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Abstract—Fifth-generation (5G) cellular systems will build on
massive multi-user (MU) multiple-input multiple-output (MIMO)
technology to attain high spectral efficiency. However, having
hundreds of antennas and radio-frequency (RF) chains at the
base station (BS) entails prohibitively high hardware costs and
power consumption. This paper proposes a novel nonlinear
precoding algorithm for the massive MU-MIMO downlink in
which each RF chain contains an 8-phase (3-bit) constant-
modulus transmitter, enabling the use of low-cost and power-
efficient analog hardware. We present a high-throughput VLSI
architecture and show implementation results on a Xilinx Virtex-7
FPGA. Compared to a recently-reported nonlinear precoder for
BS designs that use two 1-bit digital-to-analog converters per RF
chain, our design enables up to 3.75dB transmit power reduction
at no more than a 2.7× increase in FPGA resources.

I. INTRODUCTION

Fifth-generation (5G) cellular communication systems are
widely expected to rely on massive multi-user (MU) multiple-
input multiple-output (MIMO) technology to achieve significant
improvements in spectral efficiency compared to existing
small-scale MIMO systems [2]–[4]. MU-MIMO equips the
base station (BS) with hundreds of antennas and radio-
frequency (RF) chains, enabling one to simultaneously serve
tens of user equipments (UEs) in the same time-frequency
resource via fine-grained beamforming. Unfortunately, scaling
conventional multi-antenna BS architectures (that use high-
precision RF chains) to BSs with hundreds of antenna elements
entails a significant increase in system costs and circuit power
consumption. Hence, to make massive MU-MIMO systems
inexpensive and power-efficient, novel BS architectures and
suitable baseband-processing algorithms are necessary.

Low-Precision BS Architechures: The use of low-precision
digital-to-analog-converters (DACs) at the BS in the massive

The precoding algorithm and architecture proposed in this paper builds upon
the one proposed in [1] for C2PO; in contrast to these results, the present
paper uses a modified architecture with a more sophisticated projection unit.

A MATLAB simulator for the precoder proposed in this paper is available
on GitHub: https://github.com/quantizedmassivemimo/3bit CM precoding.
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MU-MIMO downlink enables significant reductions in terms of
system costs and circuit power consumption. The key challenge
with such low-precision BS architectures is to maintain high
spectral efficiency, which requires sophisticated baseband-
processing algorithms. While linear precoders, e.g., maximal-
ratio transmission (MRT) and zero-forcing (ZF), followed by
quantization exhibit low complexity [5]–[7], sophisticated non-
linear precoders can achieve superior performance, especially
for the extreme case of using only a pair of 1-bit DACs per RF
chain [8]–[13]. Recently, reference [1] presented VLSI designs
of nonlinear precoders for systems that use a pair of 1-bit DACs
per RF chain, which demonstrates that nonlinear precoding is
feasible in practice for such low-precision BS architectures.

The use of 1-bit DACs at the BS ensures that the precoded
signal has constant-modulus (CM), i.e., the precoded signal’s
amplitude is equal on all antennas and constant over time,
which enables the use of low-cost and power-efficient analog
circuitry, such as nonlinear power amplifiers. Recently, nonlin-
ear precoders for 8-phase (3-bit) CM transmitters, i.e., the setup
considered in this work, were proposed in [14], [15]. It remains,
however, an open question whether the algorithms proposed
in [14], [15] can be implemented efficiently in hardware.

Contributions: This paper develops a novel nonlinear pre-
coding algorithm in which each RF chain contains an 8-phase
(3-bit) CM transmitter that enables efficient analog circuitry
while surpassing the error-rate performance of systems that
use a pair of 1-bit DACs (i.e., 4 phases) per RF chain. We
propose a nonconvex algorithm to solve the associated 8-phase
(3-bit) CM precoding problem in an efficient manner, and
we develop a VLSI architecture that uses a fast matrix-vector
multiplication engine based on Cannon’s algorithm [16]. We
show Xilinx Virtex-7 FPGA implementation results and provide
a comparison with the C2PO precoder proposed in [1].

