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Abstract

We consider the recovery of sparse signals subject to sparse interference, as introduced in Studer

et al., IEEE Trans. IT, 2012. We present novel probabilistic recovery guarantees for this framework,

covering varying degrees of knowledge of the signal and interference support, which are relevant

for a large number of practical applications. Our results assume that the sparsifying dictionaries are

solely characterized by coherence parameters and we require randomness only in the signal and/or

interference. The obtained recovery guarantees show that one can recover sparsely corrupted signals

with overwhelming probability, even if the sparsity of both the signal and interference scale (near)

linearly with the number of measurements.
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I. INTRODUCTION

We consider the problem of recovering the sparse signal vector x ∈ Cna with support set X
(containing the locations of the non-zero entries of x) from m linear measurements [1]

z = Ax+Be. (1)

Here, A ∈ Cm×na and B ∈ Cm×nb are given and known dictionaries, i.e., matrices that are

possibly over-complete and whose columns have unit Euclidean norm. The vector e ∈ Cnb with

support set E represents the sparse interference. We investigate the following models for the

sparse signal vector x and sparse interference vector e, and their support sets X and E :

• The interference support set E is arbitrary, i.e., E ⊆ {1, . . . , nb} can be any subset of

cardinality ne. In particular, E may depend upon the sparse signal vector x and/or the

dictionary A, and hence, may also be chosen adversarially. The support set X of x is

chosen at random, i.e., X is chosen uniformly at random from all subsets of {1, . . . , na}
with cardinality nx.

• The support set E of the sparse interference vector e is chosen at random, i.e., E is chosen

uniformly at random from all subsets of {1, . . . , nb} with cardinality ne. The support set X
is assumed to be arbitrary and of size nx.

• Both X and E , the support sets of the signal and of the interference with size nx and ne,

respectively, are chosen uniformly at random.

In addition, for each model on the support sets X and E we may or may not know either of the

support sets prior to recovery.

As discussed in [1], recovery of the sparse signal vector x from the sparsely corrupted

observation z in (1) is relevant in a large number of practical applications. In particular, restoration

of saturated signals [2]–[4], signals impaired by impulse noise [5]–[7], or removal of narrowband

interference is captured by the input-output relation (1). Furthermore, the setting (1) enables us

to investigate sparsity-based super-resolution and in-painting [8], [9], as well as signal separa-

tion [10], [11]. Hence, identifying the fundamental limits on the recovery of the vector x from

the sparsely corrupted observation z is of significant practical interest.

Recovery guarantees for sparsely corrupted signals have been partially studied in [1], [2],

[12]–[17]. In particular, [1], [12] investigated coherence-based recovery guarantees for arbitrary

support sets X and E and for varying levels of support-set knowledge; [13] analyzed the special
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case where both support sets are unknown, but one is chosen arbitrarily and the other at random.

The recovery guarantees in [14] require that the measurement matrix A is chosen at random

and those in [2], [15]–[17] characterize A by the restricted isometry property (RIP), which is,

in general, difficult to verify in practice. The recovery guarantees [2], [14], [15] require B to be

unitary, whereas [16], [17] only consider a single dictionary A and partial support-set knowledge

within A. The specific models and assumptions underlying the results in [2], [14]–[17] reduce

their utility for the applications outlined above.

A. Generality of the signal and interference model

In this paper, we will exclusively focus on probabilistic results where the randomness is in the

signal and/or the interference but not in the dictionary. Furthermore, the dictionaries A and B

will be characterized only by their coherence parameters and their dimensions. Such results

enable us to operate with a given (and arbitrary) pair of sparsifying dictionaries A and B, rather

than hoping that the signal will be sparse in a randomly generated dictionary or that A satisfies

the RIP. The following two application examples illustrate the generality of our results.

1) Restoration of saturated signals: In this example, a signal y = Ax is subject to satu-

ration [1]. This impairment is captured by setting z = ga(y) in (1), where ga(·) implements

element-wise saturation to [−a, a] with a being the saturation level. By writing z = y + e with

e = ga(y) − y, where e is non-zero only for the entries where the saturation in z occurs, we

see that for moderate saturation levels a, the vector e will be sparse. The reconstruction of

the (uncorrupted) signal y from the saturated measurement z, amounts to recovering x from

z = Ax+ e, followed by computing y = Ax.

We assume that the signal y = Ax is drawn from a stochastic model where X has a support

set chosen uniformly at random. Since the saturation artifacts modeled by e are dependent on y,

we want to guarantee recovery for arbitrary E . Furthermore, we can identify the locations where

the saturation occurs (e.g., by comparing the entries of z to the saturation level a) and hence,

we can assume that E is known prior to recovery. The recovery guarantees developed in this

paper include this particular combination of support-set knowledge and randomness as a special

case, whereas the recovery guarantees in [1], [13], [18] are unable to consider all aspects of this

model and turn out to be more restrictive.
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2) Removal of impulse noise: Consider a signal y = Ax that is subject to impulse noise.

Specifically, we observe z = y + e, where e is the impulse noise vector. For a sufficiently low

impulse-noise rate, e will be sparse in the identity basis, i.e., B = I. As before, consider the

setting where y = Ax is generated from a stochastic model with unknown support set X . Since

impulse noise does not, in general, depend on the signal y, we may chose E at random. In

addition, the locations E of the impulse noise are normally unknown.

Recovery guarantees for this setting are partially covered by [1], [13], [18]. However, as for

the saturation example above, the recovery guarantees in [1], [13], [18] are unable to exploit

all aspects of support-set knowledge and randomness. The results developed here cover this

particular setting as a special case and hence, lead to less restrictive recovery guarantees.

B. Contributions

In this paper, we present probabilistic recovery guarantees that improve upon the ones in [1],

[13], [18] and cover novel cases for varying degrees of knowledge of the signal and interference

support sets. Our results depend on the coherence parameters of the two dictionaries A and B

and their dimensions. In particular, we present novel recovery guarantees for the situations where

the support sets X and/or E are chosen at random, and for the cases where knowledge of neither,

one, or both support sets X and E is available prior to recovery. For the case where one support

set is random and the other arbitrary, but no knowledge of X and E is available, we present an

improved (i.e., less restrictive) recovery guarantee than the existing one in [13, Thm. 6]. Finally,

we show that `1-norm minimization is able to recover the vectors x and e with overwhelming

probability, even if the number of non-zero components in both scales (near) linearly with the

number of measurements.

A summary of all the cases studied in this paper is given in Table I; the theorems highlighted

in dark gray indicate novel recovery guarantees, light gray indicates improved ones. We will

only prove the boldface theorems; the corresponding symmetric cases are shown in italics and

the associated recovery guarantees can be obtained by interchanging the roles of x and e.

C. Notation

Lowercase and uppercase boldface letters stand for column vectors and matrices, respectively.

