
Physical Unclonable Functions for Device Authentication
and Secret Key Generation

G. Edward Suh
Cornell University
Ithaca, NY 14853

suh@csl.cornell.edu

Srinivas Devadas
Massachusetts Institute of Technology

Cambridge, MA 02139
devadas@mit.edu

ABSTRACT
Physical Unclonable Functions (PUFs) are innovative circuit
primitives that extract secrets from physical characteristics
of integrated circuits (ICs). We present PUF designs that
exploit inherent delay characteristics of wires and transistors
that differ from chip to chip, and describe how PUFs can en-
able low-cost authentication of individual ICs and generate
volatile secret keys for cryptographic operations.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Design, Security

Keywords
IC authentication, Secret keys

1. INTRODUCTION
As electronic devices become ubiquitous and intercon-

nected, people are increasingly relying on integrated circuits
(ICs) for performing security sensitive tasks as well as han-
dling sensitive information. For example, an RFID is of-
ten used as a key card to control access to buildings, smart
cards carry out financial transactions, and mobile phones
often contain sensitive data such as confidential documents,
personal emails, etc. Therefore, it is critical for ICs to be
able to perform operations such as authentication of devices,
protection of confidential information, and secure communi-
cation in an inexpensive yet highly secure way.

A common ingredient that is required to enable the above
security operations is a secret on each IC, which an adver-
sary cannot obtain or duplicate. The current best practice
is to place a secret key in non-volatile memory such as fuses
and EEPROM, and use cryptographic primitives such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, California, USA
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

digital signature and encryption to authenticate a device
and protect confidential information.

Unfortunately, the conventional approach suffers from a
couple of shortcomings. First, safely managing secrets in
memory is difficult and expensive. Non-volatile memory
technologies are often vulnerable to invasive attack as se-
crets always exist in a digital form, and even battery-backed
RAMs can be read after storing keys for a long time [1, 2,
14]. For a high level of physical security, the IC needs to
be protected using expensive tamper-sensing circuitry that
needs to be continually battery powered. Second, for ex-
tremely resource constrained platforms such as RFIDs, even
simple cryptographic operations can be too costly.

Physical Unclonable Functions (PUFs) [5, 6, 7] are in-
novative primitives to derive secrets from complex physical
characteristics of ICs rather than storing the secrets in digi-
tal memory. For example, a volatile secret can be generated
from the random delay characteristics of wires and tran-
sistors. Because the PUF taps into the random variation
during an IC fabrication process, the secret is extremely dif-
ficult to predict or extract.

PUFs significantly increase physical security by generat-
ing volatile secrets that only exist in a digital form when a
chip is powered on and running. This immediately requires
the adversary to mount an attack while the IC is running
and using the secret, a significantly harder proposition than
discovering non-volatile keys; an invasive attack must accu-
rately measure PUF delays without changing the delays or
discover volatile keys in registers without cutting power or
tamper-sensing wires that clear out the registers.

This paper discusses how PUFs can enable low-cost au-
thentication of ICs and generate volatile secret keys for cryp-
tographic operations. We also introduce a new PUF circuit
design based on ring oscillators, which has advantages in the
ease of implementation and reliability over previously pro-
posed designs. The PUF circuits can also be used as hard-
ware random number generators [11]. However, this paper
only focuses on device authentication and key generation.

The rest of the paper is organized as follows. Section 2
provides a brief overview of previous work on silicon PUFs,
including the concept, a circuit design, and test-chip results.
Section 3 describes a different PUF design based on ring
oscillators. Section 4 and Section 5 discuss how PUFs can
be used for low-cost authentication and cryptographic key
generation, respectively. Section 6 demonstrates that the
discussed applications are viable by providing experimental
results on 90nm FPGAs. Finally, Section 7 compares silicon
PUFs to related work and Section 9 concludes the paper.

2. PHYSICALUNCLONABLE FUNCTIONS
In this section, we introduce the concept of Physical Un-

clonable Functions (PUFs) and a previously proposed PUF
design based on MUXes and an arbiter. We call this an
arbiter PUF.

