
Embedded Intelligent SRAM

Prabhat Jain G. Edward Suh Srinivas Devadas
Laboratory for Computer Science

Massachusetts Institute of Technology
200 Technology Square
Cambridge, MA 02139

{prabhat, suh, devadas}@mit.edu

ABSTRACT
Many embedded systems use a simple pipelined RISC pro-
cessor for computation and an on-chip SRAM for data stor-
age. We present an enhancement called Intelligent SRAM
(ISRAM) that consists of a small computation unit with
an accumulator that is placed near the on-chip SRAM. The
computation unit can perform operations on two words from
the same SRAM row or on one word from the SRAM and
the other from the accumulator. This ISRAM enhancement
requires only a few additional instructions to support the
computation unit. We present a computation partitioning
algorithm that assigns the computations to the processor or
to the new computation unit for a given data flow graph of a
program. Performance improvement results from the reduc-
tion in the number of accesses to the SRAM, the number of
instructions, and the number of pipeline stalls compared to
the same operations in the processor. Experimental results
on various benchmarks show up to 1.48× speedup with our
enhancement.

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Static memory (SRAM);
C.1.3 [Processor Architectures]: Pipeline processors; D.3.4
[Programming Languages]: Code generation.

General Terms
Algorithms, Design, Management, Performance.

Keywords
Embedded, Intelligent, SRAM, Computation Partitioning.

1. INTRODUCTION
Embedded systems are used in a variety of applications.

Some examples of embedded systems are hand-held devices,
automotive systems, and portable communication devices.
Unlike general-purpose systems, embedded systems need to
be cheap and have low power dissipation. Thus, complex
superscalar processors are inappropriate for use in most em-
bedded systems. As a result, many embedded systems use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

simple pipelined RISC processors such as the ARM9TDMI [1]
and others use micro-controllers or DSP processors.

We propose an enhancement to pipelined embedded RISC
processors, which places a small computation unit with an
accumulator near the on-chip SRAM. We call this additional
computation unit S-ALU, and the combination of the SRAM
and S-ALU ISRAM. The computation unit operates under
the control of the processor through the use of a few ad-
ditional instructions. Additional data transfer instructions
allow data movement among the processor register file, accu-
mulator, and SRAM. This enhancement requires only minor
modifications to the processor pipeline and a few additional
instructions.

One of the key features of S-ALU is that it can operate on
two words from the same row of the SRAM. The on-chip
SRAMs are organized as rows of words that are accessed at
the same time. The rows may range from 32 bits to 128 bits.
When a word is to be read from the SRAM, the whole row
containing the word is read and the desired word is selected
from the row of words. In our enhancement, the additional
computation unit can read two words from the same row
and perform the computation with them in one instruction,
which saves one SRAM access. Because the entire row is
read anyways, our modification only has minimal hardware
cost.

Our enhancement improves performance also by reduc-
ing the number of instructions and the number of pipeline
stalls as well. The instructions for the additional compu-
tation unit perform both SRAM reads and an arithmetic
operation with the same throughput as the standard RISC
instructions. The operations of one S-ALU instruction take
two or three processor instructions. Therefore, if compu-
tations can be placed in S-ALU, the number of instructions
can be reduced. At the same time, S-ALU is placed after the
SRAM reads in the pipeline, which eliminates the pipeline
stall between the SRAM read and an arithmetic operation.

Obviously, there have been several proposals in the litera-
ture and efforts in industrial products to add additional log-
ical functionality to enhance processor performance in em-
bedded and conventional systems. However, previous pro-
posals either require significant hardware modification or
are limited to specific applications. Our enhancement only
requires small hardware modifications; essentially, just one
ALU next to the SRAM with communication paths, and
targets general computations rather than stream computa-
tion where other SIMD or DSP extensions work extremely
well. (For more details, refer to Section 6 for related work).

IF EX MEM WBID

wo w1

ACC

Data

Data

Row

Dec

Addr

Data

SRAM

word

sel S−ALU

Figure 1: Hardware Architecture

We develop a compiler algorithm that takes advantage
of this additional functionality to improve program perfor-
mance. We use the data flow graph of a program as input
to our computation partitioning algorithm that assigns the
computations to the processor or to the new computation
unit. This algorithm is used before instruction selection,
scheduling and register allocation. We describe a branch-
and-bound algorithm which uses a cost function that esti-
mates data transfer instruction costs in terms of the number
of instructions for any given partitioning. The algorithm
generates the SRAM row constraints for data layout that
then need to be satisfied by a data layout algorithm. It
ensures that the set of generated constraints is feasible.

