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Channel Charting: Locating Users within the Radio
Environment using Channel State Information

Christoph Studer, Saı̈d Medjkouh, Emre Gönültaş, Tom Goldstein, and Olav Tirkkonen

Abstract—We propose channel charting (CC), a novel frame-
work in which a multi-antenna network element learns a chart
of the radio geometry in its surrounding area. The channel chart
captures the local spatial geometry of the area so that points that
are close in space will also be close in the channel chart and vice
versa. CC works in a fully unsupervised manner, i.e., learning is
only based on channel state information (CSI) that is passively
collected at a single point in space, but from multiple transmit
locations in the area over time. The method then extracts channel
features that characterize large-scale fading properties of the
wireless channel. Finally, the channel charts are generated with
tools from dimensionality reduction, manifold learning, and deep
neural networks. The network element performing CC may be,
for example, a multi-antenna base-station in a cellular system
and the charted area in the served cell. Logical relationships
related to the position and movement of a transmitter, e.g., a
user equipment (UE), in the cell can then be directly deduced
from comparing measured radio channel characteristics to the
channel chart. The unsupervised nature of CC enables a range
of new applications in UE localization, network planning, user
scheduling, multipoint connectivity, hand-over, cell search, user
grouping, and other cognitive tasks that rely on CSI and UE
movement relative to the base-station, without the need of
information from global navigation satellite systems.

Index Terms—Autoencoders, deep learning, dimensionality
reduction, localization, machine learning, manifold learning. mas-
sive multiple-input multiple-output (MIMO), Sammon’s mapping.

I. INTRODUCTION

FUTURE wireless communication systems must sustain a
massive increase in traffic volumes, number of terminals,

and reliability/latency requirements [2], [3]. In order to cope
with these challenges, researchers have proposed a range of new
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technologies that improve spectral efficiency through massive
multiple-input multiple-output (mMIMO) [4]–[6], increase
bandwidth by harnessing millimeter-wave (mmWave) bands for
mobile communication [7], and rely on an extreme densification
of network elements [8].

While the advantages of these emerging technologies are
glaring, they entail severe practical challenges. Mobility, in
particular, poses problems for dense small-cell networks [9], as
well as for mMIMO and mmWave networks, which provide ex-
tremely fine-grained angular separation. In mmWave networks,
coverage is often patchy and hand-over regions between cells
are sharp [10], [11]. Hence, smooth cell hand-over, multipoint
operation, and/or cell search requires multipoint channel-state
information (CSI) [12]. However, potential solutions to some
of these issues, such as integrated multiband operation [13]
or mobile relaying [14], will require significant amounts of
multi-point CSI.

To effectively manage and optimize these technologies,
future wireless systems must lean heavily on the availabil-
ity of large amounts of high-dimensional CSI acquired at a
multi-antenna base-station (BS) over large bandwidths and
at fast rates, and from a large number of user equipments
(UEs). To effectively use the collected CSI, the network
has to learn the radio geometry in which the UEs are
moving. What needs to be learned is a chart of the network
radio geometry, which represents UE location and velocity
information related to CSI. In order to automate functions,
dynamically adapt to changes in the environment, and
avoid human intervention for training, learning the radio
geometry should be unsupervised.

It is remarkable that this problem has not been approached
in the literature. Significant effort has been spent on wireless
localization or positioning [15]–[17]. In addition, use-case
specific fingerprinting methods have been developed in, e.g., [9],
[18]–[23], with recent developments applying state-of-the art
deep learning methods for mMIMO channel fingerprinting [24].
However, fingerprinting methods are fully supervised, do
not lend themselves to automation while acquiring labeled
data, and do not scale to complex channel environments
that change dynamically. Note that supervision achieved by
acquiring precise location information from application layer
localization services, such as global navigation satellite systems
(GNSS), does not apply when optimizing cellular networks—
the application layer is not even present in the whole LTE
radio access network [25].

http://vip.ece.cornell.edu
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A. Contributions

We introduce channel charting (CC), a novel framework
that maps slowly varying CSI components of transmitters (e.g.,
UEs) into a low-dimensional channel chart that preserves the
local geometry of the transmitters’ true spatial locations. We
show that by collecting and processing large amounts of high-
dimensional CSI, one can accurately learn such channel charts
in an unsupervised fashion, i.e., without access to location
information. Our key contributions are summarized as follows:
• We propose a novel framework, which we call channel

charting, that maps CSI acquired from UEs in a cell into
a low-dimensional map that captures the local geometry
of the true UEs’ location in space. Channel charting
is unsupervised, i.e., does not require any information
from the true UEs’ location, e.g., obtained from global
navigation satellite systems (GNSSs).

• We describe how suitable CSI features can be extracted
from channel measurements. More specifically, we identify
that taking the absolute value of the raw second moment
(R2M) in the angular (or beam-space) domain delivers
features that exhibit high trustworthiness and continuity.

• We show analytically (in Example 2), that the R2M cap-
tures large-scale fading components of wireless channels
which is key to enabling the concept of channel charting.

• We develop three new channel charting algorithms by
extending existing manifold learning and dimensionality
reduction techniques and adapting them to the tasks of
channel charting. We emphasize that we are not simply
providing a survey of existing methods but rather adapting
and modifying them for our framework. Furthermore, the
Sammon’s mapping plus (SM+) method which includes
side information on the UEs movement and the corre-
sponding numerical algorithm developed in Section V-B3
has not been proposed in the literature—not even for other,
unrelated machine learning applications that use manifold
learning or dimensionality reduction.

• We provide a range of numerical simulation results for
three distinct channel models to demonstrate the efficacy of
our channel charting framework. More specifically, our re-
sults show that channel charting is feasible in line-of-sight
(LoS) and non-LoS scenarios, and performs surprisingly
well at relatively low signal-to-noise-ratio (SNR).

We envision a range of possible future applications for channel
charting in cognitive tasks that rely on CSI and UE movement
relative to the BSs, including semantic localization [26],
cell search, hand-over and multi-connectivity [9], [12]–[14],
[27]–[29], link adaptation, user clustering, beam finding, etc.
However, being the first paper on the subject, this study is
intended to (i) introduce and validate the fundamental concept
of CC and (ii) compare a wide range of possible algorithms
to maximize the quality of the learned channel charts.

B. Relevant Prior Art

To the best of the authors’ knowledge, direct charting of the
radio geometry of the UEs has not been addressed in the open
literature. All existing approaches are related to localizing UEs
in the true spatial geometry. Alternatively, look-up tables based

on supervised fingerprinting have been used to identify use-case
specific states of the channel. Conventional methods to localize
UEs in spatial geometry are mainly based on triangulation or
trilateration methods which use fixed geometrical models to
map a low-level descriptor of the channel, such as the time-
of-flight (ToF), angle-of-arrival (AoA), and/or received signal
strength (RSS) to a location in spatial geometry [15], [16].
Localization in a mMIMO system based on ToF and AoA
measurements has been addressed recently in [17]. However,
to provide a chart in radio geometry, such methods would have
to be complemented with a map from spatial to radio geometry.

A digital map is essentially a spatial geometry map that
associates radio geometry features (e.g., RSS) with a given
spatial location. Such maps have been created either by
prediction models (e.g., by network planning tools) or by
carrying out dedicated measurement campaigns [15], i.e., either
based on analytical models, or in a fully supervised manner.