For the matrix M, we denote its transpose, adjoint, and (Moore–Penrose) pseudo-inverse by
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TABLE I

SUMMARY OF ALL RECOVERY GUARANTEES FOR SPARSELY CORRUPTED SIGNALS

X , E arbitrary X random, E arbitrary X arbitrary, E random X , E random

X , E known
Case 1a Case 1b Case 1b Case 1c

[1, Thm. 3] Theorem 1 Theorem 1 Theorem 1

E known
Case 2a Case 2b Case 2c Case 2d

[1, Thm. 4] Theorem 2 Theorem 4 Theorem 3

X known
Case 2a Case 2c Case 2b Case 2d

[1, Cor. 6] Theorem 4 Theorem 2 Theorem 3

neither known
Case 3a Case 3b Case 3b Case 3c

[13, Thms. 2 and 3] Theorem 5 and [13, Thm. 6] Theorem 5 and [13, Thm. 6] Theorem 6

MT , MH , and M†, respectively. The jth column and the entry in the ith row and jth column

of the matrix M is designated by mj and [M]i,j , respectively. The minimum and maximum

singular value of M are given by σmin(M) and σmax(M), respectively; the spectral norm is

‖M‖2,2 = σmax(M). The `1-norm of the vector v is denoted by ‖v‖1 and ‖v‖0 stands for

the number of nonzero entries in v. Sets are designated by upper-case calligraphic letters; the

cardinality of the set S is |S|. The support set of v, i.e., the indices of the nonzero entries, is

given by supp(v). The matrix MS is obtained from M by retaining the columns of M with

indices in S; the vector vS is obtained analogously from the vector v. The sign(·) function

applied to a vector returns a vector consisting of the phases of each entry. The N×N restriction

matrix RS for the set S ⊆ {1, . . . , N} has [RS ]k,k = 1 if k ∈ S and is zero otherwise. For

random variables X and Y , we define Eq[X] = E[|X|q]1/q to be the qth moment and EqX [f(X, Y )]

to be the qth moment with respect to X . We define 1[µ 6= 0] to be equal to 1 if the condition

µ 6= 0 holds and 0 otherwise.

Throughout the paper, X = supp(x) is assumed to be of cardinality nx and E = supp(e)

of cardinality ne. We define D = [A B ] and DX ,E = [AX BE ] to be the sub-dictionary of D

associated with the non-zero entries of x and e. Similarly, we define the vector sX ,E = [xTX eTE ]
T

which consists of the non-zero components of s = [xT eT ]T .
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D. Outline of the paper

The remainder of the paper is organized as follows. Relevant prior work is summarized in

Section II. The main theorems are presented in Section III and a corresponding discussion is

given in Section IV. We conclude in Section V. All proofs are relegated to the Appendices.

II. RELEVANT PRIOR WORK

We next summarize relevant prior work on sparse signal recovery and sparsely corrupted

signals, and we put our results into perspective.

A. Coherence-based recovery guarantees

During the last decade, numerous deterministic and probabilistic guarantees for the recovery

of sparse signals from linear (and non-adaptive) measurements have been developed [18]–[26].

These results give sufficient conditions for when one can reconstruct the sparse signal vector x

from the (interference-less) observation y = Ax by solving

(P0) minimize
x̂

‖x̂‖0 subject to y = Ax̂,

or its convex relaxation, known as basis pursuit, defined as

(BP) minimize
x̂

‖x̂‖1 subject to y = Ax̂.

In particular, in [19]–[21] it is shown that if ‖x‖0 6 nx for some nx < (1 + 1/µa) /2 with the

coherence parameter

µa = max
i,j,i6=j

|〈ai, aj〉| , (2)

then (P0) and (BP) are able to perfectly recover the sparse signal vector x. Such coherence-based

recovery guarantees are, however, subject to the infamous “square-root bottleneck”, which only

guarantees the recovery of x for sparsity levels on the order of nx ∼
√
m [18]. This behavior is an

immediate consequence of the Welch bound [27] and dictates that the number of measurements

must grow at least quadratically in the sparsity level of x to guarantee recovery. In order to

overcome this square-root bottleneck, one must either resort to a RIP-based analysis, e.g., [22]–

[25], which typically requires randomness in the dictionary A, or a probabilistic analysis that

only considers randomness in the vector x, whereas A is constant and solely characterized by

DRAFT November 26, 2013



7

its coherence parameter [18]. In this paper, we are interested in the latter type of results. Such

probabilistic and coherence-based recovery guarantees that overcome the square-root bottleneck

have been derived for (P0) and (BP) in [18]. The corresponding results, however, do not exploit

the structure of the problem (1), i.e., the fact that we are dealing with two dictionaries and that

knowledge of X and/or E may be available prior to recovery.

B. Recovery guarantees for sparsely corrupted signals

Guarantees for the recovery of sparsely corrupted signals as modeled by (1) have been

developed recently in [1], [12], [13]. The reference [1] considers deterministic (and coherence-

based) results for several cases1 which arise in different applications: 1) X = supp(x) and

E = supp(e) are known prior to recovery, 2) only one of X and E is known, and 3) neither X
nor E are known. For case 1), the non-zero entries of both the signal and interference vectors

can be recovered by [1]

sX ,E = D†X ,Ez, (3)

if the recovery guarantee in [1, Thm. 2] is satisfied. For case 2), recovery is performed by using

modified versions of (P0) and (BP); the associated recovery guarantees can be found in [1,

Thm. 4 and Cor. 6]. For case 3), recovery guarantees for the standard (P0) or (BP) algorithms

are given in [13, Thms. 2 and 3]. However, all these recovery guarantees suffer from the square-

root bottleneck, as they guarantee recovery for all signal and all interference vectors satisfying

the given sparsity constraints. A notable exception for case 3) was discussed in [13, Thm. 6].

There, e is assumed to be random, but x is assumed to be arbitrary. This model overcomes the

square-root bottleneck and is able to significantly improve upon the corresponding deterministic

recovery guarantees in [13, Thms. 2 and 3].

Another strain of recovery guarantees for sparsely corrupted signals that are able to overcome

the square-root bottleneck have been developed in [2], [14]–[17]. The work of [14] considers

the case where A is random, whereas [2], [15]–[17] consider matrices A that are characterized

by the RIP, which is, in general, difficult to verify for a given (deterministic) A. Moreover, the

recovery guarantees in [2], [14], [15] require that B is an orthogonal matrix and, hence, these

1Note that no efficient recovery algorithm with corresponding guarantees is known for the case studied in [1], where only the

cardinality of X or E is known. Thus, we do not consider this case in the remainder of the paper.
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Model 1 M(P0)
• Let A ∈ Cm×na and B ∈ Cm×nb be dictionaries with coherence µa, µb, and mutual

coherence µm.

• Let x ∈ Cna and e ∈ Cnb have support set X and E , respectively, of which at least one is

chosen at random. If a support set is chosen at random, then assume that the corresponding

non-zero entries of the associated vector are drawn from a continuous distribution.

• The observation z is given by z = Ax+Be.

Model 2 M(BP)
• The conditions of M(P0) hold.

• If X or E is chosen at random, then assume that the corresponding non-zero entries of

the associated vector(s) are drawn from a continuous distribution, where the phases of the

individual components are independent and uniformly distributed on [0, 2π).

results do not allow for arbitrary pairs of dictionaries A and B. The results in [16], [17] only

consider a single dictionary with partial support-set knowledge and, thus, are unable to exploit the

fact that the signal and interference exhibit sparse representations in two different dictionaries. In

addition, [14], [15] do not study the impact of support-set knowledge on the recovery guarantees.

While all these assumptions are valid for applications based on compressive sensing (see, e.g.,

[28], [29]), they are not suitable for the application scenarios outlined in Section I.

To overcome the square-root bottleneck for arbitrary pairs of dictionaries A and B, we next

investigate a generalization of the probabilistic models developed in [13], [18] for the cases 1), 2),

and 3) outlined above. In particular, we impose a random model on the signal and/or interference

vectors rather than on the dictionaries, and we allow for varying degrees of knowledge of the

support sets X and E . An overview of the coherence-based recovery guarantees developed next

is given in Table I.

