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Abstract—We propose an FPGA design for soft-output data
detection in orthogonal frequency-division multiplexing (OFDM)-
based large-scale (multi-user) MIMO systems. To reduce the high
computational complexity of data detection, our design uses a
modified version of the conjugate gradient least square (CGLS)
algorithm. In contrast to existing linear detection algorithms for
massive MIMO systems, our method avoids two of the most
complex tasks, namely Gram-matrix computation and matrix
inversion, while still being able to compute soft-outputs. Our
architecture uses an array of reconfigurable processing elements
to compute the CGLS algorithm in a hardware-efficient manner.
Implementation results on Xilinx Virtex-7 FPGA for a 128
antenna, 8 user large-scale MIMO system show that our design
only uses 70% of the area-delay product of the competitive
method, while exhibiting superior error-rate performance.

I. INTRODUCTION

Large-scale (or massive) MIMO is an emerging technology
for next generation wireless communication systems [1]. In
such systems, the base station (BS) is equipped with hundreds
of antennas and serves a small number of users in the same
frequency band [2]–[4]. Compared to conventional small-
scale MIMO systems, massive MIMO promises improved
link reliability, higher spectral efficiency, and superior energy
efficiency. Large-scale MIMO also enables low-complexity
detection algorithms (such as the matched filter) to achieve
close-to-optimum error-rate performance—this, however, only
holds for systems with an excessive number of BS antennas.

Data detection in realistic systems: For realistic antenna
configurations (e.g., a hundred BS antennas with ten users),
computationally expensive methods such as linear data detec-
tion, become necessary to achieve near-optimal performance [5].
To reduce the computational complexity of data detection,
several approximate methods have been proposed recently [5]–
[9]. All these methods either use the Cholesky decomposition
or a Neumann series expansion to compute or approximate
the matrix inverse that is required for linear data detection. As
shown in [5], in systems with a large BS-to-user antenna
ratio, the approximate Neumann-series method is able to
achieve near-optimal performance. In order to improve the error-
rate performance for systems with medium BS-to-user ratios,
a conjugate-gradient (CG)-based soft-output data detection
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algorithm was proposed in [10]. More recently, another CG-
based detector was proposed in [11]; this detection algorithm,
however, is unable to compute soft-outputs.

Contributions: We develop a VLSI architecture for the CG-
based soft-output data-detection algorithm proposed in [10].
In particular, we develop an architecture consisting of a
reconfigurable array of processing elements (PEs) to compute
the CGLS algorithm, as well as the necessary post-equalization
signal-to-interference-and-noise-ratio (SINR) information that
is crucial for soft-output detection. Our implementation results
for a Xilinx Virtex-7 FPGA demonstrate that our detector
achieves superior error-rate performance compared to existing
Neumann-series-based detectors [5], while only using 70% of
the hardware complexity (in terms of the area–delay product).

II. SYSTEM MODEL

We consider a massive MIMO orthogonal frequency-division
multiplexing (OFDM) system with B antennas at the BS and U
single-antenna user-terminals. At the transmit-side, each user
encodes its own information bit stream using a channel encoder.
The encoded bits are then mapped onto constellation points
in the set S. The resulting data is then transformed from the
frequency to the time domain and transmitted over the wireless
channel. At the BS, the received signals are transformed back
into the frequency domain. For each subcarrier (or tone), we
model the input-output relation of the wireless link as

y = Hx+ n, (1)

where, for the sake of simplicity, we omit the subcarrier index.
In (1), y ∈ CB corresponds to the received vector at the BS,
H ∈ CB×U is the MIMO channel matrix, x ∈ SU is the
transmit vector containing signals from all users, and n ∈ CB

models additive noise. In what follows, we assume that the
channel matrices H are generated from the WINNER-Phase-2
channel model [12] and the channel matrices are perfectly
known at the BS. The entries of the noise vector n are
assumed to be i.i.d. circularly-symmetric complex Gaussian
with variance N0. The transmit power of each user and the
average SNR per receive antenna is defined as E{|xi|2} = Es

and SNR = UEs/N0, respectively.
Soft-output MMSE detection: As demonstrated in [5], linear

soft-output minimum mean square error (MMSE) data detection
is able to achieve near-optimal error-rate performance in



massive MIMO systems. One of the simplest soft-output
MMSE detection methods was put forward in [13] and requires
computation of the MMSE equalization matrix