Similarly, for channel fingerprinting [9], [18]–[22], a coarse
grained channel map is generated in a measurement cam-
paign [18]–[22] or by directly classifying RSS measurement
features by a network event, such as the vicinity of a small
cell [9]. More refined fingerprinting has been proposed in [23],
where mMIMO channel states are fingerprinted for positioning
purposes. In [24], state-of-the-art deep learning methods are
used for this purpose. Existing fingerprinting methods are,
however, fully supervised. This implies that changes in the
physical channel (e.g., new buildings) would require a com-
pletely new measurement campaign. Furthermore, the method
in [24] requires training of the channel at wavelength scales
in space. In contrast, CC is unsupervised, which avoids costly
measurement campaigns, and requires orders-of-magnitude less
dense spatial sampling.

In channel charting, we are primarily interested in preserving
the local neighborhood structure of the spatial geometry when
charting the radio geometry. For this, we shall use and extend
tools from manifold learning [30], [31] and dimensionality
reduction [32]. Multidimensional scaling (MDS) [30] and
Sammon’s mapping [31] attempt to embed a high-dimensional
manifold into a low-dimensional space. We will show how CSI
can be transformed into suitable channel features that enable
an unsupervised extraction of accurate channel charts using
such manifold learning and dimensionality reduction tools.

C. Paper Outline

The rest of the paper is organized as follows. Section II
introduces the principles of CC. Section III details the used
quality measures. Section IV discusses suitable channel features
that enable accurate CC. Section V proposes three different
CC algorithms. Section VI shows CC results for a range of
channel scenarios. We conclude in Section VII.

D. Notation

Lowercase and uppercase boldface letters stand for column
vectors and matrices, respectively. For the matrix A, the
Hermitian is AH and the kth row and `th column entry is Ak,`
or [A]k,`. For the vector a, the kth entry is ak. The Euclidean
norm of a and the Frobenius norm of A are denoted by ‖a‖2



C. STUDER ET AL. 3

and ‖A‖F , respectively. The M × N all-zeros and all-ones
matrix is 0M×N and 1M×N , respectively, and the M ×M
identity is IM . The collection of K vectors ak, k = 1, . . . ,K,
is denoted by {ak}Kk=1. The real and imaginary parts of the
vector a are denoted by <(a) and =(a), respectively.

II. THE PRINCIPLES OF CHANNEL CHARTING

We now introduce the core ideas of CC. We first discuss
the main objective and then detail the operating principles as
well as the underlying assumptions.

A. Main Objective

The main objective of CC is to learn a low-dimensional
embedding, the so-called channel chart, from a large amount
of high-dimensional CSI of transmitters (e.g., mobile or fixed
UEs) at different spatial locations over time. This channel
chart locally preserves the original spatial geometry, i.e.,
transmitters that are nearby in real space will be placed nearby
in the low-dimensional channel chart and vice versa. CC will
learn whether two transmitters are close to each other by
forming a dissimilarity measure [33] between CSI features
of these transmitters. Based on this, CC generates the low-
dimensional channel chart in an unsupervised fashion from
CSI only and without assumptions on the physical channel, i.e.,
without the aid of information from GNSS, such as the global
positioning system (GPS), triangulation/trilateration techniques,
or fingerprinting-based localization methods [15], [16]. This
important property enables CC to extract geometry information
about the transmitters’ in a completely passive manner, opening
up a broad range of novel applications.

Example 1. Figure 1 demonstrates the key concepts of CC:
(a) shows the considered scenario. A massive MIMO BS with a
uniform linear array (ULA) of B = 32 antennas receives data
from N = 2048 UE locations. We simulate a narrowband, line-
of-sight (LoS) channel at a signal-to-noise ratio (SNR) of 0 dB
(see Section VI for more details). (b) illustrates the relation
between carefully-designed channel features (obtained solely
from CSI) and UE locations. The scatter plot consists of points
representing pairs of transmitters. For each pair, there is a point,
with x-value being the pairwise spatial distance and y-value
the pairwise feature dissimilarity. The used CSI-features and
dissimilarities are discussed in Section IV. The channel features
are designed to ensure that the pairwise feature dissimilarity is
approximately lower-bounded by the pairwise spatial distance
(when divided by a suitable reference distance). Thus, UEs that
are far apart in space will have dissimilar channel features.
(c) shows the resulting chart of one of our unsupervised CC
algorithms. We observe that the local geometric features of
the original spatial geometry are well-preserved. In fact, we
recover the “VIP” curve (which are UEs positioned in space
to form a contiguous curve) in the channel chart.

B. Operating Principles of Channel Charting

Figure 2 provides a high-level overview of the CC framework.
Consider, for the sake of simplicity, a single-antenna transmitter
(Tx) that is either static or moves in real space. We denote its

spatial locations at discrete time instants n = 1, . . . , N by the
set {xn}Nn=1 with xn ∈ RD, where D is the dimensionality
of the spatial geometry (for example the three dimensions
representing the UE’s x, y, and z coordinates in real space).
At each time instant n, the Tx sends data sn (e.g., pilots or
information symbols), which is received at a multi-antenna
receiver (Rx) with B antennas; this could be a mMIMO BS [4]–
[6]. The received data is modeled as yn = H(sn) +nn, where
the function H(·) represents the wireless channel between the
transmitter and receiver, and the vector nn models noise.

1) Channel Function: In what follows, we are not interested
in the transmitted data but rather in the associated CSI. Con-
cretely, the Rx uses the received data yn to extract CSI denoted
by the vector hn ∈ CM , where M denotes the dimensionality
of the acquired CSI from all antennas, frequencies, and/or
delays. The generated CSI typically describes angle-of-arrival,
power delay profile, Doppler shift, RSS, signal phase, or simply
first and second moments (e.g., mean and covariance) of the
received data; typically, we have M � D. We denote the
mapping from spatial location xn to CSI hn with the following
channel function:

H : RD → CM ,

where CM refers to the radio geometry. Clearly, the CSI repre-
sented by hn mainly depends on the Tx’s spatial location xn,
but also on moving objects within the cell, as well as on noise
and interference. Throughout this paper, we make the following
key assumption:

Assumption 1. We assume that the statistical properties of the
multi-antenna channel vary relatively slowly across space, on
a length-scale related to the macroscopic distances between
scatterers in the channel, not on the small fading length-scale
of wavelengths. We furthermore assume the channel function H
to be static1.

Large-scale effects of channels are considered to be created
by reflection, diffraction, and scattering of the physical envi-
ronment, whereas small-scale effects are caused by multipath
propagation and related destructive/constructive addition of
signal components [34]. To motivate Assumption 1, we consider
the following example, which demonstrates that the statistical
moments of interest for this paper (see Section IV) indeed
capture large-scale effects of the wireless channel.

Example 2. The channel between a single Tx and a B-antenna
Rx is modeled with a set of rays and we assume Ns scatterers.
We consider a NLoS scenario for which all rays are in the far
field, so that they can be modeled by plane waves. The distance
from Tx t to scatterer s is dts, and the distance from scatterer s
to Rx-antenna r is dsr. The attenuation between two points x
and y is modeled by a function of the distance, axy = a(dxy),
which absorbs the relevant scatterer cross sections, antenna
gains, etc. The distance dependence is typically a power law,
and changes in a(d) happen on length scales much larger than
the wavelength λ; for conventional ray-tracing, a(d) ∼ d−2,
corresponding to free-space path loss [35]. In addition, each

1An extension to time-varying channels is part of ongoing research.
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(a) 3D view on the considered system scenario. (b) True distances vs. feature dissimilarities. (c) Learned channel chart.