There are many applications that can benefit from our
approach. The performance improvement comes from the
reduced memory accesses and the reduction in the number
of cycles to perform an operation on SRAM words using
the computation unit as compared to using the processor
ALU. Our experimental results show that the benefits of this
modification is significant although the additional hardware
cost is minimal.

The rest of the paper is organized as follows. In Section 2
we describe our approach for the proposed enhancement.
In Section 3 we formulate the partitioning problem asso-
ciated with the proposed enhancement and give a detailed
algorithm to solve the partitioning problem. We illustrate
our approach using an example in Section 4. In Section 5 we
show experimental results on some benchmarks. In Section 6
we provide a summary of the related work. We conclude in
Section 7.

2. OVERALL APPROACH
Our goal is to improve embedded system performance by

adding a small amount of hardware that augments the func-
tionality of the main processor. We describe the software
and hardware aspects of our approach in this section.

2.1 Hardware Architecture
The hardware modification comprises of a small computa-

tion unit along with an accumulator near the on-chip SRAM.
The hardware architecture of our enhancement is shown in
Figure 1. We show a 5-stage pipeline of the processor sim-
ilar to the one used in the ARM9TDMI [1] processor. The
processor pipeline does not require any modifications except
for the support needed for the new instructions to use the
computation unit. The computation unit operates under

Instruction Description

OPS2 Ws1, Ws2,
(Imm)Rs

OP(SRAM[<Rs>+Imm,Ws1],
SRAM[<Rs>+Imm,Ws2]) → ACC

OPSA (Imm)Rs OP(SRAM[<Rs>+Imm], ACC) → ACC
OPSA’ (Imm)Rs OP(ACC,SRAM[<Rs>+Imm]) → ACC

MACCR Rd ACC → REG[Rd]
MRACC Rs REG[Rs] → ACC

STACC (Imm)Rd ACC → SRAM[<Rd>+Imm]
LDACC (Imm)Rs SRAM[<Rs>+Imm] → ACC

Table 1: New Instructions

IF

ID

EX

MEM

WB

OPS2

Calc
SRAM
Addr

Access
SRAM
row

Result in
ACC

OPS2

OPS2

OPS2

OPS2

Dec
Instr

Fetch
Inst

Perform
Op on row
words

Figure 2: Pipeline Flow

the control of the main processor with the help of the new
additional instructions.

2.2 New Instructions
The new instructions that support the new computation

unit are shown in Table 1. In this subsection, we assume that
each SRAM row consists of two words. The description can
be easily extended to more words per row. The instructions
are symmetric in terms of their input operands, i.e., the
SRAM word w0, w1, and the ACC can appear on either
input of the S-ALU. The OPS2 instruction takes two words in
the same SRAM row, performs an operation OP, and stores
the result in the accumulator ACC. A register (Rs) and an
immediate (Imm) specify a row in the SRAM, and Ws1 and
Ws2 specify a word within the row. The instruction OPSA

takes one operand word from the SRAM (w0 or w1) and the
other operand from the ACC, performs the operation OP, and
stores the result in the accumulator ACC. The instructions
MACCR and MRACC perform data transfer between a processor
register and the accumulator. The instructions STACC and
LDACC perform the data transfer between the accumulator
and the SRAM.

The new instructions can be compactly encoded with a
few opcodes. For example, the encoding of OPS2 consists
of the opcode (6 bits), the address register Rs (5 bits), the
immediate Imm (14 bits), the bits specifying words Ws1, Ws2
(2 bits), and the operation field OP (5 bits). Using an op-
eration field, all operations (ADD, SUB, SHIFT, etc.) are
encoded with one opcode. Similarly, all other instructions
can be encoded using only a few opcodes.

2.3 Pipeline Flow
Figure 2 shows the pipeline flow of the OPS2 instruction.

The instruction is fetched in the IF stage, decoded in the
ID stage, the SRAM address is calculated in the EX stage,
and the SRAM is accessed in the MEM stage of the pipeline.
The above steps are the same as for a processor load instruc-
tion. The row data read from the SRAM is fed to S-ALU.

