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ABSTRACT
This paper deals with the recovery of an unknown, low-

rank matrix from quantized and (possibly) corrupted mea-
surements of a subset of its entries. We develop statisti-
cal models and corresponding (multi-)convex optimization
algorithms for quantized matrix completion (Q-MC) and
quantized robust principal component analysis (Q-RPCA).
In order to take into account the quantized nature of the
available data, we jointly learn the underlying quantiza-
tion bin boundaries and recover the low-rank matrix, while
removing potential (sparse) corruptions. Experimental re-
sults on synthetic and two real-world collaborative filter-
ing datasets demonstrate that directly operating with the
quantized measurements—rather than treating them as real
values—results in (often significantly) lower recovery error if
the number of quantization bins is less than about 10.

Index Terms— Quantization, convex optimization, ma-
trix completion, robust principal component analysis.

1. INTRODUCTION

1.1. Matrix completion and robust PCA

Matrix completion (MC) aims at recovering an unknown,
low-rank matrix L ∈ Rm×n from a subset of real-valued
measurements Yi,j ∈ R with (i, j) ∈ Ωobs, where Ωobs is the
set of indices of the observed data. Corresponding theoretical
results for MC have shown that only O(r n polylog(n)) ran-
domly observed entries in Ωobs are required to exactly recover
the n×n, rank-r matrix L (see, e.g., [1]). An extension of MC
that is capable of recovering low-rank matrices from a set of
sparsely corrupted measurements, known as robust principal
component analysis (RPCA) [2, 3], further assumes that the
unknown matrix X ∈ Rm×n to be recovered is constructed
as the sum of a low-rank matrix L and a sparse matrix S;
this extension renders MC resilient to outliers in the observed
entries. The recent popularity of MC and RPCA is mainly
due to the fact that they find use in a large number of practical
applications and fields, including (but not limited to) collab-
orative filtering [4, 5], foreground-background separation [2],
financial data analysis [6], and compressive sensing [7].
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1.2. 1-bit matrix completion

In many practical applications, the common assumption of
MC that the measurements Yi,j are real-valued is not valid. In
collaborative filtering, for example, the observed data corre-
sponds to user ratings of items (e.g., movies), which are from
a discrete set of values, such as binary-valued (1-bit) [8, 9]
or quantized1 [10–12], e.g., from the discrete and ordered set
{1, . . . , 5}. Although one can apply existing MC and RPCA
algorithms to quantized measurements by treating them as
real values (e.g., by mapping them onto the set of real num-
bers), recent results in 1-bit MC [13] have shown that directly
using the available binary-valued data in combination with
a suitable measurement model often results in substantially
better recovery performance [11, 12]. This line of research
has shown that only O(r n) randomly-observed and binary-
valued entries are sufficient to obtain a robust estimate of the
n× n, rank-r matrix L [13].

Unfortunately, extending the algorithms and recovery
guarantees for 1-bit MC [11–13] to the general case of quan-
tized and (possibly) corrupted measurements is not straight-
forward. Hence, new models and corresponding efficient
MC and RPCA algorithms are of paramount importance for
applications relying on quantized and (possibly) corrupted
measurements, such as in recommender systems [4, 14], edu-
cational assessments [12], and psychological tests [15].

1.3. Contributions

In this paper, we develop new statistical models for quantized
and (possibly) corrupted measurements of a low-rank ma-
trix L, and two corresponding (multi-)convex optimization-
based recovery algorithms, namely quantized matrix comple-
tion (Q-MC) and quantized robust principal component anal-
ysis (Q-RPCA). We base our algorithms on the FISTA frame-
work [16] in order to solve the optimization problems with
low computational complexity. In addition, our algorithms
directly estimate the set of quantization bin boundaries from
observed data using an alternating optimization procedure,
since knowledge of the quantization bin boundaries is, in gen-
eral, unavailable in practice. We demonstrate the effective-
ness of our methods using experiments on synthetic and two
real-world collaborative filtering datasets.

1The machine learning literature commonly uses the term “ordinal data”
for quantized measurements; we will use both terms interchangeably.