Fig. 1. Illustration of channel charting: (a) Massive MIMO BS with a 32-antenna uniform linear array at location (x, y, z) = (0, 0, 10) meters measures CSI
from 2048 distinct gradient colored points in space. (b) Scatter plot with points representing pairs of transmitters. For each pair, a point with pairwise spatial
distance vs. pairwise feature dissimilarity, constructed from CSI. The dissimilarity is lower-bounded by the pairwise spatial distance. (c) Channel chart obtained
from channel features in an unsupervised manner. The blue points that form the “VIP” curve illustrate the properties of the channel chart: local geometry is
well-preserved (shown by the color gradients) and one can identify “VIP” in the channel chart.

scatterer s is modeled by a phase shift φs, related to the
dielectric properties of the scatterer [36], [37]; these are
assigned i.i.d. random variables for each scatterer. The channel
between t and r can thus be modeled as

ht,r =

Ns∑
s=1

ats asr exp

(
j

(
2π

λ
(dts + dsr) + φs

))
.

When the number of scatterers Ns →∞, the channel becomes
Rayleigh fading. This is a characteristic of the distribution of
the absolute value of the channel coefficients, when considered
a random variable, where randomness is according to the
location of the transmitter within a small scale neighborhood
of a few wavelengths. Long term channel characteristics are
averaged over this neighborhood. For a mean of a MIMO
channel, as a large-scale channel feature that describes the
statistics of small scale fading, the pertinent characteristics
are thus the mean absolute value of the channel at each
antenna r, and the mean relative phase difference between
antennas. For the means, following [35], and averaging over
a small scale neighborhood of a few wavelengths, one finds
that the wavelength (λ) dependence vanishes. For the angular
difference, a similar argument leads to the observation that
they are large-scale effects of the channel.

Concretely, evaluating the raw 2nd moment of the channel
from Tx t to Rx antennas r, r′ yields

[
Eφ
[
hth

H
t

]]
r,r′

=

Ns∑
s=1

Ns∑
s′=1

Eφ
[
ats ats′e

j 2π
λ (dts−dts′ )

× asr as′r′ej
2π
λ (dsr−ds′r′ )+j(φs−φ′s)

]
=

Ns∑
s=1

a2ts asr asr′e
j 2π
λ (dsr−dsr′ ),

where for clarity, we have considered the expectation over
the random phases φ only, assuming that the distances
are fixed. In the limit, this expression changes only slowly

with the distances dts through the attenuation function ats.
Now consider the (raw) covariance matrix estimated for two
transmitters t and t′. If ats ≈ at′s for all scatterers s, then the
covariance matrices Rt and Rt′ are approximately the same.
The covariance matrices differ only at length scales where
the change in the distances between the transmitter and the
scatterers is significant—changes in the channel covariance
is a large-scale fading effect, driven by the quenched random
process that creates the scatterers in the environment.

2) Channel Charting: By relying on Assumption 1, we are
ready to detail the CC procedure. CC starts by distilling the
CSI hn into suitable channel features fn ∈ RM ′ that capture
large-scale properties of the wireless channel; here, M ′ denotes
the feature dimension and, typically, we have M ′ � D. See
Section IV for the details on how to design channel features.
We denote the feature extraction stage by the function

F : CM → CM
′
.

Feature extraction mainly serves three purposes: (i) extracting
large-scale fading properties from CSI, (ii) distilling CSI into
useful information for the subsequent CC pipeline, and (iii)
reducing the vast amount of channel data. CC then proceeds
by using the set of N collected features {fn}Nn=1 to learn
the so-called forward charting function (with possible side
information; see Section V-B) in an unsupervised manner. We
denote the forward charting function to be learned by

C : CM
′
→ RD

′
,

which maps each channel feature fn to a point zn ∈ RD′ in
the low-dimensional channel chart; typically, we have D′ ≈ D.
The objective for learning C is as follows:
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Fig. 2. Channel charting (CC) overview. Mobile transmitters (Tx) at spatial location x are sending information to a multi-antenna receiver (Rx) over the
wireless channel H. Channel charting first uses channel-state information (CSI) h to extract channel features f , which are then processed by a channel charting
algorithm to learn a forward charting function C that generates an embedding in spatial geometry z that preserves local geometry in an unsupervised manner.

The forward charting function C should preserve local
geometry between neighboring data points, i.e., it should
satisfy the following condition:

dz(z, z
′) ≈ dx(x,x′).

Here, x,x′ ∈ RD are two points in real space within a
certain neighborhood, and z, z′ ∈ RD′ are the correspond-
ing vectors in the learned channel chart. The functions
dx(x,x′) and dz(z, z

′) are suitably defined measures
of distance (or, more generally, dissimilarity) and the
neighborhood size depends on the physical channel.

The goal of CC is to generate a channel chart {zn}Nn=1

satisfying the distance property above for x and x′ in a
neighborhood as large as possible. We would like to learn this
channel chart solely from the set of N channel features {fn}Nn=1

in an unsupervised manner, i.e., without using the true spatial
locations {xn}Nn=1 of the UEs.

Remark 1. The assumption that the channel features {fn}Nn=1

were obtained from a single transmitter (e.g., UE) is not
important. In fact, we are merely interested in collecting N
channel features from as many locations in spatial geometry as
possible. The fact that certain subsets of channel features stem
from a single UE can be used as potential side information,
which improves the geometric relationships in the learned
channel chart; see Section V-B for a concrete example.

C. Involved Geometries and Usage of CC

Figure 3 provides a summary of the geometries involved in
CC. The transmitters are located in spatial geometry denoted
by RD (e.g., representing their coordinates). The physical
wireless channel H maps data (pilots and information) into
CSI in radio geometry space denoted by CM . This non-linear
mapping into radio geometry obfuscates the spatial relationships
between transmitters. The purpose of feature extraction is to
find a representation from which spatial geometry is easily
recovered. CC then learns—in an unsupervised manner—the
forward charting function C that maps the channel features
into low-dimensional points in the channel chart RD′ such that
neighboring transmitters (in real-world coordinates) will be
neighboring points in the channel chart, i.e., CC preserves the

wireless
channel

spatial
geometry

radio
geometry

feature
geometry

channel
chart

feature
extraction

forward
charting
function

local
geometry
preserved

Fig. 3. Summary of the geometries involved in CC. Transmitters (Tx) are
located in spatial geometry RD and a receiver (Rx) extracts channel-state
information (CSI) in radio geometry CM . Feature extraction distills useful
informatin into feature geometry CM′ , which is then used to learn the forward
charting function that maps the features into a low-dimensional channel map
in RD′ that preserves the local geometry of the original spatial locations RD .

local geometry. Note that in some application scenarios one
may be interested in the inverse charting function C−1 that
maps channel charts information back into feature geometry.2

Example 3. An example of how CC could be used in practice is
as follows. A mobile UE is served by a cellular network, and is
connected to a particular BS. Conventionally, cell hand-over is
executed based on RSS measurements performed at the UE. The
UE continually monitors synchronization signals transmitted
by all BSs in the network, and sends the measurement results
to the BS. Handover is then reactively performed, according to
these measurements. In a location-based mobility management
scenario [40], to decrease signaling and UE measurements,
the network proactively performs hand-over based on spatial

2For example, with C−1, the amount of multipoint CSI required for
multipoint transmission [38] and interference alignment [39] can be reduced.
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localization of the UE. The user is first localized by fusing
ToF and AoA measurements of multiple BSs. Based on the UE
location, environment specific information is used to calculate
the best cell. In a CC-based approach to cell hand-over, the BS
would have a chart of the radio features in the cell served by
it, labeled by locations where handover events have occurred.
From uplink pilots transmitted by the UE, it may localize the
UE in the radio geometry, and execute handover when the CC
indicates a point where handovers happen. Note that in CC, the
decision to execute handover is based on measurements at a
single BS; network wide fusion is not required. In contrast, the
location-based method discussed in the literature [40] applies
both network-wide fusion for spatial localization, and side
information related to propagation condition between a BS,
and a UE at a given spatial location. Furthermore, by tracking
and predicting a UE’s movement in the channel chart, one can
even anticipate cell hand-over events before they happen.