2.1 Concept
A Physical Random Function or Physical Unclonable Func-

tion (PUF) is a function that maps a set of challenges to a
set of responses based on an intractably complex physical
system. (Hence, this static mapping is a “random” assign-
ment.) The function can only be evaluated with the physi-
cal system, and is unique for each physical instance. While
PUFs can be implemented with various physical systems (cf.
Section 7), this paper focuses on silicon PUFs (SPUFs) that
are based on the hidden timing and delay information of in-
tegrated circuits [6, 7]. Even with identical layout masks,
the variations in the manufacturing process cause significant
delay differences among different ICs.

As mentioned in the introduction, PUFs provide signif-
icantly higher physical security by extracting secrets from
complex physical systems rather than storing them in non-
volatile memory. Another advantage of PUFs is that they do
not require any special manufacturing process or program-
ming and testing steps.

2.2 Arbiter PUF
Figure 1 illustrates a silicon PUF delay circuit based on

MUXes and an arbiter. The circuit has a multiple-bit input
X and computes a 1-bit output Y based on the relative delay
difference between two paths with the same layout length.
The input bits determine the delay paths by controlling the
MUXes. Here, a pair of MUXes controlled by the same input
bit X[i] work as a switching box (dotted boxes in the figure).
The MUXes pass through the two delay signals from the left
side if the input control bit X[i] is zero. Otherwise, the top
and bottom signals are switched. In this way, the circuit can
create a pair of delay paths for each input X. To evaluate
the output for a particular input, a rising signal is given to
both paths at the same time, the signals race through the
two delay paths, and the arbiter (latch) at the end decides
which signal is faster. The output is one if the signal to the
latch data input (D) is faster, and zero otherwise.

X[127]

… Latch

D Q
0

1

1

0

X[126]

0

1

1

0

X[1]

0

1

1

0

X[0]

0

1

1

0

Y

Figure 1: An arbiter PUF delay circuit. The circuit
creates two delay paths with the same layout length
for each input X, and produces an output Y based
on which path is faster.

Because the PUF circuit is rather simple, attackers can try
to construct a precise timing model and learn the parame-
ters from many input-output pairs [8]. To prevent these
model-building attacks, the PUF circuit output can be ob-
fuscated by XOR’ing multiple outputs or a PUF output can
be used as one of the MUX control signals. Note that the

model building attack is irrelevant for the cryptographic key
generation where the PUF output is never directly exposed.

There are two ways to construct a k-bit response from the
1-bit output of this PUF delay circuit. First, one circuit can
be used k times with different inputs. A challenge is used
as a seed for a pseudo-random number generator (such as a
linear feedback shift register). Then, the PUF delay circuit
is evaluated k times, using k different bit vectors from the
pseudo-random number generator serving as the input X to
configure the delay paths. It is also possible to duplicate the
single-output PUF circuit itself multiple times to obtain k
bits with a single evaluation.

2.3 Experimental Results
This arbiter-based PUF circuit with 64 stages has been

fabricated and tested in TSMC’s 0.18µm, single-poly, 6-level
metal process [7]. The experimental results show that two
identical PUF circuits on two different chips have different
outputs for the same input with a probability of 23% (inter-
chip variation). On the other hand, multiple measurements
on the same chip are different only with 0.7% probability.

Because the circuit measures the relative delay difference,
the PUF is robust against environmental variations. For
realistic changes in temperature from 20 to 70 Celsius and
regulated voltage changes of ±2%, the output noise is 4.8%
and 3.7%, respectively. Even when increasing the temper-
ature by 100C and varying the voltage by 33%, the PUF
output noise still remains below 9%. This variation is sig-
nificantly less than the inter-chip variation of 23%, allowing
for the identification of individual chips.

An ideally symmetric layout of the circuit in Figure 1
would increase inter-chip variation to 50%. The circuit fab-
ricated on our test chips has systematic skews in the layout
because the wires were auto-routed using CAD tools and
because of inherent skew in the latch used as an arbiter.
Removing the skews with careful layout would increase the
inter-chip variation.

3. RING OSCILLATOR PUF
In this section, we introduce a new PUF design based

on delay loops (ring oscillators) and counters rather than
MUXes and an arbiter. We call this new design an RO
PUF. Compared to the arbiter PUF described in the previ-
ous section, the RO PUF allows an easier implementation
for both ASICs and FPGAs, an easier evaluation of the en-
tropy, and higher reliability. On the other hand, the RO
PUF is slower, larger and consumes more power to gener-
ate bits than the arbiter PUF. Therefore, two designs are
complementary; the arbiter PUF is appropriate for resource
constrained platforms such as RFIDs and the RO PUF is
better for use in FPGAs and in secure processor designs.