2. STATISTICAL MODELS FOR QUANTIZED
MATRIX RECOVERY

Q-MC and Q-RPCA aim at recovering an unknown, low-rank
matrix L from a subset of quantized and (possibly) corrupted
measurements. In the Q-MC case, the matrix X to be recov-
ered is assumed to be low-rank, i.e., X = L; in the Q-RPCA
case, the matrix X to be recovered is composed of a low-rank
and a sparse corruption matrix, i.e., X = L+S. In both cases,
we assume that the matrix X of interest is of dimensionm×n.
In collaborative filtering applications, the dimension m often
refers to the number of items and n to the number of users.

2.1. Quantization model

Let Yi,j represent the quantized measurement of the (i, j)th

entry of the (unknown) matrix X (or the rating of the jth user
on the ith item), which are from a set of P ordered labels,2 i.e.,
Yi,j ∈ O with O = {1, . . . , P}. We propose the following
model for the quantized measurements Yi,j :

Yi,j = Q(Xi,j + εi,j), (i, j) ∈ Ωobs,

εi,j ∼ Logistic(0, 1) or εi,j ∼ N (0, 1) .
(1)

The quantity εi,j models the uncertainty on each measure-
ment of Xi,j . Logistic(0, 1) denotes a logistic distribution
with zero mean and unit scale; N (0, 1) denotes the standard
normal distribution. The set Ωobs ⊆ {1, . . . ,m}×{1, . . . , n}
contains the indices associated to the observed measurements
Yi,j . In (1), the functionQ(·) :R→ O corresponds to a scalar
quantizer that maps a real number to one of the P ordered la-
bels according to

Q(x) = p if ωp−1 < x ≤ ωp, p ∈ O,

where {ω0, . . . , ωP } represent the set of quantization bin
boundaries satisfying ω0 ≤ ω1 ≤ · · · ≤ ωP−1 ≤ ωP , with ω0

and ωP denoting the lower and upper quantization bin bound-
aries of the quantizer Q(·). Note that in most situations, we
have ω0 = −∞ and ωP =∞.

We emphasize that the quantization bin boundaries are,
in general, unknown, and depend on the application at hand.
For example, in recommender systems, the ratings 4 and 5
(out of 5) often stand for “good” and “excellent,” which can
be interpreted very differently by different users. We there-
fore propose an automatic technique to learn the quantization
bin boundaries directly from the available data (see Sec. 3).
For notational simplicity, we assume that all measurements
Yi,j share a common set of quantization bin boundaries. In
practice, however, a set of unique bin boundaries can be de-
fined either for each item (denoted as ωi0 ≤ · · · ≤ ωiP , i =
1, . . . ,m), associated with each row of X, or for each user
(denoted as ωj0 ≤ · · · ≤ ωjP , j = 1, . . . , n), associated with
each column of X. A comparison of different assumptions on
the quantization bin boundaries will be provided in Sec. 4.2.

2For the sake of simplicity, we only discuss the case where all observa-
tions have the same number of quantization bins P ; the generalization to the
case of a different number of bins for each measurement is straightforward.

2.2. Statistical model

The measurement model in (1) leads to the following statisti-
cal input–output relation for each observation Yi,j :

p(Yi,j = p | Xi,j)= Φ(ωp−Xi,j)−Φ(ωp−1−Xi,j) , (2)

where Φ(x) corresponds to an inverse link function. For
logistic noise, we use Φlog(x) = 1

1+e−x , the inverse logit
link function; for standard normal noise, we use Φpro(x) =∫ x
−∞N (s|0, 1)ds, the inverse probit link function [17]. The

Q-MC and Q-RPCA algorithms proposed in Sec. 3 can be for-
mulated for both noise models. Note that we can rewrite (1)
and (2) in compact form as

p(Yi,j | Xi,j) = Φ(Ui,j −Xi,j)− Φ(Wi,j −Xi,j) ,

where the m× n matrices U and W contain the upper and
lower bin boundaries corresponding to the measurements Yi,j ,
i.e., we have Ui,j = ωYi,j

and Wi,j = ωYi,j−1.
We emphasize that the model (1) generalizes the common

1-bit MC model proposed in [13] to quantized data. In par-
ticular, 1-bit MC is a special case of our model with P = 2,
{ω0, ω1, ω2} = {−∞, 0,∞}, and X = L. We next propose
two algorithms that jointly learn the quantization bin bound-
aries and recover L (and also S in the case of Q-RPCA3),
given the subset of quantized measurements Yi,j , (i, j) ∈ Ωobs,
under the assumptions that rank(L) � m,n and S is sparse
(i.e., contains only a small number of non-zero entries).