III. MAIN RESULTS

The recovery guarantees developed next rely upon the models M(P0) and M(BP) summa-

rized in Model 1 and Model 2, respectively. Both models use the coherence parameters of the
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dictionaries A and B, i.e., the coherence µa of A in (2), the coherence µb of B given by

µb = max
i,j,i6=j

|〈bi,bj〉| ,

and the mutual coherence µm between A and B, defined as

µm = max
i,j
|〈ai,bj〉| .

Our main results for the cases highlighted in Table I are detailed next.

A. Cases 1b and 1c: X and E known

We start with the case where both support sets X and E are known prior to recovery. The

following theorem guarantees recovery of x and e from z, with high probability, using (3).

Theorem 1 (Cases 1b and 1c): Let x and e be signals satisfying the conditions of M(P0),

assume that both X and E are known, and choose β > log(nx). If X is chosen uniformly at

random, E is arbitrary, and if

δe1/4 > ‖A‖2,2 ‖B‖2,2
√
nx
na

+ 12µa
√
βnx + (ne − 1)µb

+ 1[µa 6= 0]
2nx
na
‖A‖22,2 + 3µm

√
2βne, (4)

holds with δ = 1, then we can recover x and e using (3) with probability at least 1− e−β .

If both X and E are chosen at random and if

δe1/4 > 12
√
β (µa

√
nx + µb

√
ne) + 1[µa 6= 0]

2nx
na
‖A‖22,2 + 1[µb 6= 0]

2ne
nb
‖B‖22,2

+min

{
3µm

√
2βnx +

√
ne
nb

∥∥AHB
∥∥
2,2
, 3µm

√
2βne +

√
nx
na

∥∥AHB
∥∥
2,2

}
(5)

holds with δ = 1 and β > max{log(nx), log(ne)}, then we can recover x and e using (3) with

probability at least 1− e−β .

Proof: See Appendix B.

A discussion of the recovery conditions (4) and (5) is relegated to Section IV.
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B. Cases 2b and 2d: E known

Consider the case where only the support set E of e is known prior to recovery. In this case,

recovery of x (and the non-zero entries of e) from z can be achieved by solving [1]

(P0, E)

 minimize
x̂,êE

‖x̂‖0
subject to z = Ax̂+BE êE

(6)

or its convex relaxation

(BP, E)

 minimize
x̂,êE

‖x̂‖1
subject to z = Ax̂+BE êE .

(7)

The following theorems guarantee the recovery of x and e from z, using (P0, E) or (BP, E),
with high probability.

Theorem 2 (Case 2b): Let x and e be signals satisfying the conditions of M(P0), assume

that E is known prior to recovery and chosen arbitrarily, and assume that X is unknown and

drawn uniformly at random. Choose β > log(nx). If (4) holds for some δ where 0 < δ < 1 and

if

nxµ
2
a + neµ

2
m < 1− δ, (8)

then we can recover x and e using (P0, E) with probability at least 1− e−β .

Moreover, if x and e are signals satisfying the conditions of M(BP), and, in addition to (4)

and (8), if either A is unitary or

nxµ
2
a + neµ

2
m <

(1− δ)2
2(log(na) + β)

(9)

holds, then we can recover x and e using (BP, E) with probability at least 1− 3e−β .

Proof: See Appendices C and D.

Note that since we allow for 0 < δ < 1, we arrive at less restrictive recovery conditions

than those in [13], [18], where a fixed value of δ is chosen, i.e., δ = 1 − λ2 with λ = 1/
√
2.

Moreover, by combining (4), (8), and possibly (9) into a single recovery condition, by effectively

removing δ, we can easily calculate the largest values of nx and ne for which successful recovery

with high probability is guaranteed (see Section IV-C for a corresponding discussion).

Theorem 3 (Case 2d): Let x and e be signals satisfying the conditions of M(P0), assume

that E is known but X is unknown prior to recovery, and assume that both X and E are drawn
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uniformly at random. If (5) and (8) hold for some 0 < δ < 1 and β > max{log(nx), log(ne)},
then we can recover x and e using (P0, E) with probability at least 1− e−β .

Moreover, if x and e are signals satisfying the conditions of M(BP) and if (9) holds in

addition to (5) and (8), then we can recover x and e using (BP, E) with probability at least

1− 3e−β .

Proof: See Appendices C and D.

A discussion of both theorems is relegated to Section IV.

C. Case 2c: X known

The case where X is random and known, and E is unknown and arbitrary, differs slightly to the

case where X is random and unknown, and E is arbitrary and known (covered by Theorem 2).

Hence, we need to consider both cases separately. The recovery problems (P0,X ) and (BP,X )
required here are defined analogously to (P0, E) and (BP, E).

Theorem 4 (Case 2c): Let x and e be signals satisfying the conditions of M(P0), assume

that the support set X is known and chosen uniformly at random, and assume that E is unknown

and arbitrary. If

δe1/4 > ‖A‖2,2 ‖B‖2,2
√
ne
nb

+ 12µb
√
βne + (nx − 1)µa

+ 1[µb 6= 0]
2ne
nb
‖B‖22,2 + 3µm

√
2βnx (10)

holds for some 0 < δ < 1 and β > log(ne), and if

nxµ
2
m + neµ

2
b < 1− δ, (11)

then we can recover x and e using (P0,X ) with probability at least 1− e−β .

Moreover, if x and e are signals satisfying the conditions of M(BP), and, in addition to (10)

and (11), if either B is unitary or if

nxµ
2
m + neµ

2
b <

(1− δ)2
2(log(nb) + β)

(12)

holds, then we can recover x and e using (BP,X ) with probability at least 1− 3e−β .

Proof: See Appendices C and D.

A discussion of this theorem is relegated to Section IV.
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D. Cases 3b and 3c: No support-set knowledge

Recovery guarantees for the case of no support-set knowledge, but where one support set is

chosen at random and the other arbitrarily can be found in [13, Thm. 6]. The theorem shown next

slightly improves upon [13, Thm. 6]. The improvements are due to the following facts: i) We

allow for arbitrary 0 < δ < 1, whereas δ = 1/2 in [13, Thm. 6], and ii) we do not use a global

coherence parameter µ = max{µa, µb, µm}, but rather we further exploit the individual coherence

parameters µa, µb, and µm of A and B. See Section IV-A for a corresponding discussion.

Theorem 5 (Case 3b): Let x and e be signals satisfying the conditions of M(P0), assume

that X is chosen uniformly at random, and assume that E is arbitrary. If (4), (8), and (11) hold

for some 0 < δ < 1 and β > log(nx), then

(P0∗) minimize
x̂,ê

‖x̂‖0 + ‖ê‖0 subject to z = Ax̂+Bê

recovers x and e with probability at least 1− e−β .

Moreover, if x and e are signals satisfying the conditions of M(BP) and if (9) and (12) hold

in addition to (4), (8), and (11), then

(BP∗) minimize
x̂,ê

‖x̂‖1 + ‖ê‖1 subject to z = Ax̂+Bê

recovers x and e with probability at least 1− 3e−β .

Proof: See Appendices C and D

Theorem 6 (Case 3c): Let x and e be signals satisfying the conditions ofM(P0) and assume

that X and E are both unknown and chosen uniformly at random. If (5), (8), and (11) hold for

some 0 < δ < 1 and β > max{log(nx), log(ne)}, then (P0∗) recovers x and e with probability

at least 1− e−β .