3.1 RO PUF Overview
Figure 2 illustrates a PUF delay circuit that is comprised

of many identically laid-out delay loops (ring oscillators).
Each ring oscillator is a simple circuit that oscillates with a
particular frequency. Due to manufacturing variation, each
ring oscillator oscillates with a slightly different frequency.
In order to generate a fixed number of bits, a fixed sequence
of oscillator pairs is selected, and their frequencies are com-
pared to generate an output bit. The output bits from the
same sequence of oscillator pair comparisons will vary from
chip to chip. Given that oscillators are identically laid out,

the frequency differences are determined by manufacturing
variation and an output bit is equally likely to be one or
zero if random variations dominate.

N oscillators

MUX

counter

counter

>?
Output

Input

0 or 1

1

2

N

Figure 2: Ring oscillator based PUF circuit.

Note that it is very easy to duplicate a ring oscillator as
a hard-macro and ensure that all oscillators are identical.
Unlike the arbiter PUF, there is no need for careful layout
and routing. For example, the paths from oscillator outputs
to counters do not need to be symmetric. By counting many
oscillator cycles, the difference in oscillator frequencies can
be amplified and will dominate any skews in routing.

Now let us consider how many bits we can generate from
this circuit. Each comparison of a pair of oscillators gen-
erates a bit. There are N(N − 1)/2 distinct pairs given N
ring oscillators. However, the entropy of this circuit, which
corresponds to the number of independent bits that can be
generated from the circuit, is clearly less than N(N − 1)/2
because the bits obtained from pair-wise comparisons are
correlated. For example, if oscillator A is faster than oscil-
lator B, the comparison will yield a 1. If B is in turn faster
than C, the comparison will yield a 1. It is clear that when
A is compared with C that the comparison will yield a 1 -
these bits are correlated.

Fortunately, it is possible to derive the maximum entropy
of this circuit assuming pair-wise comparisons, i.e., the num-
ber of independent bits that can be generated by the circuit
as a function of N , the number of oscillators. There are N !
different orderings of ring oscillators based on their frequen-
cies. If the orderings are equally likely, the entropy will be
log2(N !) bits. For example, 35 oscillators can produce 133
bits, 128 oscillators can produce 716 bits, and 1024 oscilla-
tors can produce 8769 bits.

For simplicity, it is also possible to use each oscillator only
once to generate a single bit and avoid any correlation. For
example, 128 pairs of oscillators (256 oscillators total) can
be used to generate 128 independent bits.

3.2 Reliability Enhancement
Ring oscillator frequencies change significantly as environ-

mental conditions such as temperature and voltage change.
Of course, we are not using absolute frequencies but rather
doing relative comparisons. The PUF output changes only if
the ordering of the two oscillators being compared changes.

Figure 3 shows how errors (“bit-flips”) could occur due
to environmental changes. Say that ring oscillator Blue is
faster than ring oscillator Green at room temperature. How-
ever, when the temperature increases, both oscillators slow
down, with Blue slowing down faster than Green, due to dif-
ferent device or physical parameters. These ring oscillators

“flip” when the temperature changes substantially. This flip
causes an error in the generated bit.

Fr
eq

ue
nc

y

Temperature

Blue > Green

Green >
Blue

Temperature

Blue > Green

Blue >
Green

(a) Frequencies are close (b) Frequencies are far apart

Fr
eq

ue
nc

y

Figure 3: The relationship between the ring oscilla-
tor frequency distance and the probability of a PUF
output flip.

The insight from Figure 3 is that ring oscillators whose
base frequencies are far apart are much less likely to flip than
ring oscillators whose frequencies are close together. This
insight can be used to dramatically reduce the error rate
of generated key bits by judiciously selecting ring oscillator
pairs that will be compared. Specifically, we can remove a
significant portion of errors if we only compare ring oscillator
pairs, whose frequencies are far apart, to generate key bits.