3. ALGORITHMS FOR QUANTIZED
MATRIX RECOVERY

3.1. Q-MC: Quantized matrix completion

In order to recover the low-rank matrix L from quantized
measurements, we minimize the negative log-likelihood of
Yi,j , (i, j) ∈ Ωobs, given by (2), subject to a low-rank pro-
moting constraint on L. In particular, we seek to solve the
following constrained optimization problem:

(Q-MC)

®
minimize
L, ω0≤···≤ωP

−
∑
i,j:(i,j)∈Ωobs

log p(Yi,j |Li,j)

subject to ‖L‖∗ ≤ λ.

Here, the nuclear norm constraint ‖L‖∗ ≤ λ, which is a
convex relaxation of the low-rank constraint rank(L) ≤ r,
promotes low-rankness of L [18]; the parameter λ > 0 is
used to tune the rank of L. In practice, we select the parame-
ter λ via cross-validation or AIC/BIC [17]. We note that one
can also use a Lagrange multiplier [19] to raise the constraint
‖L‖∗ ≤ λ of (Q-MC) to the objective function as a regular-
izer, which is equivalent to the common approach for (real-
valued) MC [20]. Experimental results suggest that selecting
the optimal value of the parameter λ in the constraint is—in

3Note that for Q-RPCA, it is not possible to recover the sparse matrix S
if only a subset of the entries of X = L+ S are observed—just like RPCA.



most cases—simpler (i.e., less sensitive to small variations)
than selecting the optimal value of λ in the regularizer.

Since the negative log-likelihood of the logit and probit
functions are convex in L when keeping the quantization bin
boundaries ω0, . . . , ωP fixed, and (Q-MC) is convex in each
individual quantization bin boundary while holding the other
ones and L fixed [17], the problem (Q-MC) is multi-convex in
all the variables L and ω0, . . . , ωP . Therefore, (Q-MC) can
be solved approximately via block-coordinate descent [21].

The Q-MC algorithm consists of an inner and an outer
iteration. We first initialize the matrix L with an all-zero ma-
trix and the quantization bin boundaries with ω0 = Φ−1(0),
ω1 = Φ−1( 1

P ), . . . , ωP = Φ−1(1). Then, in each outer iter-
ation, the Q-MC algorithm performs two steps consecutively:
(i) We hold all quantization bin boundaries fixed and optimize
L, which can be solved using an iterative procedure detailed
below (forming the inner iterations); (ii) We hold L fixed and
optimize the bin boundaries one by one, while holding the
others fixed. This step can, for example, be accomplished us-
ing the secant method [22]. The associated details are omitted
due to space constraints. We terminate the algorithm either if
a maximum number of outer iterations is reached or if the
decrease in the objective function between consecutive outer
iterations is smaller than a predefined threshold.

The problem of optimizing L while holding the quan-
tization bin boundaries fixed corresponds to the following
nuclear-norm constrained logit/probit regression problem:®

minimize
L

f(L) = −
∑
i,j: (i,j)∈Ωobs

log p(Yi,j |Li,j)
subject to ‖L‖∗ ≤ λ,

which can be solved efficiently via the FISTA framework [16]
for non-smooth constrained/regularized optimization prob-
lems. Starting with an initialization of the matrix L, at each
inner iteration ` = 1, 2, . . ., the algorithm performs a gra-
dient step to reduce the cost function followed by a projec-
tion step to make the solution satisfy the non-smooth nuclear-
norm constraint. Both steps are repeated until a maximum
number of inner iterations Kmax is reached or the change in L
between consecutive iterations is below a given threshold.

The gradient step aims at reducing the cost function f(L),
and is given by L̂`+1 ← L` − s`∇f . Here, s` is the step-
size at iteration `. For simplicity, we use a constant step-
size s` = 1/L, where L is the Lipschitz constant, which is
given by Llog = 1/4 for the inverse logit link and Lpro = 1
for the inverse probit link. The gradient of the negative log-
likelihood function of (Q-MC) with respect to L is given by

[∇f ]i,j =

®
Φ′(Wi,j−Li,j)−Φ′(Ui,j−Li,j)
Φ(Ui,j−Li,j)−Φ(Wi,j−Li,j) if (i, j) ∈ Ωobs,

0 otherwise.