The S-ALU computation unit performs the operation spec-
ified in the OPS2 instruction during the writeback stage of
the pipeline and writes the result into the accumulator. The
result of the accumulator is available in the next cycle. As-
suming the SRAM latency is 1 cycle, the processor pipeline
does not stall for the OPS2 instruction. The instruction OPSA

flows through the pipeline in the same manner.
If a standard RISC processor were to perform an operation

on two words from the SRAM, it would require two loads
from the SRAM and one operation instruction. If a load
instruction is followed by an ALU instruction that uses the
load value, then the processor would stall for one cycle (as-
suming 1 cycle SRAM latency) because the value of the load
instruction is available at the end of MEM pipeline stage,
but the ALU instruction is in the EX stage when the load
is in MEM stage. This pipeline stall can be avoided if some
other instruction independent of the load value is inserted
between the load and the ALU instruction. The instruction
OPS2 saves one load instruction to the processor and one
instruction for the operation. The OPS2 instructions saves
two cycles compared to the sequence of instructions needed
to perform the same operation on the processor for the two
SRAM words, assuming 1 cycle SRAM latency. One saving
comes from reading the two words from the same SRAM
row access. The other saving comes from performing an
operation during the WB stage of the pipeline.

2.4 Software Support
In addition to the conventional compilation steps, we have

to perform a partitioning step for any given program that
determines which arithmetic unit any given operation will be
executed on. Therefore, for a given program, after obtaining
the Intermediate Form (IF) representation of the program,
we perform the following steps:

1. Generate directed acyclic graphs (DAGs) correspond-
ing to the basic blocks of the program.

2. For each DAG, run the computation partitioning al-
gorithm (cf. Section 3). The algorithm assigns the
operation nodes to the processor ALU called P-ALU or
S-ALU and generates the SRAM row constraints.

3. We perform the data layout using a simple algorithm
that satisfies the SRAM row constraints.

4. The steps of instruction selection, scheduling and reg-
ister allocation are performed to generate code.

3. ALGORITHM
We formulate our computation partitioning problem as

a cost minimization problem, and describe an algorithm to
solve the problem. In the algorithm, it is assumed that there
are two ALUs: the ALU near the SRAM (S-ALU) and the
ALU in the processor (P-ALU).

3.1 Partitioning Problem
Given a directed acyclic graph G with the nodes either

representing the computation or variables in the SRAM, the
partitioning problem is to assign the computation nodes to

S-ALU or P-ALU in a way that minimizes the total number

of cycles required to execute the program with a feasible data

layout.
To approximate the cycles to execute a program, we define

the cost of a partition C as Pc + Sc + Ec. Pc and Sc are the

/* Initialization */
BestCost = ∞
BestSol = (-,-,-)
C = num computation nodes(G)
call partition nodes(G, -, -, -, C)

partition nodes(G, P , S, R, C) {
if (!all assigned(G)) {

for each v in eligible nodes(G) {
/* Assign v to P-ALU */
P ′ = P ∪ {v}; G′ = assign to P(G,v)
C′ = C + update cost(G,G′,v)
if (C′ < BestCost) partition nodes(G′,P ′,S,R,C′)

/* Assign v to S-ALU (OPSA) */
S′= S ∪ {v}; G′= assign to SA(G,v)
C′ = C + update cost(G,G′,v)
if (C′ < BestCost) partition nodes(G′,P ,S′,R,C′)

/* Assigned v to S-ALU (OPS2) */
S′= S ∪ {v}; G′= assign to S2(G,v)
RC = {row(inp1(v)) = row(inp2(v))}
succ = check constraint(R, RC)
if (succ) {

R′ = R ∪ RC

C′ = C + update cost(G,G′,v)
if (C′ < BestCost) partition nodes(G′,P ,S′,R′,C′)

}}
} else {

if (C < BestCost) {
BestCost = C

BestSol = (P , S, R)}}
}

Figure 3: Computation Partitioning Algorithm

update cost(G, G′, v) {
change = 0; iv1 = inp1(v); iv2 = inp2(v)
change += data transfer cost(G′, iv1)
change -= data transfer cost(G, iv1)
change += data transfer cost(G′, iv2)
change -= data transfer cost(G, iv2)
return change

}

Figure 4: Lower Bound Cost Computation

number of computation instructions assigned to P-ALU and
S-ALU respectively, which represent the cycles for computa-
tions. Ec is the number of instructions required for data
transfers to satisfy the data dependencies.