As an example, we will show results from a very simple
1-out-of-k masking scheme with k = 8 in Section 6. As
mentioned earlier, a fixed sequence of ring oscillator pairs is
generated, this sequence now needs to be k times longer than
the desired number of bits to be generated. Then, for each k
ring oscillator pairs, we choose the pair that has maximum
distance. The bit vector indicating these selections is saved
so that the same pairs can be used to re-generate the output.
Other masking schemes such as picking n out of m, or using
a distance threshold are also possible.

There is a very small probability that key bits will have
errors once this masking is performed. Depending on the
application, the remaining errors can be corrected using an
error correcting code or merely forgiven (e.g., the chip is
authenticated if the number of errors is very small).

3.3 Creating Challenge-Response Pairs
For low-cost authentication shown in the next section, the

PUF circuit must be able to produce exponentially-many
challenge-response pairs. Unfortunately, the RO PUF that
was discussed can only generate a relatively small number
of bits. There are a few ways to create many challenge-
response pairs. First, we can extend the oscillators to have
configurable delay paths similar to the one in the arbiter
PUF shown in Figure 1. A challenge selects how to config-
ure the path within a delay loop so that different challenges
result in a different oscillation frequency. Second, in pro-
grammable logic such as FPGAs, a challenge can determine
the oscillator configuration such as the number of inverters
and which look-up tables and wires to be used. Each chal-
lenge will create a PUF circuit using different parts of the
logic, resulting in a unique response.

4. LOW-COST AUTHENTICATION
This section discusses how PUFs can be used to authenti-

cate individual ICs without costly cryptographic primitives.
The PUF-based authentication described here can be ap-
plied even to extremely resource constrained platforms such
as RFIDs where cryptographic operations may be too ex-

pensive in terms of silicon area or power consumption, or
off-the-shelf programmable ICs such as FPGAs where cryp-
tographic operations are not implemented. In the next sec-
tion, we also discuss how PUFs can generate cryptographic
keys that can be used for any cryptographic operations in-
cluding data encryption and authentication.

As the PUF output is unique and unpredictable for each
IC, provided it is long enough, it is straightforward to iden-
tify an IC with the PUF. (See Section 7.) One can simply
record a PUF output and compare that with a re-generated
one later. However, a single PUF output per IC is not
enough for authentication; anyone who has access to an IC
can obtain the PUF output and create another IC that con-
tains the PUF output in memory. Therefore, the authenti-
cation mechanism should ensure that an adversary cannot
obtain the PUF output that is used for authentication.

Authentic
Device A

PUF

Untrusted
Supply Chain /
Environments

???

Challenge Response

Is this the
authentic
Device A?

=?

PUF

Challenge Response’

Challenge Response

Database for Device A

1001010 010101
1011000 101101
0111001 000110

Record

Figure 4: Overview of PUF-based authentication.

Figure 4 illustrates the PUF-based authentication pro-
cess. Here, we exploit that the PUF can have exponen-
tial number of challenge response pairs where the response
is unique for each IC and each challenge. We also assume
that model-building is hard to do for a given PUF, because
of non-linearities in the PUF. (For an analysis of model-
building on arbiter PUFs see [8].) A trusted party, when
in possession of an authentic IC, applies randomly chosen
challenges to obtain unpredictable responses. The trusted
party stores these challenge-response pairs in a database for
future authentication operations. To check the authentic-
ity of an IC later, the trusted party selects a challenge that
has been previously recorded but has never been used for
an authentication check operation, and obtains the PUF re-
sponse from the IC. If the response matches (i.e., is close
enough to) the previously recorded one, the IC is authentic
because only the authentic IC and the trusted party should
know that challenge-response-pair. To protect against man-
in-the-middle attacks, challenges are never reused. There-
fore, the challenges and responses can be sent in the clear
during authentication operations.

5. CRYPTOGRAPHICKEYGENERATION
In many security applications, cryptographic primitives

such as encryption, digital signatures, and message authen-
tication code play central roles. Unfortunately, outputs from
the PUF circuits as described are inappropriate as crypto-
graphic keys. Because of noise, the outputs are likely to be
slightly different on each evaluation, even on the same IC for
the same challenge. On the other hand, cryptographic prim-
itives require that every bit of a key stays constant. More-
over, some primitives such as RSA require keys to satisfy

specific mathematical properties whereas the PUF outputs
are randomly determined by manufacturing variations.