The derivatives of the inverse link function Φ′(x) can be cal-
culated as Φ′log(x) = 1

2+e−x+ex and Φ′pro(x) = N (x |0, 1).
The projection step aims to impose low-rankness on L.

This step is given by a projection onto the nuclear norm ball
with radius λ, which is equivalent to taking the singular value

decomposition (SVD) of L followed by a projection of the
singular-value vector onto the `1 ball with radius λ (see [20]
for the details). Thus, the projection step is given by

L`+1 ← ‹Udiag(s)‹VT , with s = Pλ(diag(S)), (3)

where ‹US‹VT denotes the SVD of L̂`+1, and Pλ(·) the pro-
jection onto the `1-ball with radius λ, which can be computed
efficiently using the algorithm detailed in [23].

3.2. Q-RPCA: Quantized robust PCA

The MC framework is able to handle uniform measurement
noise but is prone to fail when parts of the data is corrupted
by outliers. Real-valued robust principal component analysis
(RPCA) [2] extends MC with the assumption that the ma-
trix X to be recovered consist of a low-rank part L and a
sparse corruption part S; this modification renders RPCA re-
silient to outliers (and possibly leads to solutions L of lower
rank than MC). In order to improve the robustness of Q-MC
to outliers, we now extend the Q-MC algorithm detailed in
Sec. 3.1 to quantized robust PCA (Q-RPCA). In particular, we
seek to solve the following constrained optimization problem:

(Q-RPCA)

{
minimize
L,S,ω0≤···≤ωP

−
∑

i,j:(i,j)∈Ωobs

log p(Yi,j |Li,j+Si,j)

subject to ‖L‖∗ ≤ λ and ‖S‖1 ≤ σ.

Here, ‖S‖1 ≤ σ corresponds to an `1-norm constraint on the
vectorized version of S that promotes sparsity among all en-
tries of S. In practice, we select the parameters λ and σ via
cross-validation or AIC/BIC [17].

The (Q-RPCA) problem can be solved using a similar
block coordinate descent procedure as in Sec. 3.1. In each
outer iteration, we perform three steps: (i) hold the sparse
part S and the quantization bin boundaries fixed and optimize
for the low-rank part L, (ii) hold L and the quantization bin
boundaries fixed and optimize the sparse part S, and (iii) hold
both L and S fixed and optimize the quantization bin bound-
aries. The problem of optimizing the sparse matrix S while
holding the other variables fixed is solved using a similar ap-
proach as in Sec. 3.1. Specifically, we use a projection step
as in [23], i.e., S`+1 ← Pσ(Ŝ`+1). Here, the `1-norm ball
projection Pσ(·) operates on the vectorized version of Ŝ`+1.

4. EXPERIMENTS

We now validate the efficacy of Q-MC and Q-RPCA on both
synthetic and real-world data. In all experiments, the param-
eters λ and σ are selected using cross-validation. All results
are averaged over 25 independent Monte–Carlo trials.

4.1. Synthetic data

We start by evaluating the performance of Q-MC using syn-
thetic data. Only the probit version of Q-MC will be used for
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Fig. 1. Comparison of Q-MC versus real-valued MC for
rank(L) = 5 and rank(L) = 10 in terms of the normalized
recovery error EL.

this experiment, since real-valued MC and RPCA typically
assume a measurement model including Gaussian noise. We
generate the synthetic data as follows. We set m = n = 100
and rank(L) to either 5 or 10. For each trial we generate L
as the outer product of two low-dimensional random Gaus-
sian matrices (according to the specified rank). The number
of quantization bins is P ∈ {2, 3, 5, 7, 10, 13, 16, 20, 25}, and
the bin boundaries ω0, . . . , ωP are chosen such that the num-
ber of entries in L that fall in each bin are roughly equal. The
measurements Yi,j are then generated via (1), with 20% un-
observed entries (chosen uniformly at random).

To assess the recovery performance of our proposed al-
gorithms, we use the normalized recovery error defined as
EL = ‖L− L̂‖2F /‖L‖2F , where L̂ is a re-scaled version of
the recovered low-rank matrix having the same Frobenius
norm as the ground-truth matrix L. We compare four al-
gorithms: (i) Q-MC, (ii) Q-MC given the true quantization
bin boundaries (denoted Q-MCb), (iii) real-valued MC with
Yi,j ∈ {1, . . . , P} mapped to their corresponding real values
as input (denoted MCY), and (iv) real-valued MC using the
noisy version of the matrix L (denoted MCL).