Moreover, if x and e are signals from M(BP) and if (9) and (12) hold in addition to (5), (8),

and (11), then (BP∗) recovers x and e with probability at least 1− 3e−β .

Proof: See Appendices C and D.

A discussion of both theorems is given below.

IV. DISCUSSION OF THE RECOVERY GUARANTEES

We now discuss the theorems presented in Section III. In particular, we study the impact of

support-set knowledge on the recovery guarantees and characterize the asymptotic behavior of
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the corresponding recovery conditions, i.e., the threshold for which recovery is guaranteed with

high probability.

In the ensuing discussion, we assume A and B are unitary, i.e., na = nb = m and µa = µb = 0,

and maximally incoherent, i.e., µm = 1/
√
m. For example, A could be the discrete Fourier

transform (or Hadamard) matrix with appropriately normalized columns and B the identity

matrix. We furthermore set β = log(m), so that recovery is guaranteed with probability at

least 1 − 1/m and 1 − 3/m when solving the `0-norm and `1-norm-based recovery problems,

respectively.

In order to plot the recovery conditions, we note that for a pair of unitary matrices and a

given ne, the recovery conditions of the theorems are quadratic equations in
√
nx; this enables

us to calculate the maximum nx guaranteeing the successful recovery of x and e in closed form.

A. Recovery guarantees

1) X and E known: Figure 1 shows the recovery conditions for the cases when both support

sets X and E are assumed to be known. For small problem dimensions, i.e., m = 104, the

recovery conditions where both support sets are assumed to be arbitrary turn out to be less

restrictive than for the case where both support sets are chosen at random. For large problem

dimensions, i.e., m = 108, we see, however, that the probabilistic results of Theorem 1 guarantee

the recovery (with high probability) for larger nx and ne than the deterministic results of [1]

considering arbitrary support sets. Hence, the probabilistic recovery conditions presented here

require a sufficiently large problem size in order to outperform the corresponding deterministic

results. We furthermore see from Figure 1 that one can guarantee the recovery of signals having

a larger number of non-zero entries if both support sets are chosen at random compared to the

situation where X is random but E is arbitrary.

2) Only E known: Figure 2 shows the recovery conditions from Theorems 2 and 3 for the cases

where only E is known prior to recovery (the case of only X known behaves analogously). We

see that for a random X and random E successful recovery at high probability is guaranteed for

significantly larger nx and ne compared to the case where one or both support sets are assumed

to be arbitrary. Hence, having more randomness in the support sets leads to less restrictive

recovery guarantees. We furthermore see from Figure 2 that there is no difference between the

conditions for (P0, E) and (BP, E); this is due to the fact that A and B are both unitary. For
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Fig. 1. Comparison of the recovery conditions for the case where X and E are known prior to recovery. A and B are unitary

with m = na = nb and µm = 1/
√
m; the darker curves in the upper-right are for m = 108 and the lighter curves in the

lower-left are for m = 104.

arbitrary dictionary pairs A and B, however, the recovery conditions for (P0, E) are slightly less

restrictive than those for (BP, E).
3) No support-set knowledge: Finally, Figure 3 shows the recovery conditions for (BP∗) for

the case of no support-set knowledge. We see that for random X and E , successful recovery is

guaranteed for significantly larger nx and ne compared to the case where one or both support

sets are assumed to be arbitrary. As a comparison, we also show the recovery conditions derived

in [13, Thm. 6] and the conditions from [18], the latter of which does not take into account the

structure of the problem (1). We see that the recovery conditions derived in Theorems 5 and 6

are less restrictive, i.e., they guarantee the successful recovery (with high probability) for a larger

number of nonzero coefficients in both the sparse signal vector x and the sparse interference e.

B. Impact of support-set knowledge

As detailed in [1], having knowledge of the support set of x or e implies that one can guarantee

the recovery of x and e having up to twice as many non-zero entries (compared to the case

of no support-set knowledge). A similar behavior is also apparent in the probabilistic results

presented here. Specifically, the recovery conditions in Figure 4 for (P0) and (P0, E) show a
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Fig. 2. Comparison of the recovery conditions for the case where only E is known prior to recovery. A and B are unitary

with m = na = nb = 108 and µm = 1/
√
m.

similar factor-of-two gain in the case where both X and E are chosen at random. For example,

knowledge of X enables one to recover a signal x with approximately twice as many non-zero

components compared to the case of not knowing X . We note that a similar gain is apparent

for X arbitrary and E random, as well as for using (BP) and (BP, E) instead of (P0) and (P0, E).

C. Asymptotic behavior of the recovery conditions

We now compare the asymptotic behavior of probabilistic and deterministic recovery condi-

tions, i.e., we study the scaling behavior of nx and ne. To this end, we are interested in the

largest nx for which recovery of x (and e) from z can be guaranteed with high probability. In

particular, we consider the following models for the sparse interference vector e: i) Constant

sparsity, i.e., ne = 103, ii) sparsity proportional to the square root of the problem size, i.e.,

ne =
√
m, and iii) sparsity proportional to the problem size, i.e., ne = m/105.

Figure 5 shows the largest nx for which recovery can be guaranteed using (BP, E). Here, E
is assumed to be known and arbitrary and X is unknown and chosen at random. Note that the

other cases of support-set knowledge and arbitrary/random exhibit the same scaling behavior.

We see from Figure 5 that for a constant interference sparsity (i.e., ne = 103), the probabilistic

and deterministic results show the same scaling behavior. For the cases where ne scales with
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Fig. 3. Comparison of the recovery conditions for the case of no support-set knowledge. A and B are unitary with m = na =

nb = 108 and µm = 1/
√
m.

√
m or m, however, the deterministic thresholds developed in [1] result in worse scaling, while

the behavior of the probabilistic guarantees derived in this paper remain unaffected.

We now investigate the scaling behavior observed in Figure 5 analytically. Again, we only

consider the case where X is unknown and chosen at random and E is known and chosen

arbitrarily; an analysis of the other cases yields similar results. From Theorem 2, recovery of x

with probability at least 1− 3/na (i.e., for β = log(na)) is guaranteed if

1− e−1/4
√
nx
na
− 3e−1/4µm

√
2ne log na > neµ

2
m.

For the special case µa = µb = 0, na = nb = m, and µm = 1/
√
m, we get the following

sufficient condition for recovery:

e1/4
√
m >

√
nx + 3

√
2
√
ne logm+ e1/4

ne√
m
. (13)

Hence, if nx ∼ m and ne ∼ m/ logm, the condition (13) can be satisfied. Consequently, recovery

of x (and of e) is guaranteed with probability at least 1− 3/m even if nx scales linearly in the

number of (corrupted) measurements m and ne scales near-linearly (i.e., with m/ logm) in m.

We finally note that the recovery guarantees in [14] also allow for the sparsity of the interfer-

ence vector to scale near-linearly in the number of measurements. The results in [14], however,
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Fig. 4. Impact of support-set knowledge on the recovery conditions for (P0) and (P0, E) in the case where X and E are both

random. A and B are unitary with m = na = nb = 106 (lower-left curves) and m = na = nb = 108 (upper-right curves) and

µm = 1/
√
m.

require the matrix A to be random and B to be orthogonal, whereas the recovery guarantees

shown here are for arbitrary pairs of dictionaries A and B (characterized by the coherence

parameters) and for varying degrees of support-set knowledge.