Since we assume that the cost C represents the cycles
taken for an execution, the goal of our partitioning algorithm
is to find the partition between P-ALU and S-ALU that min-
imizes C. We use a branch-and-bound algorithm to achieve
this goal.

3.2 Computation Partitioning Algorithm
The algorithm takes a DAG with computation and data

variable nodes as input and generates as output the assign-
ment of the computation nodes to P-ALU and S-ALU and the
necessary SRAM row data layout constraints.

The algorithm is shown in Figure 3. In the algorithm, G is
the data flow graph, P is the set of nodes assigned to P-ALU,
S is set of nodes assigned to S-ALU, C is cost of the current

assignment, and R is the set of SRAM row constraints. In
this algorithm, a node is eligible for assignment only when
all its inputs have been assigned. The branch-and-bound
algorithm uses a lower bound on the cost of current partial
assignment to prune the search space.

The leaf nodes represent the variables residing in the SRAM
and these nodes are considered as the assigned nodes in the
graph G. The best cost is initialized to ∞. The assignment
of nodes and the row constraints is initialized to an empty
set, which represents the best solution. The initial cost C

is the number of computation nodes in G, which represents
Pc + Sc.

If there is a node yet to be assigned, then the algorithm
tries to assign each eligible node to P-ALU, S-ALU with OPS2,
and S-ALU with OPSA one at a time. To try a new assign-
ment, the node is added to the set P ′ (or S′) and marked
as assigned in G′. The lower bound of the current partial
assignment is computed (C′). The partitioning algorithm
is called recursively only if the current cost is lower than
the current best solution. For the assignment to S-ALU with
OPS2, the algorithm first checks if both input nodes can be
placed in the same SRAM row with the constraints already
given. The assignment is tried only when the row constraint
can be satisfied.

If all the nodes are assigned, then the current assignment
represents one possible solution and the current cost (C)
represents the cost of the solution. If the cost is less than
that of the current best solution, the best cost and the best
solution is updated with new values.

3.3 Cost Computation
The cost of a partition consists of three components: com-

putation cost in P-ALU (Pc), computation cost in S-ALU (Sc),
and data transfer cost (Ec). The computation cost (Pc +Sc)
is simply the number of computation nodes in the graph G.

The data transfer cost due to data flow dependencies can
be computed from the graph G and the assignment of its
nodes. For example, consider the graph in Figure 5 (a). If
the addition node that uses A and B is assigned to P-ALU,
there is the data transfer cost of two instructions because
both A and B should be moved from the SRAM to the
register file. Similarly, if the second addition node E is as-
signed to S-ALU, there is the cost of one instruction because
the result of the first addition should be moved to either the
accumulator or the SRAM.

For each node v, the algorithm finds the data transfer cost
of the node by looking at the assignment of the following
nodes that use the result from v (we refer to these as fanout

nodes of v). Table 2 summarizes the cost for each case. For
a node under consideration, let np the number of fanout
nodes assigned to the processor, nsa be the fanout nodes
assigned to the S-ALU with OPSA, and ns2 be the number
of fanout nodes assigned to the S-ALU with OPS2 operation.
Essentially, whenever the result of an operation at P-ALU is
used by S-ALU or vice versa, one data transfer is required.
Also, when the value in the accumulator is used by the OPS2

instruction, it should be written to the SRAM.
With a partially assigned graph, the computed cost should

be the lower bound that holds under any assignment of the
unassigned nodes so that it can be used to prune bad parti-
tions. Therefore, the data transfer cost of unassigned nodes
is assumed to be zero. Because a node is eligible for assign-
ment only when all its inputs have been assigned, none of

v Condition (Data Transfer)

P-ALU nsx + ns2 ≥ 1 +1
otherwise 0

S-ALU np ≥ 1 and ns2 ≥ 1 +2
np ≥ 1 xor ns2 ≥ 1 +1
otherwise 0

SRAM np ≥ 1 +1
otherwise 0

Table 2: Templates for data transfer costs.

Row_y = (C,D)
Row_x = (A,B)

+

C D

E

F

OPS2

OPSA

OPS2

−+

A B

(b)

A B C D

−

E

F

+

E = A + B + C

F = C − D

(a)

+

Figure 5: Basic Block Example

the fanout nodes of an unassigned node can be assigned. In
the best case, the algorithm may be able to assign all re-
maining nodes so that the data transfer cost of those nodes
is zero.