In this section, we discuss how PUFs can generate volatile
secret keys that can be used for cryptographic operations.
There are two components. First, the error correction pro-
cess, which consists of initialization and re-generation, en-
sures that the PUF can consistently produce the same out-
put even if there are significant environmental changes such
as voltage and temperature fluctuations. Second, the key
generation process converts the PUF output into crypto-
graphic keys. The overall process is shown in Figure 5.

PUF
Circuit

ECC
Encoding

n-k

n

Syndrome (public information)

PUF
Circuit

ECC
Decoding

Key

Hash

k

n-k

n n

Key Generation

Initialization Re-generation

Figure 5: Cryptographic key generation with PUFs.

In the initialization step, an output is generated from
the PUF circuit and the error correcting syndrome for that
output is computed and saved for later. For example, the
BCH code can be used to compute the syndrome. The syn-
drome is information that allows for correcting bit-flips in
re-generated PUF outputs. If a masking scheme is used
with an RO PUF as described in Section 3.2, the bit vector
that selects oscillator pairs will also be stored along with
the syndrome. Note that the syndrome and this bit vector
are public information and can be stored anywhere (on-chip,
off-chip, or remotely on a server).

To re-generate the same PUF output, the PUF first pro-
duces an output from the circuit. If there is a saved bit vec-
tor, then that is used to select pairs. Then, the PUF uses the
syndrome from the initialization step to correct any changes
in the circuit output. In this way, the PUF can consistently
reproduce the output from the initialization step.

Clearly, the syndrome reveals information about the PUF
delay circuit output. In general, however, given the b-bit
syndrome, attackers can learn at most b bits about the PUF
delay circuit output. Therefore, to obtain k secret bits after
the error correction, we generate n = k + b bits from the
PUF delay circuit. Even with the syndrome, an adversary
still needs to guess at least k bits to find the correct PUF
response. For example, we can use the BCH (127,64,21)
code to reliably generate 64-bit secrets. The BCH (n, k, d)
code can correct up to (d− 1)/2 errors out of n bits with an
(n − k)-bit syndrome (b = n − k).

While the mask may reveal information about what ring
oscillator frequencies are far apart, it does not reveal infor-
mation about the sign of comparisons, i.e., the bits gener-
ated. If a ring oscillator is used many times to generate
bits, then it is conceivable that information about ordering
of ring oscillators can be extracted from the mask. This
can be easily precluded by using each oscillator only once to
generate a single bit.

For cryptographic operations that use a randomly selected
number as a key, the output of the error correcting code
(ECC) can be simply hashed down to a desired length and
used as a cryptographic key. For example, symmetric key

primitives such as AES can use the hashed PUF output.
For cryptographic operations whose keys need to satisfy

special properties (for example, an RSA key pair), the hashed
PUF output is used as a seed for a key generation algo-
rithm. In this way, the PUF can generate keys for any cryp-
tographic operation. We note that PUFs simply generate
keys that can be used with standard algorithm. There is no
change required in cryptographic algorithms.

The PUF with its key generation capability can be tightly
integrated with a processor to enable a physically secure
processor [16].

6. EXPERIMENTAL VALIDATION
Section 2.3 briefly discussed the experimental results for

an ASIC implementation of the 64-stage arbiter PUF. This
section presents recent experimental results for the RO PUF
on FPGAs and shows that the PUF can be used for authen-
tication as well as secret key generation.

The experiments in this section are performed on 15 Xilinx
Virtex4 LX25 FPGAs (90nm). All 15 FPGAs are exactly
the same model, and therefore identical designs. We placed
1024 ring oscillators in each FPGA as a 16-by-64 array. Each
ring oscillator consists of 5 inverters and 1 AND gate, which
are implemented using look-up tables (LUTs). To generate
reliable outputs, the 1-out-of-8 mask scheme described in
Section 3.2 is used.

In order to evaluate the basic PUF functions, we need
to know whether the PUF outputs are unique (for security)
and reproducible (for reliability). We define the following
two metrics for this purpose.

• Inter-chip variation: How many PUF output bits are
different between PUF A and PUF B? This is a mea-
sure of uniqueness. If the PUF produces uniformly
distributed independent random bits, the inter-chip
variation should be 50% on average.

• Intra-chip (environmental) variation: How many PUF
output bits change when re-generated again from a
single PUF with or without environmental changes?
This indicates the reproducibility of the PUF outputs.
Ideally, the intra-chip variation should be 0%.