V. CONCLUSIONS

In this paper, we have presented novel coherence-based recovery guarantees for sparsely

corrupted signals in the probabilistic setting. In particular, we have studied the case where the

sparse signal and/or sparse interference vectors are modeled as random and the dictionaries A

and B are solely characterized by their coherence parameters. Our recovery guarantees complete

all missing cases of support-set knowledge and improve upon the results in [1], [13]. Furthermore,

we have shown that the reconstruction of sparse signals is guaranteed with high probability, even

if the number of non-zero entries in both the sparse signal and sparse interference are allowed

to scale (near) linearly with the number of (corrupted) measurements.

There are many avenues for follow-on work. The derivation of probabilistic recovery guaran-

tees for the more general setting studied in [12], i.e., z = Ax+Be+ n with n being additive

noise and x and e being approximately sparse (rather than perfectly sparse), is left for future
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Fig. 5. Maximum signal sparsity nx that ensures recovery of x for E known and arbitrary. We assume ne = 103, ne =
√
m,

and ne = m/105. The probability of successful recovery is set to 10−15.

work. Finally, the derivation of probabilistic uncertainty relations for pairs of general dictionaries

is an interesting open problem and would complete the deterministic results in [1], [13].

APPENDIX A

BOUNDS ON σmin(DX ,E)

We now derive probabilistic bounds on σmin(DX ,E), which are key in showing when the

recovery from sparsely corrupted signals succeeds. We extend [13, Lemma 7] to the case where

both supports X and E are chosen at random and give improved results for the case where only

one support set is random. First, we require the following two results from [18].

Theorem 7 (Thm. 8 of [18]): Let M ∈ Cm×n be a matrix. Let S ⊆ {1, 2, . . . , n} be a set of

size s drawn uniformly at random and define RS to be the restriction operator to the set of

columns specified by S. Fix q > 1, then for each p > max{2, 2 log(rank(MRH
S )), q/2} we have

Eq
[
‖MRS‖2,2

]
6 3
√
p ‖M‖1,2 +

√
s

n
‖M‖2,2 ,

where ‖M‖1,2 = supv∈Cn ‖Mv‖2 / ‖v‖1 and is the maximum `2-norm of the columns of M.

DRAFT November 26, 2013



19

Lemma 8 (Eq. 6.1 of [18]): Let M ∈ Cm×n be a matrix with coherence µ and let S ⊆
{1, 2, . . . , n} be a set of size s chosen uniformly at random. Then, for β > log(s) and q = 4β

Eq
[∥∥MH

SMS − I
∥∥
2,2

]
6 12µ

√
βs+ 1[µ 6= 0]

2s

n
‖M‖22,2 .

Note that the result in [18, Eq. 6.1] does not include the indicator function 1[µ 6= 0]. It

is, however, straightforward to verify that if M is orthonormal, then µ = 0 and hence,∥∥MH
SMS − I

∥∥
2,2

= 0 for all sets S.

We now state the main result for σmin(DX ,E).

Theorem 9: Choose β > log(nx), q = 4β and assume that A and B are characterized by the

coherence parameters µa, µb, and µm. If i) X is chosen uniformly at random with cardinality nx,

E is arbitrary, and (4) holds, or ii) E is chosen uniformly at random with cardinality ne, X is

arbitrary, and (10) holds, or iii) both X and E are chosen uniformly at random with cardinalities

nx and ne respectively, and (5) holds, then

P
{∥∥DH

X ,EDX ,E − I
∥∥
2,2

> δ
}
6 e−β (14)

and if (4), (5) or (10) hold with δ = 1, then

P{σmin(DX ,E) = 0} 6 e−β. (15)

Proof: The proof follows that of [13, Lemma 7]. We start by defining the hollow Gram

matrix

H = DH
X ,EDX ,E − I =

AH
XAX − I AH

XBE

BH
E AX BH

E BE − I

 .
Splitting H into diagonal and off-diagonal blocks and applying the triangle inequality leads to

‖H‖2,2 6

∥∥∥∥∥∥
AH

XAX − I 0

0 BH
E BE − I

∥∥∥∥∥∥
2,2

+

∥∥∥∥∥∥
 0 AH

XBE

BH
E AX 0

∥∥∥∥∥∥
2,2

6 max
{∥∥AH

XAX − I
∥∥
2,2
,
∥∥BH
E BE − I

∥∥
2,2

}
+
∥∥BH
E AX

∥∥
2,2

6
∥∥AH
XAX − I

∥∥
2,2

+
∥∥BH
E BE − I

∥∥
2,2

+
∥∥BH
E AX

∥∥
2,2
.

Since the qth moment effectively defines an `q-norm, it satisfies the triangle inequality, namely,

Eq[|X + Y |] 6 Eq[|X|] + Eq[|Y |]. Hence, it follows that

Eq
[
‖H‖2,2

]
6 Eq

[∥∥AH
XAX − I

∥∥
2,2

]
+ Eq

[∥∥BH
E BE − I

∥∥
2,2

]
+ Eq

[∥∥BH
E AX

∥∥
2,2

]
. (16)
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We now separately bound each of the terms in (16) and we do this for each case where X and E
is either chosen at random or arbitrarily. If X is chosen uniformly at random, then it follows

from Lemma 8 that

Eq
[∥∥AH

XAX − I
∥∥
2,2

]
6 12µa

√
βnx + 1[µa 6= 0]

2nx
na
‖A‖2,2 (17)

for any 4β = q > 4 log(nx). If X is allowed to be arbitrary, then for all X we have∥∥AH
XAX − I

∥∥
2,2

6 max
k

∑
j 6=k

∣∣[AH
XAX ]j,k

∣∣ 6 (nx − 1)µa, (18)

where the first inequality follows from the Geršgorin disc theorem [30, Thm. 6.1.1] and the

second inequality is a consequence of the definition of µa. By reversing the role of A and B,

we get the analogous bounds for the right-hand side (RHS) term Eq
[∥∥BH

E BE − I
∥∥
2,2

]
in (16).

For the third summand appearing in the RHS of (16), let us first consider the case where E is

chosen arbitrarily and X uniformly at random. We then want to apply Theorem 7 to M = BH
E A

with RX . Since MRX is an ne×nx matrix, rank(MRX ) 6 min{nx, ne} and thus we can apply

Theorem 7 with q = 2p = 4β where q > 4min{log(nx), log(ne)} > 4 log(rank(MRX )) to get

Eq
[∥∥BH

E AX
∥∥
2,2

]
6 3
√
p
∥∥BH
E A
∥∥
1,2

+

√
nx
na

∥∥BH
E A
∥∥
2,2

6 3µm
√
2βne +

√
nx
na

∥∥BHA
∥∥
2,2
, (19)

where the entries of BH
E A are bounded by the mutual coherence µm. The case where E is

random and X is arbitrary follows by reversing the roles of A and B.

Now consider the case where both E and X are random. Set M = BHA and then, as in [18,

Sec. 6], we can write

Eq
[∥∥BH

E AX
∥∥
2,2

]
= Eq

[
‖REMRX‖2,2

]
= EqRE

[
EqRX

[
‖REMRX‖2,2

]]
. (20)

Let us first consider the inner expectation term of (20). We set M′ = REM and apply Theorem 7

to get

EqRX
[
‖M′RX‖2,2

]
6 3
√
p ‖M′‖1,2 +

√
nx
na
‖M′‖2,2

= 3
√
p
∥∥BH
E A
∥∥
1,2

+

√
nx
na

∥∥BH
E A
∥∥
2,2
,
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where we take q = 2p = 4β > 4min{log(nx), log(ne)} > 4 log(rank(M′RX )) as M′RX is an

ne × nx matrix. Thus, (20) results in

Eq
[∥∥BH

E AX
∥∥
2,2

]
6 3
√
pEqRE

[∥∥REBHA
∥∥
1,2

]
+

√
nx
na

EqRE
[∥∥REBHA

∥∥
2,2

]
.