D. Do We Have Sufficient CSI for Channel Charting?

To extract accurate channel charts in an unsupervised manner,
we require high-dimensional CSI that is from as many distinct
transmit locations as possible and acquired at multiple BS
antennas over large bandwidths and at fast rates. Fortunately,
virtually all modern wireless systems already generate high-
dimensional CSI data at extremely fast rates.

Example 4. A BS for 3GPP long-term evolution (LTE) [41]
measures up to 100 MIMO channels each millisecond, leading
to more than 1010 complex-valued numbers per day for a
2× 4 MIMO channel. A similar amount of data is collected
by active user equipments (UEs), which signal up to 226 bits
of CSI to the BS every 2 ms [25]. Currently, most of that data
is discarded immediately after use (e.g., for data detection or
precoding), with a limited amount kept in order to track the
average received signal strength (RSS) of the UEs.

For CC, the idea is to collect and process the acquired CSI
to learn channel charts. The total dimensionality M of each
CSI vector is determined by the number of receiver antennas B
times the number of subcarriers (or delays) W . As we will
show in Section IV, we intentionally “lift” the CSI vectors
into a higher dimensional space, effectively squaring the total
feature dimension. We collect channel features from N distinct
transmitter locations, which further amplifies the amount of
data available for channel charting. Hence, the total number
of channel features used for CC can easily be in the billions.

Example 5. Consider a wideband massive MIMO receiver
with B = 32 BS antennas and W = 128 subcarriers, which
results in M = BW = 212 dimensional CSI vectors. If we
lift each CSI vector into an M ′ = M2 dimensional space, we
have features with M ′ = 224 dimensions. By collecting channel
features from N = 2,048 distinct spatial locations, we have
a total dimension of 235, which is a dataset containing more
than 34 billion complex-valued channel feature coefficients.

Note that these numbers are conservative. Fifth-generation
(5G) wireless networks likely have many more BS antennas
and subcarriers, and receive data from a large number of UEs.

This torrent of channel features is a blessing and a curse
at the same time. Clearly, the proposed CC methods will
have sufficient data to learn from. However, the vast amount
of CSI poses severe challenges for storage and processing.
Channel feature extraction must reduce the size of this data,
and charting algorithms must scale appropriately. We will
discuss suitable features in Section IV and computationally
efficient CC algorithms in Section V.

III. QUALITY MEASURES FOR CHANNEL FEATURES
AND CHANNEL CHARTS

To characterize the usefulness of channel features and the
quality of the generated channel charts, we need a measure
of how well the channel features or points in the channel
chart preserve the spatial geometry of the true transmitter
locations—suitable features would preserve the local geometry
for a neighborhood as large as possible. To assess the channel
charting quality, we borrow two metrics typically used to
measure the quality of dimensionality reduction methods,
namely continuity (CT) and trustworthiness (TW) [42]–[44].

We next explain both of these quality measures in the
context of two abstract sets of data points with cardinality N ,
i.e., {un}Nn=1 from an original space and {vn}Nn=1 from a
representation of the original space; the point vn is said to
represent un. In the CC context, the original space would be
the spatial geometry and the representation space can either
be the feature geometry or the channel chart (see Figure 3),
depending on whether we want to measure the quality of the
channel features or of the learned channel chart.

In what follows, we define the K-neighborhood of a point u
as the set containing its K nearest neighbors in terms of
the chosen distance (or dissimilarity) function du(u,u′). The
neighborhood of v is defined analogously using dv(v,v′).

A. Continuity (CT)
Neighbors in the original space can be far away (dissimilar)

in the representation space. In such situations, we say that the
representation space does not preserve the continuity of the
original point set. To measure such situations, we first define
the point-wise continuity for K neighbors of the data point ui.
Let VK(ui) be the K-neighborhood of point ui in the original
space (but not necessarily in the representation space). Also,
let r̂(i, j) be the ranking of point vj among the neighbors
of point vi, ranked according to their similarity to vi. For
example, r̂(i, j) = k indicates that point vj is the kth most
similar point to vi. Then, the point-wise continuity of the
representation vi of the point ui is defined as

CTi(K) = 1− 2

K(2N − 3K − 1)

∑
j∈VK(ui)

(r̂(i, j)−K).

The (global) continuity between a point set {un}Nn=1 and its
representation {vn}Nn=1 is simply the average over all the point-
wise continuity values, i.e., CT(K) = 1

N

∑N
i=1 CTi(K) [42].

Both the point-wise and global continuity measures range
between zero and one. If continuity is low (e.g., 0.5 or smaller),
then points that are similar is the original space are dissimilar
in the representation space. When continuity is large (close
to 1), the representation mapping is neighbor preserving.
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B. Trustworthiness (TW)

Continuity measures whether neighbors in the original space
are preserved in the representation space. However, it may
be that the representation mapping introduces new neighbor
relations that were absent in the original space. Trustworthiness
measures how well the feature mapping avoids introducing
these kinds of false relationships. Analogous to the point-wise
continuity, we first define the point-wise trustworthiness for a
K-neighborhood of point vi. Let UK(vi) be the set of “false
neighbors” that are in the K-neighborhood of vi, but not
of ui in the original space. Also, let r(i, j) be the ranking of
point uj in the neighborhood of point ui, ranked according
to their similarity to ui. The point-wise trustworthiness of the
representation of point ui is then

TWi(K) = 1− 2

K(2N − 3K − 1)

∑
j∈UK(vi)

(r(i, j)−K).

The (global) trustworthiness between a point set {un}Nn=1

and its representation {vn}Nn=1 is simply the average over
all the point-wise trustworthiness values, i.e., TW(K) =
1
N

∑N
i=1 TWi(K) [42]. Both the point-wise and global trust-

worthiness range between zero and one. Low trustworthiness
values represent situations in which most data points that seem
to be similar in representation space are actually dissimilar
in the original space. If the trustworthiness lies close to one,
then data points that are close in representation space are also
similar (close) in original space.

Remark 2. Since we are interested in preserving local
geometry, we set K to 5% of the total number of points N ,
i.e., K = 0.05N . Note that this is a common choice in the
dimensionality-reduction literature [42].

C. Uses of CT and TW for Channel Charting

We will use the CT and TW measures for two purposes.
First, we will use both measures to assess the quality of channel
features {fn}Nn=1. For this purpose, we measure CT and TW
between the spatial geometry and the feature geometry (see
Figure 3). See Section IV-D for a detailed analysis of channel
features that preserve the CT and TW and, hence, are suitable
for CC. Second, we will use these measures to assess the quality
of the learned channel charts {zn}Nn=1. For this purpose, we
measure CT and TW between the spatial geometry and the
channel chart. See Section VI for a comparison of the CC
algorithms proposed in this paper.

IV. CHANNEL FEATURES

We now focus on the feature extraction stage. Concretely,
we show that computing the raw 2nd moment of CSI, feature
scaling, and transforming the result in the angular domain
yields channel features that accurately represent large-scale
fading properties of wireless channels.