In our algorithm, the cost is computed incrementally as
we assign each node as shown in Figure 4. When a new
node is assigned to either P-ALU or S-ALU, it can change the
data transfer cost of its two input nodes. Therefore, the
algorithm computes the change in the data transfer cost of
the input nodes for each new node assigned, and adds the
change to the current cost to obtain the new cost.

3.4 SRAM Data Layout
The SRAM row constraints generated by the computation

partitioning algorithm are satisfied by performing data lay-
out for the variables that would reside in SRAM. The data
layout algorithm takes the row constraints and assigns the
variables that are part of a constraint to the same SRAM
row. In the case where a group of variables are part of an
array, then the address assignment for the array is done such
that the SRAM row constraints are satisfied.

4. EXAMPLE
Figure 5(a) shows the C code for an example basic block

and the data flow graph for the basic block. The assignment
of the computation nodes to the processor and the computa-
tion unit based on the computation partitioning algorithm is
shown in Figure 5(b) along with the SRAM row constraints
generated by the algorithm. The instruction schedule with
only the processor instructions has a total of 8 instructions:
4 loads, 2 ADD operations, 1 SUB operation, and 2 stores.
The Instruction schedule with both P-ALU and S-ALU has a
total of 5 instructions: 1 (ADDS2), (SUBS2), 1 (ADDSA), and
2 STACC instructions. Assuming the SRAM latency of 1 cy-
cle, the instruction schedule using only the base processor
instructions takes 16 cycles whereas it takes 12 cycles for
the instruction schedule of the partitioned graph when both
ALUs are used. In this example, the use of both P-ALU and
S-ALU save 4 cycles giving a 33% speedup.

5. EXPERIMENTAL RESULTS
We provide experimental results on a collection of pro-

grams. We assume a 5-stage processor pipeline similar to
the one in ARM9TDMI [1]. We assume that the computa-
tion unit S-ALU can perform all the arithmetic and logical
operations as in the P-ALU except that it does not have a
multiplier function and that the processor multiply instruc-
tion takes 4 cycles. The hardware cost of the S-ALU would
be approximately 3K gates.

Some information about the benchmarks is shown in Ta-
ble 3. The programs plus and leaf comp are the modules
from the MPEG decoder application. In the plus module,
a difference block is added to the reference block to gener-
ate the output image. In the leaf comp module, a sequence
of operations is performed on the leaf nodes stored in the
memory. The AVG program computes the average value of
an input array. The VADD program adds the corresponding
elements of two input arrays and writes the result into a new
output array. MatrixAdd is a two-dimensional matrix addi-
tion program. SHA1 is the secure hash algorithm to compute
a hash value of the input data. MD5 is a message digest algo-
rithm that computes a message digest of the input. GSM DEC

is a code segment from a GSM decoder module.
We first generate the DAGs for the basic blocks of the

benchmarks. The total number of nodes (DagN) in the
DAGs of the programs and the number of operation nodes
(OpN) in the DAGs of the programs are shown in Table 3.
The DAGs are given as input to our branch-and-bound com-
putation partitioning algorithm. The algorithm takes 27ms
to 200ms to partition the benchmarks on a 1GHz Pentium
machine.

The assignment of the DAG nodes is shown in Table 3.
The columns OPS2 and OPSA show the number of nodes as-
signed to the SRAM computation unit (S-ALU) using the cor-
responding instruction. The column PrOP shows the num-
ber of nodes assigned to be performed on the processor
(P-ALU). Note that SRAM row constraints are generated for
the benchmarks plus, VADD, and MatrixAdd because of an
operation node assignment to use the OPS2 instruction.

We obtain an instruction schedule for the original case
(without the SRAM computation unit) and the new case
(with the SRAM computation unit). In the original case,
all the DAG operation nodes are assigned to the processor.
In the new case, the DAG operation nodes are assigned using
the computation partitioning algorithm as shown in Table 3.
Then, we compute the number of cycles for these instruc-
tion schedules using the number of cycles per instruction
including the pipeline stall cycles and the number of cycles
for the data transfer instructions. We show the performance
of the benchmarks for the original case (Orig) and the new
case (New) for different SRAM latencies (1, 2, and 3 cy-
cles) in Table 4. The columns (Speedup) show the speedup
in performance for a given SRAM latency. The speedup is
obtained by dividing the number of cycles for the original
case by the number of cycles for the new case. The speedup
ranges from 1 to 1.48 for the benchmarks.