Since one may choose the dictionaries A and B so that
∥∥REBHA

∥∥
1,2

=
∥∥RE ′BHA

∥∥
1,2

for all

E , E ′ of the same cardinality (e.g., by setting A to the identity and B to the DFT matrix), we

bound this term by µm
√
ne and the corresponding expectation term disappears.2 Hence, we have

Eq
[∥∥BH

E AX
∥∥
2,2

]
6 3µm

√
2βne +

√
nx
na

∥∥AHB
∥∥
2,2
.

By performing the same steps with M = AHB, we arrive at

Eq
[∥∥BH

E AX
∥∥
2,2

]
6 min

{
3µm

√
2βnx +

√
ne
nb

∥∥AHB
∥∥
2,2
,

3µm
√
2βne +

√
nx
na

∥∥AHB
∥∥
2,2

}
, (21)

for any β > min{log(nx), log(ne)}. Combining (17), (18), (19), and (21) with the analogous

results for B and E leads to the conditions (4), (10), and (5).

Due to (17) and the analogous result for BE , if X is chosen at random, we require β > log(nx),

if E is chosen at random we need β > log(ne), and if both X and E are chosen at random, both

of these conditions need to be satisfied, namely that β > max{log(nx), log(ne)}.
We now show that the conditions (4), (10), and (5) are sufficient to show that (14) holds.

Chebyshev’s Inequality [31, Sec. 1.3] states that for a random variable X and a function

f : R→ R+

P{X ∈ A} 6 E[f(X)]

inf{f(x) : x ∈ A} . (22)

Application of (22) with f(x) = xq and the random variable X =
∥∥DH

SDS − I
∥∥
2,2

gives

P{X > δ} 6 E[Xq]

inf{xq : x > δ} 6

(
δe−1/4

)q
δq

= e−q/4, (23)

provided that (δe−1/4)q > E[Xq]. But this is guaranteed by the assumptions in (4), (5), or (10),

depending on the signal and interference model. Therefore, we have

P
{
‖H‖2,2 > δ

}
6 e−β,

2Note that using Theorem 7 twice to bound Eq
RE

[∥∥REBHA
∥∥
2,2

]
from above leads to a worse result than bounding∥∥REBHA

∥∥
2,2

straightforwardly with
∥∥BHA

∥∥
2,2

.
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since q = 4β. The second part of the theorem, (15), is a result of the fact that σmin(DX ,E) = 0

implies that ‖H‖2,2 > 1 and hence, P{σmin(DX ,E) = 0} 6 P
{
‖H‖2,2 > 1

}
.

APPENDIX B

BOTH SUPPORTS KNOWN

Proof of Theorem 1: It suffices to show that DX ,E is invertible, which is equivalent to the

condition that σmin(DX ,E) > 0. By assumption, the conditions of Theorem 9 hold, which implies

P{σmin(DX ,E) = 0} 6 e−β . Hence, recovery of x and e using (3) succeeds with probability at

least 1− e−β .

APPENDIX C

(P0) WITH LIMITED SUPPORT KNOWLEDGE

We now prove the recovery guarantees for (P0∗), (P0, E), and (P0,X ) for partial (or no)

support-set knowledge of E and X . We follow the proof of [18] and present the three cases

1) X known, 2) E known, and 3) no support-set knowledge, all together, since the corresponding

proofs are similar. Note that R(D) denotes the space spanned by the columns of D.

We begin by generalizing [18, Thm. 13] to the case of pairs of dictionaries A and B where

we know the support set of e. The result gives us a sufficient condition for when there is a

unique minimizer of (P0∗), (P0, E), or (P0,X ).
Lemma 10 (Based on Thm. 13 of [18]): Let Ã ∈ Cna×m and B̃ ∈ Cnb×m be two dictionaries

and suppose that we observe the signal z = Ãx + B̃e where X = supp(x) and E = supp(e)

and the non-zero entries of x are drawn from a continuous distribution. Furthermore, suppose

that E is known. If

dim
(
R
(
D̃X ,E

)
∩R

(
D̃X ′,E

))
< |X |+ |E| , (24)

for all sets X ′ where |X | = |X ′|, then, almost surely, (P0, E) recovers the vectors x and e.

This result also provides a sufficient condition for (P0∗), if we set Ã = D and take B̃ to be the

empty matrix, or for (P0,X ), if we set Ã = B and B̃ = A.

Proof: We follow the proof of [18, Thm. 13]. We begin by defining the set AEX ,X ′ as follows:

AEX ,X ′ =
{
z : z = ÃXxX + B̃EeE = ÃX ′x

′
X ′ + B̃Ee

′
E

}
,
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so that AEX ,X ′ is the set of observations that can be written in terms of two pairs of signals (x, e)

and (x′, e′) where X = supp(x), X ′ = supp(x′), and E = supp(e) = supp(e′).

For any X ′ of size |X | and X ′ 6= X , we have

AEX ,X ′ ⊆ R
(
D̃X ,E

)
∩R

(
D̃X ′,E

)
.

Now assume that (24) holds for X , X ′, and E , then dim(AEX ,X ′) < |X |+ |E|. Thus, the smallest

subspace containing AEX ,X ′ is a strict subspace of R(D̃X ,E) and hence, has zero measure with

respect to any nonatomic measure. Since x and hence z, have non-zero entries drawn from a

continuous distribution

P
{
Ãx+ B̃e = z ∈ AEX ,X ′

}
= 0.

Thus, with probability zero, there exists no alternative pair (x′, e′) with supports X ′ and E ,

respectively, otherwise z would lie in AEX ,X ′ . If (24) holds for all X ′, then, almost surely, given

z = Ãx+ B̃e, (P0, E) returns the vectors x and e.

We can use Lemma 10 to prove the first part of Theorems 2, 3, 4, 5, and 6 by showing

that (24) holds with high probability. To show that (24) holds for all X ′ we show that for every

column ãγ of Ã not in ÃX (i.e., for all γ /∈ X ) that ãγ /∈ R(D̃X ,E), which is equivalent to

showing that ∥∥∥P̃X ,E ãγ∥∥∥
2
< ‖ãγ‖2 = 1, (25)

for all γ /∈ X and where P̃X ,E = D̃†X ,ED̃
H
X ,E is the projection onto the range space of D̃X ,E .

We will now bound the probability that (25) holds for the following three situations: 1) only E
known, 2) only X known, and 3) both support sets unknown.