A. Features from CSI via Moments

To limit the search for suitable channel features, we focus
on Frobenius (or Euclidean) distance as dissimilarity measure

wireless
channel

spatial
geometry

radio
geometry

feature
geometry

A B

DC

B

D
C

A

B

D
C

A

CSI scaling
& feature
transform

feature
extraction

path-loss & 
large-scale

fading

Fig. 4. Illustration of the importance of CSI scaling during feature extraction.
The solid lines show the dissimilarity between the UEs A and B, as well
as C and D in the various geometries. The dotted lines indicate the UEs
located on the same incident rays, i.e., A and C, as well as D and B. In
radio geometry, the acquired CSI misrepresents the true Tx distance due to
path-loss. Concretely, UEs far away in spatial geometry appear similar in radio
geometry and vice versa. To compensate for this distortion effect, we perform
CSI scaling that unwraps radio geometry into feature geometry that better
represents an Euclidean space.

on pairs of features, i.e., we use df (F,F′) = ‖F − F′‖F ,
where (by abuse of notation) we allow the features to be
matrices. To generate suitable channel features, we focus on
a second order statistical moment of the received CSI. Let
ht ∈ CM be a vector containing CSI acquired (e.g., during
the training phase) at time instant t. We compute the raw 2nd

moment (R2M) of dimension M2 as follows: H̄ = E
[
hhH

]
.

Here, expectation is over noise, interference, and potential
variations in CSI caused by small-scale motion during short
time (i.e., well-below the coherence time of the channel). It
is important to note that computing the outer product leads to
a representation of CSI that is agnostic to any global phase
rotation that may stem from small-scale fading. In practice,
we compute H̄ = 1

T

∑T
t=1 hth

H
t for a small number (e.g., ten

or less) of time instants T . We can then use H̄ to extract the
necessary channel features in two steps: (i) CSI scaling and
(ii) feature transform. Both of these steps are detailed next.

B. Step 1: CSI Scaling

One of the most critical aspects in the design of good features
for CC is to realize that CSI in radio geometry is a poor
representation of spatial geometry. Figure 4 illustrates this
aspect. Assume that the two Txs A and B are close to the
Rx, and the Txs C and D are further away. Due to path-loss,
the CSI measurements HC and HD of Txs C and D appear
weaker (i.e., have small Frobenius norm) than those of the
Txs nearby, HA and HB. If we now directly compare the
Frobenius distance between C and D, their distance appears
to be smaller than that between A and B (because they have
small norm), even though they should be further apart. To
compensate for this phenomenon, we “unwrap” the CSI so
that it is more compatible with spatial geometry (see Figure 4).
This approach is called CSI scaling and explained next.

Consider a transmitter that is separated d meters from
a uniform linear array (ULA) with B antennas. Assume a
narrowband LoS channel without scatterers and a 2-dimensional
plane wave model (PWM). For this scenario, each entry b of
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the normed3 CSI vector h ∈ CB is given by [45]

hb = d−ρ exp

(
−j 2π

λ
∆r(b− 1) cos(φ)

)
(1)

for b = 1, . . . , B, where ρ > 0 is the path-loss exponent, ∆r
is the antenna spacing, and φ is the incident angle of the
Tx to the Rx. Let H̄ = hhH be the associated R2M. As in
Figure 4, assume two Txs A and C with the same incident
angle φ but with distances dA and dC to the receiver. Our
goal is now to scale the CSI matrices so that the Frobenius
distance dh(H̃A, H̃C) = ‖H̃A − H̃C‖F of the scaled moments
H̃A and H̃C is exactly their true distance. For the above LoS
scenario, we have the following result.

Lemma 1. Consider the LoS channel model in (1). Assume two
UEs A and C with the same incident angle φ, with distances dA
and dC to the BS. By scaling the R2M of both UEs as

H̃ =
Bβ−1

‖H̄‖βF
H̄ with β = 1 + 1/(2σ), (2)

the distance dh(H̃A, H̃C) = ‖H̃A − H̃C‖F of the scaled
moments H̃A and H̃C is exactly their true distance

dh

(
H̃A, H̃C

)
= |dA − dC| (3)

if the parameter σ ∈ (0,∞] matches the path-loss exponent ρ.

Proof. The proof follows immediately from the requirement
in (3) and the fact that both users A and C are associated with
the same channel vectors h given by the LoS model in (1) that
only differ in terms of the path loss.

Since β ≥ 1, CSI from transmitters far away is amplified
and nearby CSI is attenuated. In words, feature scaling as in (2)
unwraps the radio geometry as illustrated in Figure 4.

Remark 3. As the path-loss exponent ρ > 0 is often unknown
in practice, we can use the parameter σ in (2) as a tuning
parameter. As shown in Section VI, 1 ≤ σ ≤ 16 yields excellent
CC quality (in terms of TW and CT) for various scenarios.
Furthermore, as seen from (2), the extreme case of σ → ∞
ignores the magnitude of CSI altogether; this is, for example,
useful in multi-user systems that deploy transmit-power control
or in scenarios in which shadowing effects are dominating.

C. Step 2: Feature Transform

We are now ready to transform the scaled CSI moments H̃
into channel features. Since we focus on the Frobenius distance
as dissimilarity, a straightforward choice of a channel feature is
to set the feature directly to the scaled CSI moments F = H̃;
we denote this feature by “C{·}”. However, as we will show
in Section IV-D, applying certain nonlinear transforms to the
scaled CSI moments can significantly improve the feature
quality. In particular, we also consider taking the entry-wise real
part (denoted by “<{·}”), imaginary part (denoted by “={·}”),
angle (denoted by “∠(·)”), or absolute value (denoted by “| · |”)
of the scaled CSI moments. We furthermore say that all these
channel features were taken in the antenna domain (denoted

3The vector’s h phase is rotated so that h1 is real and positive.

TABLE I
KEY PARAMETERS OF THE QUADRIGA NLOS CHANNEL MODEL [47]

Parameter Setting

Scenario BERLIN UMa NLOS
Carrier frequency fc = 2.0 GHz
Channel bandwidth BW = 312.5 KHz
Number of BS antennas B = 32
Antenna array ULA with ∆r = λ/2

by “Ant.”). We also consider the case in which we take the
scaled CSI vectors and transform then into the angular domain
(denoted by “Ang.”) followed by one of the nonlinearities
mentioned above. For the scaled R2M, denoted by H̃, we
compute DH̃DH , where D is the M ×M discrete Fourier
transform matrix that satisfies DHD = IM . This approach
transforms the scaled CSI moments from the antenna domain
into the angular (or beamspace) domain, which represents the
incident angles of the Tx and potential scatterers to the array
in a concise way [46]. We then either use this feature directly
or apply one of the above mentioned nonlinearities.

D. Feature Analysis and Comparison

We now evaluate the effectiveness of the channel features
discussed above. We first detail the simulation parameters, and
then evaluate the associated CT and TW measured between
spatial geometry and radio geometry.

1) Simulation Setup: We consider a scenario as depicted
in Figure 1(a) with a narrowband non-LoS (NLoS) channel
generated from the Quadriga channel model [47]; the key
parameters are summarized in Table I. We record CSI of
N = 2048 randomly selected (with the exception of the “VIP”
curve, which have been placed to form a contiguous curve)
spatial locations within a square area of 1000 m × 500 m; the
median distance between nearest neighbors is approximately
7.86 meters, i.e., we sample CSI in space at roughly 53
wavelengths. We acquire CSI at an SNR of 0 dB, average
over T = 10 time instants, and set σ = 16.