II. SYSTEM MODEL AND CM PRECODING

A. System Model

We consider the single-cell, narrowband massive MU-MIMO
downlink system shown in Fig. 1. Here, the BS, which is
equipped with B antennas, serves U ≤ B single-antenna UEs.
The narrowband downlink channel is modeled by y = Hx+n,
where y = [y1, . . . , yU ]

T ∈ CU contains the received signals at
all UEs, H ∈ CU×B is the channel matrix (which we assume is
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Fig. 1. Overview of the considered massive MU-MIMO downlink system
with CM DACs. Left: B antenna massive MU-MIMO BS containing a CM
precoder that mitigates multi-user interference and quantization artifacts in the
CM DACs; Right: U single-antenna UEs.

known to the BS), n ∈ CU models i.i.d. circularly-symmetric
complex Gaussian noise with variance N0 per complex entry,
and x ∈ XB is the so-called precoded vector, where X is the
transmit alphabet. In this work, we require that X has finite
cardinality and that the entries of X have CM. Specifically,
the CM alphabet is X = {exp(j2πp/P ) | p = 0, . . . , P − 1}
where P denotes the number of phases and log2(P ) the number
of bits per RF chain. The CM constraint ensures that ‖x‖22 = B.

B. Constant-Modulus (CM) Precoding

The precoder at the BS maps the symbol vector s =
[s1, . . . , sU ]

T into the precoded vector x ∈ XB . Here,
su ∈ O is the constellation point intended for the uth
UE (u = 1, . . . , U ), where O is the constellation set (e.g.,
16-QAM). We assume that each UE u = 1, . . . , U rescales
its received signal yu by a factor βu ∈ C to compute an
estimate ŝu = βuyu of the transmitted symbol su. Nonlinear
precoders that minimize the mean-squared error (MSE) between
the transmitted and the estimated symbols solve the following
optimal precoding problem (OPP) [1]:

(OPP) {x̂, β̂} = arg min
x∈XB, β∈C

‖s− βHx‖22 + |β|2UN0.

Here, we assume that β = βu for u = 1, . . . , U ; as shown
in [9], the UEs are able to accurately learn β̂. For systems
that use a pair of 1-bit DACs per RF chain (P = 4 phases),
methods that solve (OPP) approximately using convex [8], [9]
and nonconvex [1] relaxation have been proposed recently. In
what follows, we present a novel precoder specifically designed
for CM transmitters with 3 bits per RF chain (P = 8 phases),
which enables significant error-rate performance improvements
compared to systems with 2 bits per RF chain (P = 4 phases),
without requiring complex RF circuitry.

III. C3PO: CONSTANT-MODULUS 3-BIT PRECODING

A. Relaxing the Problem (OPP)

To find an approximate solution to (OPP) via methods that
can be implemented efficiently, we perform the following
approximations. First, we let N0 → 0, i.e., we assume that the
system operates in the high-SNR regime. Then, we use the
following approximation [1, Eq. (2)]:

min
x∈XB

min
β∈C
‖s− βHx‖22 ≈ min

x∈XB
min
α∈C
‖αs−Hx‖22 .
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Fig. 2. Left: 8-phase CM alphabet (convex polytope in blue); right: projection
regions within the first quadrant of the 8-phase CM alphabet.

These two approximations result in the following problem:

(OPP∗) {x̂, α̂} = arg min
x∈XB , α∈C

‖αs−Hx‖22 .

We next compute α̂ by minimizing the objective function of
(OPP∗), which results in α̂ = sHHx/‖s‖22. Substituting α̂ in
(OPP∗) yields ‖α̂(x)s−Hx‖22 = ‖Ax‖22 with A = QH and
Q = IU − ssH/‖s‖22. Hence, we can simplify (OPP∗) as

(OPP∗∗) x̂ = arg min
x∈XB

1
2‖Ax‖22 .

The factor 1/2 does not affect the solution of (OPP∗∗). We
now replace the finite-phase constraint x ∈ XB by the convex
polytope surrounding the points X = {xp}Pp=1 given by

B =
{∑P

p=1 αpxp | (αp ≥ 0,∀p) ∧∑P
p=1 αp = 1

}
.

