow
information in control graphs. In 7th ICSE, pages 239–248, 1984.

[53] V. N. Vapnik. Statistical Learning Theory. Wiley & Sons, 1998.
[54] V. N. Vapnik. The Nature of Statistical Learning Theory, Second

Edition. Springer, 1999.
[55] R. Venkatesan, V. V. Vazirani, and S. Sinha. A graph theo-

retic approach to software watermarking. In 4th International
Workshop on Information Hiding, pages 157–168, 2001.

[56] H. Wee. On obfuscating point functions. In ACM STOC, pages
523–532, May 2005.

[57] H. Yang, P. Luker, and W. C. Chu. Measuring abstractness for
reverse engineering in a re-engineering tool. In 13th ICSM, 1997.

[58] L. G. J. Yang and Y. Zhang. Fast Secure Processor for Inhibiting
Software Piracty and Tampering. In 36th MICRO, Dec. 2003.

[59] B. S. Yee. Using Secure Coprocessors. PhD thesis, CMU, 1994.
[60] X. Zhang and R. Gupta. Hiding program slices for software

security. In 1st CGO, pages 325–336, 2003.
[61] Y. Zhang, J. Yang, Y. Lin, and L. Gao. Architectural Support

for Protecting user Privacy on Trusted Processors. SIGARCH
Computer Architecture News, 33(1):118–123, 2005.

[62] X. Zhuang, T. Zhang, and S. Pande. Hide: an infrastructure
for efficiently protecting information leakage on the address bus.
SIGPLAN Not., 39(11):72–84, 2004.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 11