The performance speedup for the benchmark varies with
the SRAM latency. For the benchmarks plus, VADD, and
MatrixAdd, the speedup increases for higher SRAM latency
because these benchmarks have an operation node assigned
to use the OPS2 instruction and the benefit of reducing an
SRAM load operation in the OPS2 instruction increases for
higher SRAM latency. But for the benchmarks AVG, SHA1,

Benchmark DagN OpN OPS2 OPSA PrOP

plus 8 4 1 0 3
VADD 6 2 1 0 1
AVG 6 2 0 1 1
leaf comp 7 3 1 1 1
MatrixAdd 13 5 1 0 4
SHA1 36 20 0 3 17
MD5 19 11 0 1 10
GSM DEC 15 9 0 9 0

Table 3: Benchmarks and Computation Node As-

signments

MD5, and GSM DEC, the speedup decreases for the higher SRAM
latency because the computation in these benchmarks re-
sults in using the new computation unit with the OPSA in-
struction only. So, the relative benefit of the reduced num-
ber of instructions and the pipeline stalls offered by the OPSA
instruction decreases with the increase in the SRAM latency.

The speedup for the benchmarks depends on the num-
ber of executed OPS2 and OPSA instructions as a fraction of
the total number of executed instructions. For example, in
SHA1, the first part of the benchmark benefits from the new
computation unit, but the second part gets assigned to the
processor. So, even though the first part has a speedup of
1.26, the overall speedup is 1.09 (for SRAM latency = 1 cy-
cle). Also, the benefit of the OPS2 and OPSA instructions may
be offset by the data transfer overhead cycles. For example,
in plus, the benefit of using the OPS2 instruction is offset by
the data transfer overhead cycles for the 1 cycle SRAM la-
tency (speedup 1.0). But, for the higher SRAM latency the
the speedup improves because the benefit of using the OPS2

instruction is more than the data transfer overhead cycles.

6. RELATED WORK
Some embedded RISC processors have been extended with

new instructions to support digital signal processing and/or
multimedia processing functions (e.g., ARM DSP and SIMD
extensions [6, 3], Mediabreeze [14], and DSP-RAM [15]). In
order to use the data level parallelism in multimedia ap-
plications, some microprocessors have been extended with
vector processing instructions [4, 8]. In another approach,
a reconfigurable coprocessor (e.g., Piperench [5]) or a con-
figurable and extensible processor (e.g., Xtensa [2]) is used
to improve application performance. The Xtensa proces-
sor allows the base processor to be tailored to match the
application requirements by selecting and configuring prede-
fined elements of the architecture or extending the processor
with additional execution units and the required support. A
problem with the above approaches is that these extensions
have high hardware cost and require significant changes in
some cases to the RISC processor microarchitecture. Our
approach requires much less hardware and changes to the
processor pipeline to support the SRAM computation unit.

In order to bridge the gap between the processor speed
and memory latency, there are approaches that incorporate
some level of processing capability near the off-chip DRAM
(e.g., Active Pages [11], IRAM [7]). These approaches are
not suitable for embedded systems due to the hardware cost
overhead. We put a small computation unit near the on-

chip SRAM to reduce some of the memory data transfers
between the RISC processor and the on-chip SRAM.

SRAM latency = 1 cycle SRAM latency = 2 cycles SRAM latency = 3 cycles
Benchmark Orig New Speedup Orig New Speedup Orig New Speedup

(cycles) (cycles) (cycles) (cycles) (cycles) (cycles)

plus 1438 1438 1.00 1738 1638 1.06 2040 1840 1.10
VADD 803 603 1.33 1105 805 1.37 1407 1007 1.39
AVG 609 409 1.48 710 510 1.39 811 611 1.32
leaf comp 904 704 1.28 1207 907 1.33 1510 1110 1.36
MatrixAdd 2437 1925 1.26 3208 2440 1.31 3979 2955 1.34
SHA1 3002 2746 1.09 3339 3083 1.08 3676 3418 1.07
MD5 896 832 1.07 1024 960 1.06 1152 1088 1.05
GSM DEC 800 600 1.33 1100 900 1.22 1400 1200 1.16

Table 4: Comparison of Benchmark Performance

In the digital signal processors (DSPs), memory is orga-
nized as two memory banks. The problem of partitioning
the variables between the two memory banks and register
allocation is studied in [9, 13, 12]. In the DSPs with
SIMD memory accesses, the data are organized in groups
whose elements share a common address and an approach
for memory layout of variables is presented in [10]. In our
approach, we solve the computation node partitioning prob-
lem and the SRAM row constraints representing the data
layout constraints are a result of our algorithm.