For 3-bit CM precoding, the boundary of the convex polytope B
is a regular octagon (see Fig. 2). Unfortunately, solving (OPP∗∗)
over the relaxed set x ∈ BB yields the all-zeros vector. We
therefore attempt to solve the following modified problem via
forward-backward splitting (FBS) [17]–[19]:

x̂ = arg min
x∈BB

1
2‖Ax‖22 − δ

2‖x‖22, (1)

where the concave regularizer − δ2‖x‖22 with δ > 0 forces the
solution x̂ to lie at the boundary of the convex polytope BB .
As the problem in (1) is nonconvex, FBS is not guaranteed to
converge to an optimal solution. Nevertheless, the algorithm
proposed exhibits good empirical performance (see Sec. IV).

B. The C3PO Algorithm

FBS is an efficient numerical method to solve convex opti-
mization problems whose objective function can be decomposed
as f(x) + g(x), where the function f is smooth and convex,
and the function g is convex but not necessarily smooth or
bounded. FBS consists of the following iteration [17], [18]:

x(t+1)=proxg
(
z(t+1); τ (t)

)
with z(t+1)=x(t)−τ (t)∇f(x(t))

for t = 1, 2, . . . , tmax or until convergence. Here, the sequence
{τ (t) > 0} contains suitably chosen step-size parameters and
∇f(x) is the gradient of the smooth function f , and the so-
called proximal operator for the function g is defined by [20]

proxg(z; τ) = arg min
x∈CB

{
τg(x) + 1

2‖x− z‖22
}
.



To approximately solve (1) using FBS, we set

f(x) = 1
2‖Ax‖22 and g(x) = χ

(
x ∈ BB

)
− δ

2‖x‖22,
where χ is a characteristic function that is zero if x ∈ BB
and infinity otherwise. For these choices, the gradient is given
by ∇f(x) = AHAx and the proximal operator is detailed in
Sec. III-C. Furthermore, we use a constant step size τ = τ (t).
The resulting algorithm is as follows:

Algorithm 1 (C3PO). Initialize x(1) = HHs and fix the
parameters δ and τ so that τδ < 1. Then, for every
iteration t = 1, 2, . . . , tmax compute:

z(t+1) = x(t) − τAHAx(t) (2)

x(t+1) = proxg(z
(t+1); τ). (3)

The proxg operator is applied element-wise to z(t+1) and
detailed in Sec. III-C. In the last iteration tmax, the output
x(tmax+1) is quantized to the 3-bit CM alphabet XB .

The most costly operation of C3PO is the matrix-vector
product in step (2), which we compute as: AHA = HHH−
vvH = H

Υ
H, where v = HHs/‖s‖2 is a normalized version

of the MRT vector; the augmented matrices H = [H;vH ] and
H

Υ
= [HH ,−v] are of dimension (U+1)×B and B×(U+1),

respectively. Then, step (2) is rewritten as follows:

z(t+1) = x(t) − τHΥ
Hx(t). (4)

C. Proximal Operator for 3-Bit CM Precoding

The proximal operator in (3) reduces to proxg(z; τ) =
proj( 1

1−τγ z), where proj(·) projects each element of the
argument to the closest point in the polytope B. For 3-bit
CM precoding, the polytope is a regular octagon. Projecting a
scalar z ∈ C onto an octagon is nontrivial so we focus on the
first quadrant of the complex plane (see Fig. 2). If z is inside
the octagon (in region A), then it remains there; if z is in the
regions B, C, or D, then it will be mapped to j, 1√

2
(1 + j),

or 1, respectively; if z is in the regions E or F, then it will be
mapped to the closest point on the lines `1 or `2, respectively.
To determine in which of the six regions A–F the argument is
located, we use the equations for the lines that separate them:

`1 : =(z) = (1−
√
2)<(z) + 1,

`3 : =(z) = 1√
2−1
<(z) + 1, `4 : =(z) = 1√

2−1
<(z)− 1.