Figure 6: The probability distributions for the inter-
chip variation and the intra-chip variation with the
worst case environmental change.

Figure 6 (a) illustrates the probability distribution of the
inter-chip variation when 128 bits are produced from each
PUF (FPGA). The x-axis represents the number of PUF

output bits that are different between two FPGAs, and the
y-axis represents the probability. Here, the bars (purple)
show the experimental results from 105 pair-wise compar-
isons, and the line (blue) shows a binomial distribution with
parameters fitted to the experimental results (n = 128 and
p = 0.4615). As shown in the figure, we obtain the average
inter-chip variation of 46.15%, which is pretty close to the
ideal average of 50%.

Figure 6 (b) illustrates the reproducibility of PUF outputs
by showing the intra-chip variation with the worst-case en-
vironmental change. For each FPGA, PUF outputs are gen-
erated at two different environmental conditions and com-
pared. Here, changing the temperature from 20C to 120C
and the core voltage from 1.2V to 1.08V changed the PUF
output by 0.6 bits on average (0.48%). This results show
that the intra-chip variation is much lower than the inter-
chip variation even in the worst-case environmental change.
While we studied the intra-chip variation under various tem-
perature (-20C to 120C) and voltage (+/-10%) changes, the
figure only shows the case that resulted in the highest intra-
chip variation. In fact, the PUF outputs did not change at
all for small or moderate environmental changes.

In summary, the experiments show that two identical PUF
circuits on two different FPGAs produce a different output
bit with a probability of 46.15% on average. On the other
hand, multiple measurements on the same chip are different
only with 0.48% probability (i.e., 0.6 bits out of 128) even
in the worst-case environmental change. Also, while the
number of samples are small, the figure demonstrates that
the binomial distributions match the experimental results
fairly well.

From the inter-chip and intra-chip variations, we can com-
pute false positive and false negative rates when the PUF
outputs are used in the simple authentication scheme de-
scribed in Section 4.

• False positive rate: The probability that PUF A will
be authenticated as PUF B; PUF A produces the same
output with PUF B.

• False negative rate: The probability that a correct
PUF will fail to be authenticated; the PUF fails to
re-generate a consistent output.

If we allow up to 10 bits out of 128 bits to be different in
order for an IC to be authenticated, the above results indi-
cate that the false positive rate is about 2.1×10−21 and the
false negative rate is less than 5×10−11. In this analysis, we
assume that the inter-chip and intra-chip variations follow
binomial distributions.

Similarly, the same analysis can be applied to estimate
how reliable the PUF-generated cryptographic keys will be.
For example, if the BCH (127,64,21) code is used, 10 errors
in a 127-bit PUF output can be corrected and the probability
of failing to re-generate the same key is less than 5× 10−11.

7. RELATED WORK

7.1 IC Identification
It is widely known that significant process variations exist

in IC fabrication making each IC unique [3, 4, 10]. These
process variations have previously been used to identify ICs
[9] by exploiting fluctuations in drain currents. However,
this identification method is not secure as an adversary can

easily read out the ID and duplicate an IC. Moreover, these
circuits cannot produce reliable bits that can be used with
cryptographic operations.

7.2 Other Types of PUFs
Researchers have studied the implementation of PUFs ex-

ploiting physical characteristics other than timing and delay
information of silicon circuits. For example, Pappu proposed
an optical PUF, which uses the speckle patterns of opti-
cal medium for laser light [12]. Coating PUFs and acoustic
PUFs [13, 17] measure the capacitance of a coating layer
covering an IC and the acoustic reflections of a token, re-
spectively. This paper focuses on silicon PUFs which are
very easy to integrate into ICs and processors unlike other
types of PUFs.

7.3 Memory Technologies to Store Secrets
Conventional solutions to embed secrets in ICs and com-

puting devices rely on battery-backed RAM or non-volatile
memories such as ROMs, fuses, or flash / EEPROM. When
using these technologies, on-chip memory is programmed
with a key that needs to stay secret.

PUFs provide unique secrets for each IC with stronger
physical security. Also, unlike keys in memory, PUFs do not
require programming of secrets and are difficult to dupli-
cate even by an IC manufacturer. Finally, because the PUF
circuit only uses standard digital logic, there is no need for
additional mask or special fabrication steps and PUFs can
be easily scaled to advanced technologies.