2) Feature Comparison: Table II summarizes the global TW
and CT for a range of channel features with a neighborhood
of K = 0.05N ; the numbers in the parentheses indicate the
standard deviation over the point-wise TW and CT measures.
We see that the absolute value of R2M in the angular domain
yields high TW and CT values. Other features, such as the
absolute value of the R2M in the antenna domain perform
poorly. In summary, we observe that—given appropriate
channel features—even challenging NLoS channel scenarios
at low SNR exhibit surprisingly high TW and CT. This
observation supports the validity of Assumption 1 and paves
the way for the CC methods proposed next.

Remark 4. We conducted the same experiments for a “vanilla”
LoS (V-LoS) channel as in (1) as well as a Quadriga-based
LoS (Q-LoS) channel, and we arrived at the same conclusions.
We emphasize that absolute value of the R2M in the angular
domain turned out to be the most robust channel feature for
all considered channel models and scenarios.
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TABLE II
COMPARISON OF CHANNEL FEATURES EXTRACTED FROM THE RAW 2ND MOMENT (R2M)
IN TERMS OF GLOBAL TRUSTWORTHINESS (TW) AND CONTINUITY (CT) FOR K = 0.05N

Domain C{·} <{·} ={·} ∠(·) | · |

Antenna
TW 0.76 (±0.11) 0.62 (±0.12) 0.70 (±0.09) 0.67 (±0.09) 0.54 (±0.07)

CT 0.76 (±0.07) 0.71 (±0.07) 0.69 (±0.08) 0.63 (±0.08) 0.56 (±0.09)

Angular
TW see TW above 0.76 (±0.12) 0.56 (±0.08) 0.55 (±0.07) 0.81 (±0.13)

CT see CT above 0.74 (±0.07) 0.52 (±0.06) 0.53 (±0.09) 0.84 (±0.09)

V. CHANNEL CHARTING ALGORITHMS

We now introduce three distinct CC algorithms with varying
complexity, flexibility, and accuracy. We propose principal
component analysis (PCA), Sammon’s mapping (and a variation
theoreof), and autoencoders in the context of CC. For each
method, we briefly discuss the pros and cons. Corresponding
channel chart results are shown in Section VI.

A. Principal Component Analysis

As a baseline charting algorithm, we perform PCA [48],
[49] on a centered version of the channel features. PCA is
among the most popular linear and parametric methods for
dimensionality reduction and maps a high-dimensional point
set (the channel features) into a low-dimensional point set (the
channel chart) in an unsupervised manner. The specific method
we use for channel charting is detailed next.

1) Algorithm: We collect all N channel features, vec-
torize them, and concatenate them in the M ′ × N matrix
F = [f1, . . . , fN ]. We then normalize each row of F to have
zero empirical mean; we call the resulting matrix F̄. We
then compute an eigenvalue decomposition on the empirical
covariance matrix of the centered channel features so that
F̄
H

F̄ = UΣUH . Here, the N × N matrix U is unitary,
i.e., UHU = IN , and Σ is a diagonal matrix with the N
eigenvalues on the main diagonal sorted in descending order
of their value (assuming all eigenvalues are real-valued), i.e.,
Σ = diag(σ1, . . . , σN ) so that σk ≥ σ` for 1 ≤ k < ` ≤ N .
Finally, we compute the D′ ×N matrix containing the low-
dimensional points in the channel chart Z = [z1, . . . , zN ].
Let ud denote the dth column of U. Then, the channel chart
obtained via PCA is given by

ZPCA = [
√
σ1u1, . . . ,

√
σD′uD′ ]

H
. (4)

2) Pros and Cons: PCA is straightforward to implement and
can be carried out in a computationally efficient manner using
power iterations [50], [51]. However, as shown in Section VI,
PCA performs worse in terms of TW and CT than the nonlinear
CC methods proposed in the next two subsections.

B. Sammon’s Mapping

Sammon’s mapping (SM) [31] is a classical nonlinear method
that maps a high-dimensional point set into a point set of
lower dimensionality with the goal of retaining small pairwise
distances between both point sets—exactly what we wished
for in Section II-B. We next describe SM for CC in detail,

explain an efficient algorithm to compute the channel chart,
and propose a modified version that takes into account side
information (called SM+ in what follows).

1) SM Basics: First, we compute a pairwise distance
matrix D of all channel features

Dn,` = df (Fn,F`), n = 1, . . . , N, ` = 1, . . . , N,

where we use the Frobenius distance (see Section IV-A). SM
tries to find a low-dimensional channel chart, i.e., a point set
{zn}Nn=1, that results from the following optimization problem:

(SM)


minimize
zn∈RD

′

n=1,...,N

∑
n=2,...,N
`=1,...,n−1

D−1n,`(Dn,` − ‖zn − z`‖2)2

subject to
∑

n=1,...,N

zn = 0D′×1,

where we omit pairs of points for which Dn,` = 0. The
objective function of SM promotes channel charts for which the
Euclidean distance of pairs of nearby points in RD′ agrees with
the feature distance. Points for which D−1n,` is small (i.e., points
that are dissimilar in feature geometry) are discounted; this
ensures that SM retains small pairwise distances between both
point sets. Since the objective function is invariant to global
translations, we use a constraint that enforces the channel chart
to be centered in each of the coordinates in RD′ .

2) Forward-Backward Splitting for SM: The problem (SM)
is non-convex and typically solved using quasi-Newton meth-
ods [52]. We next detail an efficient first-order method that
enables us to include side information that is available for
CC. We use an accelerated forward-backward splitting (FBS)
procedure [53], [54] that solves a class of convex optimization
problems of the following general form:

minimize
Z∈RD′×N

f(Z) + g(Z),

where the function f(Z) =
∑K
n=1 fn(zn) should be convex

and smooth and g should be convex, but must not be smooth
or bounded. FBS mainly consists of the simple iteration

Z(t+1) = proxg
(
Z(t) − τ (t)∇f(Z(k)), τ (t)

)
for t = 1, . . . , Tmax or until convergence. Here, ∇f(Z) is the
gradient of the smooth function f , and the proximal operator
for the nonsmooth function g is defined as [55]

proxg(Z, τ) = arg min
V

{
τg(V) +

1

2
‖V − Z‖2F

}
.
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The sequence {τ (t) > 0} contains carefully selected step-size
parameters that ensure convergence of FBS.

For CC, the matrix Z = [z1, . . . , zN ] contains all points in
the channel chart. The function f is chosen to be

f(Z) =
∑

n=2,...,N
`=1,...,n−1

D−1n,`(Dn,` − ‖zn − z`‖2)2, (5)

and the nth column of the gradient of f is

[∇f(Z)]n = 2
∑

`=1,...,n
` 6=n

D−1n,`(Dn,` − ‖zn − z`‖2)
zn − z`
‖zn − z`‖2

.

The centering constraint in (SM) is enforced by choosing

g(Z) = χ

(
N∑
n=1

zn

)
,

where the “characteristic function” χ is zero when its argument∑N
n=1 zn is zero, and infinity otherwise. The proximal operator

of this characteristic function is simply a re-projection onto
the centering constraint given by

proxg(Z, τ) = Z− 1

K
Z1N×11

T
N×1.

Remark 5. Since the function f is nonconvex, FBS is not
guaranteed to find a global minimizer. We will demonstrate
in Section VI that FBS with a suitable initialization and step-
size criterion yields excellent CC results in a computationally
efficient manner. Concretely, we initialize FBS with the solution
from PCA Z(1) = ZPCA as detailed in Section V-A and we
deploy the adaptive step-size procedure proposed in [54].

3) SM with Side-Information: We now provide an example
of how CC can be improved with side information. Note that
the methods in this section remain unsupervised as they do not
require information about the transmitter’s spatial locations.