The equations for the lines `2, `5, and `6 are identical to the
ones of `1, `4, and `3, but with =(z) and <(z) exchanged.
Using these equations, we can project z onto the set B.

IV. VLSI ARCHITECTURE AND IMPLEMENTATION RESULTS

A. Architecture Overview

The proposed VLSI architecture is shown in Fig. 3 and builds
upon the one of C2PO in [1], which was designed for 2-bit CM
precoding. As in [1], we assume that B is a multiple of U , so
the architecture consists of B/U linear arrays, each containing
U+1 processing elements (PEs). Each linear array operates on

Fig. 3. High-level block diagram of the VLSI architecture for C3PO. We use
B/U linear arrays, each consisting of U + 1 processing elements (PEs).

a (U + 1)× U sub-matrix of H and on a U -dimensional sub-
vector of x(t). The architecture computes step (2) simplified as
in (4) via two separate matrix-vector products using Cannon’s
algorithm [16]. We first compute w = H(τx(t)) by cyclically
exchanging the entries of τx(t) between the PEs of the same
array. We then compute z(t+1) = x(t) −H

Υ
w by cyclically

exchanging the accumulated results of the PEs within the
same array. Finally, the vector z(t+1) is fed to a projection unit
implementing step (3), thus completing one C3PO iteration. The
proposed architecture requires 2U+log2(B/U)+9 clock cycles
for one C3PO iteration. See [1] for more architecture details.

Each PE is equipped with (i) an h̃u memory storing the
uth row of the corresponding sub-matrix taken from H; (ii)
a complex-valued multiply-accumulate (MAC) unit; and (iii)
a projection unit. See [1] for details on (i) and (ii); part (iii),
the projection unit, is more complicated than that of C2PO.
Specifically, this unit maps the entries of z(t+1) to the first
quadrant of the complex plane and perform comparisons based
on the line equations `1–`6 (see Sec. III-C) in order to perform
the projection of z(t+1) to BB .

B. Fixed-Point Parameters

The entries of x(t) use 14-bit signed values with 8 fraction
bits. The entries of τx(t) use 14-bit signed values with 13
fraction bits. The entries of H use 11-bit signed values with 8
fraction bits and are stored in look-up tables (LUTs) used as
distributed RAM. The complex-valued MAC units use 18-bit
signed values with 15 fraction bits when computing w; 11
fraction bits are used when calculating z(t+1). The adder tree
uses 21 bits with 15 fraction bits. The projection unit represents
the constants (e.g., 1 −

√
2 and its reciprocal) using signed

values with 4–5 bits, so no multipliers are used in the operations
related to lines `1–`6. A total of 30 adders and subtractors are
used within each projection unit; these components operate
signed numbers with 7 fraction bits; the total bit-width varies
between 14–15 bits, depending on the quantity.

C. Error-Rate Performance

Fig. 4(a) and Fig. 4(b) show uncoded bit-error rate (BER)
as a function of the normalized transmit power % = B/N0

for different precoding algorithms and U = 16 UEs. Fig. 4(a)
shows the BER for B = 32 BS antennas and BPSK; Fig. 4(b),
for B = 256 BS antennas and 16-QAM. The simulation results
are for 10, 000 Monte-Carlo trials and i.i.d. Rayleigh fading
channels. Both C2PO and C3PO run with tmax = 9. For
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of infinite-precision ZF precoding. C3PO outperforms C2PO in terms of uncoded BER with an increase in implementation complexity.

TABLE I
XILINX VIRTEX-7 XC7VX690T FPGA IMPLEMENTATION RESULTS FOR MRT-Q [1], C2PO [1], AND THE PROPOSED C3PO FOR U = 16 UES

Algorithm 2-bit CM MRT-Q [1] 2-bit C2PO [1] 3-bit C3PO (this work)