W = A−1HH , (2)

where A = G+N0/EsIU and G = HHH is the Gram matrix.
One can then equalize the receive-vector y as x̂ = Wy. By
modeling the equalized symbol of the ith user as x̂i = µixi+zi,
where the so-called equalized interference and noise is modeled
as zi =

∑
j,j 6=i w

H
i hjxj +wH

i n, we can compute soft-output
information in the form of log-likelihood ratio (LLR) values.
In particular, we use the max-log approximation for each bit b
and user i and compute the LLR values as follows [13]:

Li,b = ρi

(
min
a∈S0

b

∣∣∣∣ x̂iµi
− a
∣∣∣∣2− min

a′∈S1
b

∣∣∣∣ x̂iµi
− a′

∣∣∣∣2
)
. (3)

Here, ρi = µ2
i /ν

2
i represents post-equalization signal-to-

interference-and-noise-ratio (SINR). The sets S0b and S1b
represent subsets of the constellation set S for which the b-th
bit is 0 and 1, respectively.

In massive MIMO systems, soft-output MMSE detection as
outlined above is computational expensive. In particular, com-
putation of the Gram matrix G and the matrix inversion A−1

in (2) result in excessive computational complexity, especially
in systems with a large number of antennas at both ends of the
wireless link [5]. More specifically, computing the matrices G
and A−1 requires O(BU2) and O(U3) operations, respectively.
To significantly reduce the complexity of soft-output MMSE
detection in large-scale MIMO systems, we therefore use our
soft-output CGLS detection method in [10], which avoids an
explicit computation of G and A−1 altogether.

III. CGLS-BASED SOFT-OUTPUT DATA DETECTION

CGLS-based data detection: CGLS is an efficient iterative
method to solve large systems of linear equations [14]. For our
application, we use CGLS to solve the following regularized
least-squares optimization problem:

x̂ = argmin
x̃∈CU

‖y −Hx̃‖22 + N0

Es
‖x̃‖22, (4)

where the result x̂ is equivalent to that of the linear MMSE
estimate x̂ = Wy in (2). By directly solving (4) in an
iterative manner, CGLS is able to compute x̂ at low com-
plexity, without ever forming the Gram matrix G and the
inverse A−1. Furthermore, each iteration of CGLS requires
rather inexpensive and regular matrix-vector multiplications,
which involve only O(BU) operations. In addition, for a B×U -
dimensional system, CGLS converges to the exact solution (4)
in U -iterations [14]. In practice, however, far fewer iterations
are necessary to obtain accurate approximations to (4).

Our detection method is summarized in Algorithm 1 and is
based on the following (equivalent) formulation of (4):

x̂ = argmin
x̃∈CU

‖y −Hx̃‖2, (5)

Algorithm 1 CGLS-based soft-output MMSE detection
1: inputs: H and y
2: initialization:
3: b = HHy and H =

[
HT ,

√
N0/EsIU

]T
4: v0 = 0, r0 = b, p0 = r0, and t0 = Hp0

5: for k = 1, . . . ,K do
6: αk = ‖rk−1‖22/‖tk−1‖22
7: vk = vk−1 + αkpk−1

8: ek = H
H
tk−1

9: rk = rk−1 − αkek
10: βk = ‖rk‖22/‖rk−1‖22
11: pk = rk + βkpk−1
12: tk = Hpk

13: compute µi|k, ∀i, as in Sec. III
14: compute ρi|k, ∀i, as in Sec. III
15: end for
16: outputs: x̂K = vK , µi|K , ∀i, and ρi|K , ∀i

where y =
[
yT ,01×U

]T
is the so-called augmented received

vector, and H =
[
HT ,

√
N0/EsIU

]T
is a suitably augmented

channel matrix H.
SINR Computation: The key to attain low complexity soft-

output MMSE detection (and to avoid an explicit computation
of A−1) consists of the steps carried out on lines 13 and 14
of Algorithm 1, where the quantities µi|k as well as ρi|k are
computed. As detailed in [10], one can iteratively compute µi|k
and ρi|k directly within CGLS, which significantly reduces the
computational complexity compared to methods that require
the computation of A−1 (see, e.g., [13]). In essence, in every
CGLS iteration k, we compute