1) Only E known: Consider the setting where E is known, but X is unknown; this case fits

the setting of Lemma 10 with Ã = A and B̃ = B. Hence, the condition (25) is equivalent to

‖PX ,Eaγ‖2 < ‖aγ‖2 = 1. We have

‖PX ,Eaγ‖2 6
∥∥∥D†X ,E∥∥∥

2,2

∥∥DH
X ,Eaγ

∥∥
2

6 σ−1min(DX ,E)

√
‖AH
X aγ‖

2

2 + ‖BH
E aγ‖

2

2.
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From the definitions of the coherence parameters3∥∥DH
X ,Eaγ

∥∥
2
6 ξE =

√
µ2
anx + µ2

mne. (26)

Thus, in order to guarantee ‖PX ,Eaγ‖2 < 1 it suffices to have

ξE < σmin(DX ,E). (27)

2) Only X known: For the setting where only X is known, we apply Lemma 10 with Ã = B

and B̃ = A, thus the condition of (24) becomes

dim(R(DX ,E) ∩R(DX ,E ′)) < |X |+ |E| ,

and so we only want to show that ‖PX ,Ebγ‖2 < ‖bγ‖2 for all γ /∈ E . Proceeding as before, it

follows that

‖PX ,Ebγ‖2 6
∥∥∥D†X ,E∥∥∥

2,2

∥∥DH
X ,Ebγ

∥∥
2

6 σ−1min(DX ,E)
∥∥DH

X ,Ebγ
∥∥
2

6 σ−1min(DX ,E) ξX , (28)

where ξX =
√
µ2
mnx + µ2

bne. Hence, it suffices to show that

ξX < σmin(DX ,E). (29)

3) No support-set knowledge: Finally, we consider the setting where neither X nor E is

known, so we apply Lemma 10 with Ã = [A B ] and B̃ being the empty matrix, thus this

is exactly the condition of [18, Thm. 13]. Then, we show that ‖PX ,Edγ‖2 < ‖dγ‖2 for any

column dγ of D not in DX ,E . In other words, we want both (26) and (28) to hold as dγ can be

a column of either A or B. So it suffices to show

‖PX ,Edγ‖2 6 σ−1min(DX ,E) ξ+ < 1, (30)

where ξ+ = max{ξX , ξE}.
Finally, to show that the (P0) based problems succeed, we want to bound the probability that

(27), (29), or (30) holds (depending on which, if any, support sets we know). In each of the

3Note that we use bounds that hold for all X , rather than a bound that holds with high probability. The underlying reason

is the fact that if A is an equiangular tight frame, the associated inequalities hold with equality and hence, we cannot do any

better by using probabilistic bounds, unless we take advantage of a property of A other than the coherence µa.
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cases, we know that (P0∗), (P0, E), or (P0,X ) returns the correct solution if ξ < σmin(DX ,E),

where ξ ∈ (0, 1) is equal to ξE , ξX , or ξ+ (as appropriate to the case). Hence, we can bound the

probability of error as follows

P{error} 6 P{ξ > σmin(DX ,E)}

6 P
{∥∥DH

X ,EDX ,E − I
∥∥
2,2

> 1− ξ2
}
6 e−β,

where we use Theorem 9 with δ = 1 − ξ2. Therefore, with probability exceeding 1 − e−β , the

pair (x, e) is the unique minimizer.

APPENDIX D

(BP) WITH LIMITED SUPPORT KNOWLEDGE

We now prove the recovery results for the (BP) based algorithms. To do this, we extend the

sufficient recovery conditions of [32] to (BP∗), (BP, E), and (BP,X ), however we first require

the following useful lemma.

Lemma 11 (Lem. 6 of [32]): Suppose that u is a vector whose components are all nonzero

and that v is a vector whose entries do not have identical moduli. Then

|〈u,v〉| < ‖u‖1 ‖v‖∞ .

We now give a sufficient condition for when (BP∗), (BP, E) or (BP,X ) can recover the solution

we want. We then show that we can satisfy this condition with high probability, thus proving

our recovery theorems.

Lemma 12: Let Ã ∈ Cna×m and B̃ ∈ Cnb×m be two dictionaries and suppose that we observe

the signal z = Ãx + B̃e where X = supp(x) and E = supp(e). Write s = [xT eT ]T , D̃ =

[ Ã B̃ ], and assume that D̃X ,E = [ ÃX B̃E ] is full rank. Suppose that both X and E are unknown.

If there exists a vector h ∈ Cm such that

D̃H
X ,Eh = sign(sX ,E), and (31a)

|〈h, d̃γ〉| < 1 for all columns d̃γ of D̃ not in D̃X ,E , (31b)

then (x, e) is the unique minimizer of (BP∗).
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Now suppose that E is known. If there exists a vector h ∈ Cm such that

ÃH
Xh = sign(xX ), and (32a)

|〈h, ãγ〉| < 1 for all columns ãγ of Ã not in ÃX , (32b)

then (x, eE) is the unique minimizer of (BP, E).
Note that conditions for recovery when using (BP,X ) are identical to those of (BP, E), except

we exchange the roles of both dictionaries and both vectors x and e.

Proof: Follows Thm. 5 of [32]: First note that (31a) and (31b) are exactly the conditions

of [32, Thm. 5] only rewritten in terms of the concatenated dictionary D̃ = [ Ã B̃ ], so we only

need to prove the sufficient condition for (BP, E).
Suppose that x and e give the sparsest representation of the signal and suppose that x′ and e′

give an alternative representation with supports X ′ and E ′ = E , respectively. We want to show

that ‖x‖1 < ‖x′‖1 and hence, that the pair (x, e) is the unique (BP, E) minimizer. First, observe

that

‖x‖1 =
∣∣sign(x)Hx∣∣ = ∣∣∣hHÃXx∣∣∣ = ∣∣∣hHÃX ′x′∣∣∣ = 〈x′, ÃH

X ′h
〉
.

If the entries of ÃX ′h do not have constant moduli, then we can apply Lemma 11 to get

‖x‖1 =
〈
x′, ÃH

X ′h
〉
< ‖x′‖1

∥∥∥ÃH
X ′h
∥∥∥
∞

= ‖x′‖1max
γ∈X ′

〈
h, a′γ

〉
6 ‖x′‖1 ,

since by assumption
∣∣〈h, a′γ〉∣∣ < 1 for any γ /∈ X (by (32b)) and

∣∣〈h, a′γ〉∣∣ = 1 for any γ ∈ X
(by (32a)). Therefore, ‖x‖1 < ‖x′‖1.

Now suppose that the entries of ÃX ′h have constant moduli, that is, maxγ∈X ′ 〈h,dγ〉 =

|〈h,dγ〉| for all γ ∈ X ′. If x′ has support X ′ ⊂ X , then [ ÃX B̃E ] cannot be full rank (as both

e and e′ have support E). Hence there must exist some γ ∈ X ′ \ X . Then, since by assumption

|〈h,dγ〉| < 1, we have

‖x‖1 =
〈
x′, ÃH

X ′h
〉
= ‖x′‖1

∥∥∥ÃH
X ′h
∥∥∥
∞

= ‖x′‖1max
γ∈X ′
〈h,dγ〉 = ‖x′‖1 |〈h,dγ〉| < ‖x′‖1 .

In both cases we have shown that ‖x‖1 < ‖x′‖1 and hence, the pair (x, e) is the unique (BP, E)
minimizer.
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Finally, before we can prove the probabilistic recovery guarantees for the `1-norm-based

algorithms of Theorems 2, 3, 4, 5, and 6, we require the following lemma.

Lemma 13 (Bernstein’s Inequality, Prop. 16 of [18]): Let v ∈ Cn and let ε ∈ Cn be a

Steinhaus sequence. Then, for u > 0 we have

P

{∣∣∣∣∣
n∑
i=1

εivi

∣∣∣∣∣ > u ‖v‖2

}
6 2 exp

(
−u

2

2

)
. (33)

A Steinhaus sequence is a (countable) collection of independent complex-valued random

variables, whose entries are uniformly distributed on the unit circle [18].