BS antennas B 32 64 128 256 32 64 128 256 32 64 128 256

Slices 2 543 5 097 9 444 17 630 3 375 6 519 12 690 24 748 8 765 16 823 33 303 65 451
LUTs 7 842 15 617 32 476 64 446 10 817 21 920 43 710 85 323 29 034 56 799 113 948 224 420
Flipflops 5 711 11 419 21 902 42 764 5 677 12 461 26 083 53 409 11 611 24 357 49 893 101 026
DSP48 units 0 0 0 0 136 272 544 1 088 136 272 544 1 088

Clock frequency [MHz] 412 410 388 359 222 206 208 193 202 175 174 157
Latencya [clock cycles] 18 18 18 18 39 40 41 42 42 43 44 45
Throughputa [Msymbols/s] 366 365 345 319 91 82 81 74 77 65 63 56
Power consumptionb [W] 0.79 1.25 1.84 3.16 1.04 1.70 3.17 5.80 1.76 2.89 5.48 10.12

aThe minimum latency and maximum throughput is measured for one algorithm iteration.
bStatistical power estimation at maximum clock frequency and 1.0 V supply voltage.

reference, we show the BERs with 3-bit CM MRT-quantized
(MRT-Q) and ZF-quantized (ZF-Q) precoding, as well as the
BERs with MRT (“Inf. prec. MRT”) and ZF precoding (“Inf.
prec. ZF”) with infinite-precision DACs. We see from Fig. 4(a)
and Fig. 4(b) that the nonlinear precoders (C2PO and C3PO)
significantly outperform MRT-Q and ZF-Q at high normalized
transmit power %. Furthermore, compared to C2PO, we note
that C3PO enables a 3.75 dB gain (in terms of %) at 1% uncoded
BER for B = 32 and BPSK, and 1.75 dB for B = 256 and
16-QAM. Finally, we note that the implementation loss of our
hardware designs (shown with blue markers) is negligible, i.e.,
less than 0.15 dB at 1% uncoded BER.

D. FPGA Implementation Results and Comparison
Table I shows FPGA implementation results for 2-bit

CM MRT-Q [1], C2PO [1], and C3PO. All designs were
developed using Verilog, and implemented using Xilinx Vivado
Design Suite for a Xilinx Virtex-7 XC7VX690T FPGA. The
designs support U = 16 UEs and were implemented for
B = {32, 64, 128, 256}. Table I reveals that the resources of
all designs increase roughly linearly with B. MRT-Q achieves
the highest throughput thanks to its simplicity, which comes
at the cost of a poor uncoded BER performance. C2PO uses
∼1.4× more LUTs than MRT-Q and requires increased latency
and critical path. Compared to C2PO, C3PO consumes ∼2.6×
the number of slices and LUTs, ∼2× the number of flip-flops,
and the same number of DSP48s. This difference is caused by

the 3-bit CM projection unit, which also increases the latency
with its pipeline registers. However, C3PO can significantly
outperform C2PO in terms of BER (cf. Fig. 4(a) and Fig. 4(b)).

E. Performance/Complexity Tradeoffs

Fig. 4(c) shows the performance-complexity tradeoffs of
C2PO and C3PO: the complexity is represented by the
minimum normalized transmit power % that is required to
achieve 1% uncoded BER for BPSK; the performance, by the
throughput. The tradeoffs show systems with BPSK, U = 16
UEs and B = {32, 64, 128, 256} BS antennas. As a reference,
the minimum transmit power required for infinite-precision ZF
precoding to achieve 1% uncoded BER is shown as a vertical
line. We see from Fig. 4(c) that, while C2PO is able to achieve
higher throughput than C3PO, C3PO requires lower transmit
power to achieve 1% uncoded BER. This difference increases
for small array sizes: for a system with B = 32, 4 iterations
of C3PO achieve 1% uncoded BER at % = 8 dB while C2PO
is unable to achieve 1% uncoded BER at such value of %.

V. CONCLUSIONS

We have proposed a nonlinear precoder for 8-phase (3-bit)
CM transmission, C3PO, which builds upon the 4-phase C2PO
precoder [1]. By using a different projection unit and no more
than 2.7× higher FPGA resources, C3PO achieves up to 3.75
dB transmit power reduction, and thus, low uncoded BERs in
scenarios for which C2PO exhibits poor error-rate performance.
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