L̃i|k= L̃i|k−1+

(
αk(1 + βk−1)

αk−1
−αkDi,i

)
(L̃i|k−1−L̃i|k−2)

− αkβk−2
αk−2

(L̃i|k−2 − L̃i|k−3), (6)

with L̃i|1 = α1, and L̃i|k = 0 for k < 1, ∀i. The quantity Di,i

corresponds to the ith diagonal element of the regularized
Gram matrix A. Using L̃i|k, we can then approximate µi|k
with µi|k ≈ L̃i|kGi,i, where Gi,i is the ith diagonal entry of
the Gram matrix G. The post-equalization SINR required in
(3) can then be approximated as

ρi|k = µ2
i|k/ν

2
i|k ≈ Gi,i/N0, (7)

which does not depend on the iteration index k. Using
the approximation ρi|k in (7) results in low computational
complexity, i.e., only requires O(U) operations. Fortunately, the
loss in terms of error-rate performance due to the approximation
is negligible in large-scale MIMO systems (see [10] for the
details). Note that in contrast to the method detailed in [10],
Algorithm 1 never computes the matrices A or G. In particular,
the proposed approximation (7) only relies on the diagonal
elements of A and G, which requires only O(BU) operations.

Error-rate performance: To assess the performance of our
CGLS-based soft-output detection algorithm, we simulate the
block-error rate (BLER) performance and compare it to that
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Fig. 1. Block error rate (BLER) performance comparison.

of existing methods, namely an exact soft-output MMSE
detector [13] and the Neumann-series approximation proposed
in [5]–[8]. All simulations are carried out in a large-scale
MIMO-OFDM system with 128 subcarriers and for 64-QAM.
We furthermore use a rate-5/6 convolutional code and a soft-
input log-MAP Viterbi decoder.

As shown in Fig. 1, the proposed CGLS-based soft-output
detector achieves a BLER performance that is close to that of
the exact MMSE detector (which uses a Cholesky-based matrix
inversion) with only K = 3 iterations in a 128 BS antenna,
8 user large-scale MIMO system, and with K = 5 iterations
for a system consisting of 256 BS antennas and 32 users. In
contrast, the Neumann-series-based approach exhibits an error
floor for the considered antenna configurations.

IV. RECONFIGURABLE VLSI ARCHITECTURE

We propose a low complexity VLSI architecture that utilizes
the regularity of the proposed CGLS detection algorithm
summarized in Algorithm 1. As shown in Fig. 2, our design
consists of a reconfigurable processing element (PE) array. The
array can be reconfigured on the fly to perform matrix-vector
multiplications (line 3, line 4, line 8, and line 12), vector
inner products (line 6, line 10, line 13, line 14), scaled vector
additions/subtractions (line 7, line 9, and line 11), and scalar
divisions (line 6 and line 10). A global finite state machine
(FSM) controls the sequence of operations to perform the
proposed soft-output detection algorithm.

Reconfigurable processing elements: To support the above
operations using a PE array, each PE supports the following
elementary operations: vector inner product, scaled vector
addition/subtraction, and scalar division. As shown in Fig. 2,
each PE consists of five components: A multiplier array, an
add/subtract array, an accumulator array, an adder tree, and a
scalar division module. These five components work together
to perform the three elementary operations:

Vector inner product: Given two vectors, a = [a1, . . . , an]
and b = [b1, . . . , bn], the PE first performs element-wise
complex-valued multiplication, [a1b1, . . . , anbn] using the mul-
tiplier array and add/subtract array. The PE then accumulates
the element-wise products using the accumulator array and
an adder tree. The vector inner product c =

∑n
i=1 aibi then

corresponds to the output of the adder tree.
Scaled vector addition/subtraction: Given a real-valued

scalar α and two complex vectors a and b, the PE computes αa
using the multiplier array. The PE then computes c = αa+ b
using the add/subtract array. The vector c is the output from
the add/subtract array.

Scalar Division: The scalar division module consists of a
lookup table and a real-valued multiplier. Given two real-valued
scalars, a and b, the PE first computes 1/a using a lookup
table (see, e.g., [5]). The PE then multiplies 1/a by b with a
the real-valued multiplier to obtain b/a.