7.4 Tamper Sensing Packages
The state of the art method for protecting against key

extraction through invasive physical attack is to enclose the
secret key in a tamper sensing package as in the IBM 4758
processor [15, 18]. This type of protection provides a high
level of security, but is expensive and must be continuously
powered.

8. ACKNOWLEDGEMENT
We thank Tom Ziola of PUFCO, Inc. for his support of

this project. We thank Daihyun Lim, Jaewook Lee, Blaise
Gassend, Dwaine Clarke and Marten van Dijk for their con-
tributions to the PUF project at MIT.

9. CONCLUSION
We have described Physical Unclonable Functions (PUFs)

and showed PUFs can provide low-cost authentication of ICs
and generate volatile keys for both symmetric and asymmet-
ric cryptographic operations. Ongoing work includes the im-
plementation of PUF-enabled RFIDs and the development
of a secure processor that uses a PUF to generate crypto-
graphic keys that are only known to the processor.

10. REFERENCES
[1] R. Anderson and M. Kuhn. Tamper resistance - a

cautionary note. In Proceedings of the 2nd USENIX
Workshop on Electronic Commerce, November 1996.

[2] R. Anderson and M. Kuhn. Low cost attacks on
tamper resistant devices. In IWSP: International
Workshop on Security Protocols, 1997.

[3] D. S. Boning and J. E. Chung. Statistical metrology:
Understanding spatial variation in semiconductor

manufacturing. In Proceedings of SPIE 1996
Symposium on Microelectronic Manufacturing, 1996.

[4] K. A. Bowman, S. G. Duvall, and J. D. Meindl.
Impact of die-to-die and within die parameter
fluctuations on the maximum clock frequency
distribution for gigascale integration. Journal of
Solid-State Circuits, 37(2):183–190, February 2002.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Controlled physical random functions. In Proceedings
of 18th Annual Computer Security Applications
Conference, December 2002.

[6] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon physical random functions. In Proceedings of
the Computer and Communication Security
Conference, November 2002.

[7] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van
Dijk, and S. Devadas. A technique to build a secret
key in integrated circuits with identification and
authentication applications. In Proceedings of the
IEEE VLSI Circuits Symposium, June 2004.

[8] D. Lim. Extracting secret keys from integrated
circuits. Master’s thesis, Massachusetts Institute of
Technology, May 2004.

[9] K. Lofstrom, W. R. Daasch, and D. Taylor. Ic
identification circuit using device mismatch. In
Proceedings of ISSCC 2000, February 2000.

[10] S. R. Nassif. Modeling and forecasting of
manufacturing variations. In Proceedings of ASP-DAC
2001, 2001.

[11] C. W. O’Donnell, G. E. Suh, and S. Devadas.
PUF-based random number generation. In MIT
CSAIL CSG Technical Memo 481, November 2004.

[12] R. Pappu. Physical One-Way Functions. PhD thesis,
Massachusetts Institute of Technology, 2001.

[13] B. Skoric, P. Tuyls, and W. Ophey. Robust key
extraction from physical unclonable functions. In
Proceedings of the Applied Cryptography and Network
Security Conference 2005, volume 3531 of Lecture
Notes in Computer Science, 2005.

[14] S. P. Skorobogatov. Semi-invasive attacks - a new
approach to hardware security analysis. In Technical
Report UCAM-CL-TR-630. University of Cambridge
Computer Laboratory, April 2005.

[15] S. W. Smith and S. H. Weingart. Building a
high-performance, programmable secure coprocessor.
Computer Networks (Special Issue on Computer
Network Security), 31(8):831–860, April 1999.

[16] G. E. Suh, C. W. O’Donnell, I. Sachdev, and
S. Devadas. Design and implementation of the aegis
single-chip secure processor using physical random
functions. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture,
June 2005.

[17] P. Tuyls, B. Skoric, S. Stallinga, A. Akkermans, and
W. Ophey. Information theoretical security analysis of
physical unclonable functions. In Proceedings of
Conference on Financial Cryptography and Data
Security 2005, volume 3570 of Lecture Notes in
Computer Science, 2005.

[18] B. S. Yee. Using Secure Coprocessors. PhD thesis,
Carnegie Mellon University, 1994.