In practice, one often collects many CSI vectors from
a single transmitter (e.g., a UE). In this case, the channel
features for a given transmitter u form a time series {fn}n∈Nu ,
where Nu contains the temporally ordered channel feature
indices associated with UE u. Since transmitters move with
finite velocity, we know that temporally adjacent CSI vectors
from the same UE should lie close together in the channel
chart. To exploit this information, we include a squared `2-
norm penalty in the objective function that keeps temporally
adjacent points in Nu nearby in the channel chart. Concretely,
for each transmitter u, we add

fu(Z) = αu
∑
n∈Nu

‖zn − zn+1‖22

to the objective of (SM), where the parameter αu > 0
determines the spatial smoothness of transmitter u in the
channel chart. The nth row of the gradient of this penalty
can be computed effectively and is given by

[∇fu(Z)]n = 2αu((zn − zn+1) + (zn − zn−1))

for n ∈ Nu. In what follows, we refer to the resulting CC
algorithm as Sammon’s mapping plus (SM+).

4) Pros and Cons: The main advantages of SM/SM+
are that (i) they directly implement the desirables for CC
summarized in Section II-B, which results in excellent TW
and CT (see Section VI for results), and (ii) temporal side
information is easily included. The drawbacks are that (i)
they are nonparametric, which would require an out-of-sample
extension procedure as proposed in, e.g., [56], if new points
need to be mapped without relearning the channel chart, and
(ii) the complexity is substantially higher than that of PCA.

C. Autoencoder

Autoencoders (AEs) [57] are single- or multi-layer (deep)
artificial neural networks that are commonly used for un-
supervised dimensionality reduction tasks [32] and have
shown to yield excellent performance on numerous real-world
datasets [58]. We now detail how AEs can be used for CC.

1) Autoencoders for CC: The basic idea of an AE is to
learn two functions, an encoder C : RM ′ → RD′ and a decoder
C−1 : RD′ → RM ′ , with M ′ > D′, so that the average
approximation error

E =
1

N

N∑
n=1

‖fn − C−1(C(fn))‖22 (6)

for a set of vectors {fn}Nn=1 is minimal. Since the codomain
(outputs) of the encoder C is typically of lower dimension than
the domain (inputs), we have that fn ≈ C−1(C(fn)), but this
is not a perfect equality. The hope is that the AE implements
a low dimensional representation zn = C(fn) that captures the
essential components of the inputs fn.

We now describe how AEs can be used for CC. First, it is
important to realize that the encoder C directly corresponds
to the forward charting function with fn being the inputs;
the decoder C−1 corresponds to the inverse charting function.
Second, we will use multi-layer (or deep) AEs [57] to learn
the two functions C and C−1 in an unsupervised manner.

Example 6. Consider a simple (shallow) AE whose encoder
and decoder consist of a single layer, the inputs are the channel
features, and the outputs of the decoder correspond to the points
in the channel chart. Each layer first multiplies the inputs with
a matrix (containing the weights) and adds a bias term; a
(nonlinear) activation function (also known as neuron) is then
applied element-wise to generate the outputs. Mathematically,
such a shallow AE is described as follows:

C : z = fenc(Wencf + benc) (7)

C−1 : f̂ = fdec(Wdecz + bdec). (8)

Here, the forward charting function C (the encoder) first
computes a matrix-vector product between the weight matrix
Wenc ∈ RD′×M ′ and the vectorized channel feature f (the
inputs), followed by adding a bias vector benc ∈ RD′ . The result
of this operation is then passed through a nonlinear activation
function fenc that operates element-wise on the entries of the
argument. The inverse charting function C−1 (the decoder)
uses another weight matrix Wdec ∈ RM ′×D′ , bias vector
bdec ∈ RM ′ , and activation function fdec to map the input
z ∈ RD′ to the channel feature geometry in RM ′ .
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Fig. 5. Structure of the deep autoencoder used for CC. The entire artificial
neural network consists of 10 layers; circles correspond to activation functions,
trapezoids correspond to the weights and biases; the bottom text indicates the
activation function type and the top text the output dimension of each layer.

In practice, one often resorts to multi-layer (or so-called
deep) AEs [57] instead of the shallow network discussed in
Example 6, as they often yield superior performance for many
dimensionality-reduction tasks [32]. For such deep AEs, one
simply cascades the inputs and outputs of multiple single-
layer networks as in (7) and (8). The key design parameters
of such deep AEs are the number of layers L (per encoder
and decoder), the dimensions of the weight matrices and bias
vectors on each layer, and the activation function types for each
layer—all these parameters are fixed at design time. During
the CC procedure, one jointly learns the entries of the weight
matrices {W(l)

enc,W
(l)
dec} and bias vectors {b(l)

enc,b
(l)
dec}, where

l = 1, . . . , L denotes the layer index, solely from the set of
channel features {fn}Nn=1 so that the approximation error in (6)
is minimal. Learning is typically accomplished by a procedure
known as back-propagation [57], which is computationally
efficient and scales favorably to large datasets.

2) Implementation Details: We use a deep AE as illustrated
in Figure 5. We carefully selected the number of layers and
their dimensionality, as well as the involved activation functions.
The encoder and decoder both consist of L = 5 layers.

The inputs of the encoder C (the forward charting function)
are the M ′-dimensional channel features {fn}Nn=1, the outputs
correspond to points in the D′ dimensional channel chart
{zn}Nn=1. For each layer l, the linear operation with the
weights W

(l)
enc and bias b

(l)
enc are represented by the trapezoids

in Figure 5. For the layers l = {1, 2, 4}, we set the activation
to the hyperbolic tangent function f (l)enc(x) = ex−e−x

ex+e−x . For layer
three, we use the softplus function f (3)enc (x) = log(1 + exp(x)).
For layer five, we use the identity f (5)enc (x) = x. The number of
neurons for each layer are as follows: R(1) = 500, R(2) = 100,
R(3) = 50, R(4) = 20, and R(5) = D′.

The inputs of the decoder C−1 (the inverse charting function)
are the points in the channel chart {zn}Nn=1 of dimension D′,
and the outputs correspond to estimates of the M ′-dimensional
channel features {f̂n}Nn=1. As shown in Figure 5, the decoder is
essentially a mirrored version of the encoder, having the same
number of neurons per layer (but in reverse order). The only
difference is the activation function on the sixth layer, where
we use the rectified linear unit (ReLU) defined as f (6)dec (x) =
max{x, 0} instead of a hyperbolic tangent.

To reduce the approximation error of our AE and to obtain
better TW and CT values, the weights in layer l = 5 have been
regularized. We include a squared Frobenius-norm regularizer

on the entries of W
(5)
enc (also known as weight decay) by using

the following average approximation error:

E =
1

2N

N∑
n=1

‖fn − C−1(C(fn))‖22 +
β

2
‖W(5)

enc‖2F ,

where the parameter β > 0 was tuned for best performance.
For learning of the AE, we use Tensorflow [59].

3) Pros and Cons: The key advantages of AE-based CC
compared to PCA, SM, and SM+ are as follows: (i) AEs
directly yield a parametric mapping of the forward and inverse
channel charting function and (ii) they can be trained efficiently,
even for very large datasets. The key drawback is the fact that
identifying good network topologies, activation functions, and
learning-rate parameters for AEs is notoriously difficult and
involves tedious and time-consuming trial-and-error efforts by
the user [60].

VI. RESULTS

We are finally ready to provide results for CC for various
channel models and the methods discussed above.