Figure 1 shows the normalized recovery error EL ver-
sus the number of quantization bins P for rank(L) = 5
and 10. We can see that Q-MC outperforms real-valued MC
in recovering the underlying variable matrix L, especially
for coarsely-quantized observations Yi,j , i.e., for P ≤ 10
bins. Furthermore, the performance of Q-MC and Q-MC
with known quantization bin boundaries (Q-MCb) is almost
equivalent, implying that Q-MC is able to accurately learn the
quantization bins. In addition, we see that the performance
of Q-MC gradually approaches (with increasing P ) the per-
formance of MCL, which operates on the unquantized, real-
valued noisy version of the low-rank matrix L.

4.2. Real-world data

We next showcase the performance of Q-MC and Q-RPCA on
two real-world collaborative filtering datasets: (i) the Movie-
Lens dataset [24] and (ii) the Dating Agency dataset [14]. The
MovieLens dataset is a pruned version consisting of n = 943
users rating m = 1152 movies; here, only 9% of the ratings
are observed. The number of quantized values is P = 5 (rat-
ings from 1 to 5). The Dating Agency dataset is pruned to
n = 1000 users ratingm = 1000 profiles, with 29.5% ratings
observed. The number of quantized values is P = 10 (ratings

MovieLens Dating Agency

MAE RMSE MAE RMSE

Q-MC
one set bin 0.7553 0.9443 1.1763 1.6655

user bin 0.7393 0.9301 1.1830 1.6700
item bin 0.7394 0.9305 1.2026 1.6812

Q-RPCA
one set bin 0.7562 0.9447 1.1622 1.6570

user bin 0.7389 0.9294 1.1818 1.6703
item bin 0.7614 0.9467 1.1919 1.6749

MC 0.8588 1.1012 1.1784 1.6878

RPCA 0.8596 1.1042 1.1888 1.7230

Table 1. Performance comparison of Q-MC and Q-RPCA vs.
real-valued MC and RPCA on predicting unobserved ratings
for the MovieLens [24] and Dating Agency [14] datasets.

from 1 to 10). To assess the recovery performance, we use
the prediction mean absolute error (MAE) and the prediction
root mean square error (RMSE), defined as follows [10]:

MAE =
1

|Ωobs|
∑

(i,j)∈Ωobs
|Yi,j − “Yi,j |,

RMSE =
√∑

(i,j)∈Ωobs
(Yi,j − “Yi,j)2/|Ωobs|.

Here, Ωobs represents the set of indices corresponding to the
unobserved ratings. The predicted entries are obtained by
computing “Yi,j = E[Yi,j |Li,j , ω0, . . . , ωP ]. We compare
eight different algorithms: Q-MC and Q-RPCA, with both
algorithms estimating a set of quantization bin boundaries for
(i) the entire dataset (one set of quantization bins), (ii) each
item (movie/profile), (iii) each user, and real-valued MC and
RPCA. We only use the inverse logit link as it results in lower
computational complexity than the inverse probit link.

Table 1 shows the mean of both performance metrics over
25 trials, using 5-fold cross-validation. We can see that Q-MC
and Q-RPCA perform similarly, while both methods outper-
form real-valued MC and RPCA. It is worth noting that the
computational complexity of Q-MC and Q-RPCA are close
to that of regular MC and RPCA. We further note that the
proposed Q-MC and Q-RPCA methods automatically deter-
mine the rank of L, which is in contrast to previous factor
analysis-based methods, which require the rank of L to be
pre-specified (see, e.g., [9–11, 25]).

5. CONCLUSIONS

We have shown that Q-MC and Q-RPCA outperform MC and
RPCA on recovering an unknown low-rank matrix L given
quantized and (possibly) sparsely corrupted measurements.
Thus, in applications where coarsely quantized (or ordinal)
measurements are observed (e.g., with less than about 10 quan-
tization bins), Q-MC and Q-RPCA should be favored over
conventional, real-valued MC and RPCA. We emphasize that
corresponding theoretical recovery guarantees for Q-MC and
Q-RPCA along the lines of [13] are unavailable at this time;
this analysis is part of on-going work.
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