We now prove the second part of Theorems 2, 3, 4, 5, and 6. To show that recovery with (BP∗),

(BP, E), or (BP,X ) succeeds, we demonstrate that the vector h, as in Lemma 12, exists with

high probability. We now consider the following three settings in turn: 1) only E known, 2) only

X known, and 3) both support sets unknown. But first, let us assume that in each case DX ,E is

full rank.

1) Only E known: Consider the case where E is known but X is unknown, so we want to

use Lemma 12 with Ã = A and B̃ = B and we show that a vector h exists that satisfies (32a)

and (32b) with high probability. To this end, set h = AX
(
AH
XAX

)−1
sign(xX ), so that (32a) is

satisfied. Then, for any column aγ of A where γ /∈ X ,

|〈h, aγ〉| =
∣∣∣〈A†X sign(xX ), aγ

〉∣∣∣
=
∣∣∣〈sign(xX ,), (AH

XAX
)−1

AH
X aγ

〉∣∣∣ = ∣∣∣∣∣
nx∑
j=1

εjv
γ
j

∣∣∣∣∣ ,
with ε = sign(xX ) and vγ =

(
AH
XAX

)−1
AH
X aγ . If A is unitary, then vγ = 0 and (32b) is

immediately satisfied. However if A is not unitary, we need to proceed as follows. Since ε is a

Steinhaus sequence by assumption, we can apply Lemma 13 with u = ‖vγ‖−12 to arrive at

P

{∣∣∣∣∣
nx∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2 exp

(
− 1

2 ‖vγ‖22

)
. (34)

But we have that

‖vγ‖22 =
∥∥∥(AH

XAX
)−1

AH
X aγ

∥∥∥2
2

6
∥∥∥(AH

XAX
)−1∥∥∥2

2,2

∥∥AH
X aγ

∥∥2
2
6 σ−4min(AX ) ξ

2
E ,
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where ξ2E = nxµ
2
a. Hence, (34) results in

P

{∣∣∣∣∣
nx∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2 exp

(
−σ

4
min(AX )

2ξ2E

)
.

Now we want (31b) to hold for all γ /∈ X . Hence, applying the union bound to the result above

leads to

P

{
max
γ /∈X

∣∣∣∣∣
nx∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2na exp

(
−σ

4
min(AX )

2ξ2E

)
. (35)

To make this result consistent with the case when A is unitary we will multiply the right hand

side of (35) with the term 1[µa 6= 0] so that the right hand side of (35) is 0 if A is unitary.

2) Only X known: Consider the setting where X is known, but E is unknown. Again we use

Lemma 12 but with Ã = B and B̃ = A. Proceeding as before, we show that

|〈h,bγ〉| =
∣∣∣∣∣
ne∑
j=1

εjv
γ
j

∣∣∣∣∣ < 1,

for all γ /∈ E and where vγ = B†Ebγ . If B is not unitary, we have

‖vγ‖22 6
∥∥∥(BH

E BE
)−1∥∥∥2

2,2

∥∥BH
E bγ

∥∥2
2
6 σ−4min(BE) ξ

2
X ,

where ξ2X = neµ
2
b . Hence, we obtain

P

{∣∣∣∣∣
nx+ne∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2 exp

(
−σ

4
min(BE)

2ξ2X

)
.

Finally, we want (31b) to hold for all γ /∈ E . Therefore, applying the union bound to the above

leads to

P

{
max
γ /∈E

∣∣∣∣∣
ne∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2nb exp

(
−σ

4
min(BE)

2ξ2X

)
. (36)

3) No support-set knowledge: Finally, we consider the third setting where neither X nor E
are known. In particular, we want to show that in Lemma 12, we can satisfy (31a) and (31b)

with high probability. For any column dγ of D not in DX ,E , set vγ = D†X ,Edγ . In this case, we

have

‖vγ‖22 6
∥∥∥(DH

X ,EDX ,E
)−1∥∥∥2

2,2

∥∥DH
X ,Edγ

∥∥2
2

6 σ−4min(DX ,E) ξ
2
+,
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where ξ2+ = max{nxµ2
a + neµ

2
m, nxµ

2
m + neµ

2
b} and hence,

P

{∣∣∣∣∣
nx+ne∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2 exp

(
−σ

4
min(DX ,E)

2ξ2+

)
.

Finally, we want (31b) to hold for all dγ . Therefore, applying the union bound to the result

above leads to

P

{
max
γ /∈X∪E

∣∣∣∣∣
nx+ne∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1

}
6 2(na + nb) exp

(
−σ

4
min(DX ,E)

2ξ2+

)
. (37)

We now want to derive an upper bound on the right hand sides of (35), (36), and (37). First, we

use the facts that σmin(AX ) > σmin(DX ,E) and σmin(BE) > σmin(DX ,E) to give an upper bound

for (35) and (36). Then, we calculate the probability conditioned on σmin(DX ,E) > λ ∈ (0, 1).

Note that if λ > 0, then σmin(DX ,E) > λ > 0 and we satisfy the remaining assumption of

Lemma 12, namely that DX ,E is full rank.

For convenience, in the case where E is known, let us set N = na, ξ = ξE and ζ = 1[µa 6= 0].

In the case where X is known, set N = nb, ξ = ξX and ζ = 1[µb 6= 0] and finally, in the case

where neither X nor E are known, set N = na + nb, ξ = ξ+ and ζ = 1. Thus, we have

P

{
max
γ /∈S

∣∣∣∣∣
N∑
j=1

εjv
γ
j

∣∣∣∣∣ > 1
∣∣∣σmin(DX ,E) > λ

}
6 2Nζ exp

(
− λ4

2ξ2

)
6 2ζe−β, (38)

for some β 6 λ4/(2ξ2)− logN .

For our particular choice of h, (32a) (in the case where X or E is known) or (31a) (in the case

where both supports are unknown) will always be satisfied. So let E be the event that (32b) (in

the case where one support is unknown) or (31b) (in the case where both supports are known) is

not fulfilled with our choice of h and let R be the event that DX ,E is not full rank. As E∪R is a

necessary condition for the (BP) based algorithms not to be able to recover the vectors x and e,

P{E ∪R} is an upper bound on the probability of error. Then, since σmin(DX ,E) > λ > 0 implies

that R cannot occur, and hence that P
{
E ∪R

∣∣σmin(DX ,E) > λ
}
= P

{
E
∣∣σmin(DX ,E) > λ

}
, we

have that for any λ > 0

P{E ∪R} = P
{
E ∪R

∣∣σmin(DX ,E) > λ
}
P{σmin(DX ,E) > λ}

+ P
{
E ∪R

∣∣σmin(DX ,E) 6 λ
}
P{σmin(DX ,E) 6 λ}

6 P
{
E
∣∣σmin(DX ,E) > λ

}
+ P{σmin(DX ,E) 6 λ} . (39)

November 26, 2013 DRAFT



30

We can bound the first summand in (39) using (38) under the assumption that β 6 λ4/(2ξ2)−
logN . The second term we can bound using Theorem 9 with δ = 1 − λ2 ∈ (0, 1), which,

provided that β > N ′ where N ′ is the size of the supports chosen at random, says that

P{σmin(DX ,E) 6 λ} 6 e−β.

Therefore, we have

P{E ∪R} 6 (2ζ + 1)e−β 6 3e−β, (40)

and hence, we can recover x and e with probability at least 1− 3e−β .
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