A. Simulation Settings

Each channel chart shown next is generated for the sys-
tem scenario depicted in Figure 1(a). We record CSI of
N = 2048 randomly placed (with the exception of the 234
points representing the “VIP” curve) spatial locations within a
square area of 1000 m × 500 m; the median sampling distance,
measured in the spatial domain and between nearest neighbors,
is approximately 53 wavelengths. We acquire CSI at an SNR of
0 dB, average noise over T = 10 samples, and set ρ = 16. We
compare results for a “vanilla” LoS channel (V-LoS) as in (1)
at a carrier frequency of 2 GHz with λ/2 antenna spacing,
and for Quadriga LoS (Q-LoS) and Quadriga NLoS (Q-NLoS)
channels (see Table I for the model parameters). Since the
analysis in Section IV-D revealed that the feature configuration
{R2M, Ant., | · |} yields the most robust results with respect to
CT and TW for all the above channel models (see Remark 4),
we will generate channel charts solely for this channel feature.
For each channel chart, we provide the global CT and TW
values measured between spatial geometry and the channel
chart for K = 0.05N nearest neighbors. In contrast to Figure 1,
which has been tuned for visual appearance, the channel charts
shown next are optimized for best TW and CT values.

B. Channel Charts

Figure 6 shows learned channel charts for PCA, SM, SM+,
and AE. For these CC algorithms and the three channel models,
we obtain CT values between 0.91 and 0.94. This means that
the neighborhood of a point in spatial geometry is strongly
preserved in the channel charts, i.e., most points nearby in the
spatial geometry space are nearby in the channel charts. The
TW values are also high, ranging between 0.84 and 0.89; this
indicates that most neighbors of a point in the channel charts are
also neighbors in spatial geometry. We can also visually inspect
the obtained results, e.g., by comparing the color gradient in
Figure 6 with that of the scenario in Figure 1(a) or that of the
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(a) V-LoS, PCA, CT=0.91, TW=0.84 (b) Q-LoS, PCA, CT=0.91, TW=0.84 (c) Q-NLoS, PCA, CT=0.92, TW=0.85

(d) V-LoS, SM, CT=0.93, TW=0.84 (e) Q-LoS, SM, CT=0.93, TW=0.86 (f) Q-NLoS, SM, CT=0.93, TW=0.85

(g) V-LoS, SM+, CT=0.93, TW=0.84 (h) Q-LoS, SM+, CT=0.93, TW=0.86 (i) Q-NLoS, SM+, CT=0.93, TW=0.85

(j) V-LoS, AE, CT=0.94, TW=0.89 (k) Q-LoS, AE, CT=0.93, TW=0.86 (l) Q-NLoS, AE, CT=0.91, TW=0.86

Fig. 6. Comparison of D′ = 2 dimensional channel charts for different channel models and CC algorithms. We compare “vanilla” LoS (V-LoS), Quadriga LoS
(Q-LoS), and Quadriga non-LoS (Q-NLoS), with principal component analysis (PCA), Sammon’s mapping (SM), Sammon’s mapping with temporal continuity
(SM+), and autoencoder (AE). We see that AE, SM, and SM+ achieve the highest CT and TW, whereas SM+ delivers the most visually pleasing results.
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(a) V-LoS, continuity (CT) (b) Q-LoS, continuity (CT) (c) Q-NLoS, continuity (CT)

(d) V-LoS, trustworthiness (TW) (e) Q-LoS, trustworthiness (TW) (f) Q-NLoS, trustworthiness (TW)

Fig. 7. Comparison of continuity (CT) and trustworthiness (TW) for various channel models and CC algorithms. We observe that autoencoders (AEs)
outperform the other algorithms in terms of TW, while Sammon’s mapping (SM) and its extension (SM+) perform only slightly worse. In terms of CT, however,
AEs only work well for simple LoS channels, whereas SM and SM+ perform better for channels generated from the Quadriga model. PCA yields surprisingly
good results across the board and performs close to that of SM and SM+ in terms of CT for more challenging channel scenarios (Q-LoS and Q-NLoS).

“VIP” curve in spatial geometry and in the channel chart. To
facilitate such a visual comparison, we have rotated and scaled
all channel charts (note that this does not affect CT and TW).

The first row, Figures 6(a,b,c), shows the results for PCA.
Quite surprisingly, PCA yields high CT and TW values for
all channel models, and also provides a visually accurate
embedding of the spatial geometry. This behavior is due to the
fact that we use channel features that well-represent spatial
geometry. The second row, Figures 6(d,e,f), shows the results
for SM. SM yields superior CT and TW values than PCA and
provides excellent preservation of the color gradients, especially
for the two LoS scenarios. The third row, Figures 6(g,h,i), shows
the results for SM+ in which we include spatial constraints
obtained via temporal side-information. While the CT and
TW values are nearly the same as that of SM, SM+ provides
extremely well-preserved embeddings of the channel geometry,
even for the challenging Q-NLoS scenario. The last row,
Figures 6(j,k,l), shows the results for the AE. The AE yields
high CT and TW values, comparable to those of SM/SM+, but
slightly lower CT for Q-NLOS. In addition, the channel charts
are less visually pleasing than those of SM+, but demonstrate
excellent preservation of local spatial geometry.

C. CT and TW Measures

To gain additional insight into the quality of the learned
channel charts, Figure 7 shows the CT and TW values for
different neighborhood sizes, i.e., K ranges from 1 to 100. We
see that, for the simplistic V-LoS channel, the AE provides the
best performance, both in terms of CT and TW; SM and SM+

perform slightly worse, as does PCA. For the more realistic
Q-LoS scenario that takes into account multi-path propagation,
the performance of the AE drops significantly, while even
PCA performs better. SM and SM+ have, once more, similar
performance but perform better than the other two methods. For
the most challenging scenario, the Quadriga non-LoS channel
(Q-NLoS), SM and SM+ perform best, followed by PCA.
Evidently, the AE struggles in achieving high CT. We address
this issue to the fact that we train the AE only on the N = 2048
points and the fact that we could spend another week in tuning
the neural net architecture and learning rates.

VII. CONCLUSIONS

We have proposed channel charting (CC), a novel unsu-
pervised framework to learn a map between channel-state
information (CSI) acquired at a single base-station (BS) and
the relative transmitter (e.g., user equipment) locations. Our
method relies on the extraction of suitable features from
large amounts of high-dimensional CSI acquired at a massive
MIMO BS, followed by CC algorithms that borrow ideas
from dimensionality reduction and manifold learning. We
have developed four distinct CC algorithms with varying
complexity, flexibility, and accuracy that produce charts that
preserve the local geometry of the transmitter locations for
a range of realistic channel models. Since channel charting
is unsupervised, i.e., does not require knowledge of the true
user locations, the proposed method finds use in numerous
applications relevant to 5G networks, including (but not limited
to) rate adaptation, network planning, user scheduling, hand-
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over, cell search, user tracking, user grouping for device-to-
device (D2D) communication, beam prediction for mmWave
or terahertz systems, and other cognitive tasks that rely on CSI
and the relative UE movement to the BS.

There are many avenues for future work. A mathematical
analysis of the proposed feature extraction and CC algorithm
stages that provides insight into what aspects are relevant
for the learning of accurate channel charts is a challenging
open research question. Improved channel features that are
particularly resilient to shadowing and more advanced CC
algorithms, such as methods relying on metric learning or
convolutional neural networks that take into account side
information, have the potential to yield even better continuity
and trustworthiness. Finally, an extension to semi-supervised
methods, time-varying channels, and multi-user scenarios is
part of ongoing work.
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