Array of reconfigurable PEs: In our design, we use one
PE to perform the vector dot products, scaled vector addi-
tions/subtractions, and scalar divisions required by Algorithm 1.
While a single PE can perform the required matrix-vector
multiplication (line 3, line 4, line 8, and line 12) as a
series of vector dot products, we can speed up matrix-vector
multiplications by instantiating an array of PEs. For example,
to compute tk = Hpk (a U × 1 vector multiplied by a B×U
matrix; line 12) with N PEs in a parallel manner, we assign
the j-th PE to compute the dot-product between the j-th row
of H and pk to generate the j-th element of tk.

Architecture Optimizations: A straightforward implemen-
tation of Algorithm 1 would result in an inefficient VLSI
design. We therefore deploy several optimizations that reduce
the silicon area and the processing latency.

We first reduce the memory requirements. An naı̈ve imple-
mentation of Algorithm 1 requires storage of a B-dimensional
vector tk (line 9). To reduce the memory consumption, we
interleave the computation on line 9 of Algorithm 1 with the
computation of lines 6 and 8 of the next iteration. Each time we
compute U elements of tk (line 9), we use them immediately
to compute ‖tk−1‖2 (line 6) and ek (line 8). We then compute
the next U elements of tk. In this way, we only need to store U
elements of tk instead of B elements of tk.

We also reduce the circuit complexity by reducing the
dynamic range of the stored data. As shown in [5], the Gram
matrix HHH is a diagonally dominant matrix with diagonal
entries close to B. In CGLS, this property leads to a large
dynamic range. Some vectors, such as ek, consist of relatively
large values. Some other vectors, such as vk, consist of
relatively small values. Similar to [5], in order to process
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Fig. 2. Reconfigurable array of processing elements (PEs) for CGLS-based soft-output data detection.

TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7 XC7VX690T FPGA

Antenna configuration 128 BS antennas, 8 users
Detection algorithm CGLS (K = 3) Neumann (K = 3)

Slices 1 094 (1 %) 48 244 (44.6 %)
LUTs 3 324 (0.76 %) 148 797 (34.3 %)
FFs 3 878 (0.44 %) 161 934 (18.7 %)
DSP48s 33 (0.9 %) 1 016 (28.3 %)
Block RAMs 1 (0.03 %) 16 (1.1 %)
Latency (clock cycles) 951 196
Maximum clock frequency 412 MHz 317 MHz
Throughput 20 Mb/s 621 Mb/s

Area-delay product 7 672 631 11 500 083

both kinds of vectors with low complexity, a scaling factor
κ is applied to bk and ek to reduce the dynamic range. This
scaling cancels out at the end of every CGLS iteration. The
scaling factor is obtained by selecting p such that 1/2p is close
to 1/B, which implies that all required scaling operations are
carried out by simple arithmetic shifts.

V. IMPLEMENTATION RESULTS AND CONCLUSION

To enable a fair comparison with the Neumann-series-based
detector in [5], we implemented our CGLS large-scale MIMO
detector for a 128×8 system on a Xilinx Virtex-7 XC7VX690T
FPGA. The input values and the output values contain 15 bits
per complex dimension. The output of multipliers in the
multiplier array is truncated to 15 bits. The accumulators in
the accumulator array use 20 bits. The LUT within the scalar
division module is 12 bits wide and 1024 entries deep. The
resulting fixed-point performance is shown in Fig. 1; we see
that the implementation loss is negligible.

Table I compares the resource usage of our CGLS-based
detector with the resource usage of the Neumann-series-based
detector [5]. While our implementation achieves a lower
throughput than that of [5], the hardware efficiency (area-delay
product) is significantly better. Note that multiple instances of
the CGLS-based detector can be used to match the throughput
of the design in [5] at significantly smaller area. We use
area-delay product to arrive at a fair comparison. The area
corresponds to the number of FPGA LUTs, whereas the delay
simply corresponds to the processing latency of both engines.
This comparison shows that our CGLS-based detection requires
70% of the area-delay product of the design in [5]. From

Fig. 1, we furthermore see that the CGLS-based method
outperforms the Neumann-series-based approach in term of
error-rate performance. Hence, the proposed detector design
outperforms existing solutions for large-scale MIMO systems in
terms of implementation complexity and error-rate performance.
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