7. CONCLUSIONS
We enhanced embedded system functionality by adding

a small computation unit with an accumulator near the on-
chip SRAM. The computation unit requires a few additional
instructions and operates under the control of the proces-
sor pipeline. We provided an algorithm that allows the
computation to be partitioned between the processor and
the computation unit. Our experimental results show that
our small modification to the embedded system can provide
significant performance improvement. Our approach offers
a good balance between the hardware cost, hardware and
software modifications, and performance improvement. Our
proposed ISRAM enhancement can also reduce energy con-
sumption in the embedded system by reducing the accesses
to the SRAM and the register file.

There are some limitations of our ISRAM approach. Since
the computation partitioning and the SRAM data layout for
data subject to row constraints is done at compile time, our
approach is currently only applicable to statically allocated
data structures. In the partitioning algorithm, the computa-
tion nodes assigned to the computation unit may be limited
due to data layout constraints that need to be satisfied. The
benefits of using the SRAM computation unit enhancement
depend on a given program’s computation because some of
the functions (e.g., multiply) may not be available on the
computation unit to keep the hardware overhead low.

Our approach can be extended in several ways. For exam-
ple, the SRAM computation unit can be extended with some
control logic to support counters and address generation for
multiple operations using the accumulator and the SRAM.
If the SRAM is organized as multiple memory banks, the
computation unit can be extended to operate on two words
from different memory banks. In embedded systems with
caches, our approach can be extended to caches where the
operations would be performed on two words of a cache line
or two words from different cache lines in the same set.

8. REFERENCES
[1] The ARM9TDMI Technical Reference Manual Rev 3. ARM

Limited http://www.arm.com, 2000.
[2] Xtensa Architecture and Performance. Tensilica, Inc.

http://www.tensilica.com, September 2002.
[3] David Brash. The ARM Architecture Version 6. ARM

Limited http://www.arm.com, January 2002.
[4] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale.

AltiVec Extension to PowerPC Accelerates Media
Processing. IEEE Micro, 20(2):85–95, 2000.

[5] S. Goldstein et. al. Piperench: A coprocessor for streaming
multimedia acceleration. In 26th Int’l Symposium on
Computer Architecture, 1999.

[6] Hedley Francis. ARM DSP-Enhanced Extensions. ARM
Limited http://www.arm.com, May 2001.

[7] Chistoforos E. Kozyrakis, Stylianos Perissakis, and David
Patterson. Scalable Processors in the Billion-Transistor Era:
IRAM. IEEE Computer, 30(9):75–78, September 1997.

[8] Corinna G. Lee and Mark G. Stoodley. Simple Vector
Microprocessors for Multimedia Applications. In
Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, 1998.

[9] Rainer Leupers and Daniel Kotte. Variable partitioning for
dual memory bank dsps. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 2,
pages 1121–1124, 2001.

[10] Markus Lorenz, David Kottmann, Steven Bashford, Rainer
Leupers, and Peter Marwedel. Optimized Address
Assignment for DSPs with SIMD Memory Accesses. In
Proceedings of the ASP-DAC, 2001.

[11] Mark Oskin, Frederic T. Chong, and Timothy Sherwood.
Active pages: A computation model for intelligent memory.
In 25th International Symposium on Computer
Architecture, pages 192–203, 1998.

[12] Amit Rao and Santosh Pande. Storage Assignment
Optimizations to Generate Compact and Efficient Code on
Embedded DSPs. In Proceedings of the ACM Conference
on Programming Language Design and Implementation,
pages 128–138, May 1999.

[13] Ashok Sudarsanam and Sharad Malik. Memory Bank and
Register Allocation in Software Synthesis for ASIPs. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 388–392, 1995.

[14] Deependra Talla and Lizy K. John. Cost-effective Hardware
Acceleration of Multimedia Applications. In Proceedings of
the IEEE International Conference on Computer Design,
2001.

[15] Zixiong Wang, Bruce F. Cockburn, Duncan G. Elliott, and
Witold A. Krzymein. DSP-RAM: A Logic-Enhanced
Memory Architecture for Communication Signal
Processing. In IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pages
475–478, 1999.

