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Abstract—One of the key tasks in cognitive radio and com-
munications intelligence is to detect active bands in the radio-
frequency (RF) spectrum. In order to perform spectral activ-
ity detection in wideband RF signals, expensive and energy-
inefficient high-rate analog-to-digital converters (ADCs) in com-
bination with sophisticated digital detection circuitry are typically
used. In many practical situations, however, the RF spectrum is
sparsely populated, i.e., only a few frequency bands are active
at a time. This property enables the design of so-called analog-
to-information (A2I) converters, which are capable of acquiring
and directly extracting the spectral activity information at low
cost and low power by means of compressive sensing (CS).

In this paper, we present the first VLSI design of a mono-
lithic wideband CS-based A2I converter that includes a signal
acquisition stage capable of acquiring RF signals having large
bandwidths and a high-throughput spectral activity detection
unit. Low-cost wideband signal acquisition is obtained via CS-
based randomized temporal subsampling in combination with
a 4-bit flash ADC. High-throughput spectrum activity detection
from the coarsely quantized and compressive measurements is
achieved by means of a massively-parallel VLSI design of a novel
accelerated sparse spectrum dequantization (ASSD) algorithm.
The resulting monolithic A2I converter is designed in 28nm
CMOS, acquires RF signals up to 6GS/s, and the on-chip ASSD
unit detects the active RF bands at a rate 30× below real-time.

Index Terms—Analog-to-information (A2I) conversion, cogni-
tive radio, compressive sensing, flash analog-to-digital converter
(ADC), randomized subsampling, sparse signal dequantization,
wideband spectrum sensing, very-large-scale integration (VLSI).

I. INTRODUCTION

SENSING the active frequency bands in the radio frequency
(RF) spectrum finds use in a large number of practical

applications. Cognitive radio [1], for example, aims at sensing
(or detecting) unused frequency bands in order to re-use them
opportunistically with the goal of improving the spectral uti-
lization. Since bandwidth is a scarce and expensive resource,
spectrum sensing is believed to play an important role in meet-
ing the ever-growing demand for higher data rates in future
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wireless communication systems [2]. Indeed, IEEE 802.22 [3]
envisions to re-use unoccupied frequency bands in the televi-
sion spectrum for private wireless networks. Communications
(or signals) intelligence is another application that aims at
sensing the active frequency bands in order to detect, iden-
tify, and localize certain wireless transmitters, such as radar
systems or (narrow-band) communication transceivers [4]. In
both of these applications, one typically requires expensive
and often energy-inefficient integrated sensing circuits that are
capable of acquiring and detecting active frequency bands over
very large portions of the RF spectrum.

While conventional wideband analog-to-digital converters
(ADCs) provide a straightforward solution for acquiring wide-
band signals in the GS/s regime, they are typically energy-
inefficient and expensive [5]. These drawbacks prohibit their
deployment in battery-powered devices. Furthermore, sam-
pling of signals at Nyquist frequency additionally results in
excessive data rates (on the order of tens of Gb/s) and requires
cost-effective ways of processing the acquired data at very high
throughput. Consequently, practical solutions for spectrum
sensing applications in need of acquiring large bandwidths,
while being able to extract information about the spectral
occupancy, demand sophisticated integrated circuit solutions
featuring low silicon complexity and low power consumption.

A. Analog-to-Information (A2I) Converters
In recent years, a considerable number of spectrum occu-

pancy surveys observed an under-utilization of the available
spectrum; in fact, only a small number of (typically narrow)
spectrum bands are heavily used, while the utilization of the
remaining spectrum is only a few percent in many practical
scenarios [6], [7]. Hence, sampling several GHz of the RF
spectrum at Nyquist rate, while only a few frequency bands
are active at a given time, seems to be an ineffective way of ex-
tracting the low-dimensional spectral occupancy information.

Compressive sensing [8] is a recently introduced sampling
paradigm that enables one to acquire sparse signals (i.e.,
signals having only a few non-zero coefficients in a specific
transform domain) at sub-Nyquist rates, while enabling their
stable reconstruction via sophisticated sparse signal recov-
ery algorithms. As a result, CS allows for the development
of so-called analog-to-information converters, which sample
sparse signals using inexpensive analog circuitry consuming
only little power, while sophisticated algorithms extract the
information of interest, such as the spectral activity [9], [10].

Due to the high computational complexity associated with
sparse signal recovery from compressive measurements, virtu-
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ally all existing CS-based A2I designs perform signal recovery
off-line on CPUs, GPUs, or DSPs [11]–[13]. However, off-
line processing results in excessive I/O data-rates and storage
requirements. More importantly, it prohibits timely (or real-
time) decisions based on the recovered information and pre-
vents the use of adaptive sensing strategies. In contrast, high
throughput on-chip sparse signal recovery has the potential to
avoid all these drawbacks, but necessitates efficient algorithms
and corresponding high-performance digital very-large scale
integration (VLSI) circuits (see, e.g., [14] for more details).

B. Contributions
In this paper, we present—to the best of our knowledge—the

first monolithic A2I converter design for wideband spectrum
sensing. In particular, we detail the design of a single-chip
mixed-signal VLSI circuit in 28 nm CMOS that includes
a low-complexity, energy-efficient sub-Nyquist ADC and a
high-performance digital spectrum recovery stage capable of
detecting the active frequency components at high rates. Our
main contributions are summarized as follows:

1) We introduce a novel A2I conversion framework for RF
spectrum sensing. In addition to leveraging CS via random-
ized sub-Nyquist sampling [8], we acquire coarsely quantized
measurements, inspired by recent results in 1-bit CS [15],
[16]. This combined approach of randomized subsampling
and coarse quantization substantially reduces the complexity
of the ADC stage (compared to conventional sub-Nyquist
sampling) and leads to a substantial reduction in output data
rates (compared to high-precision ADCs), while still being
able to accurately detect the active frequency components [17].

2) We present a novel computationally efficient first-order
algorithm based on the FISTA framework [18] that is able
to recover the sparse RF spectrum at high throughput from
coarsely quantized and compressive measurements. The pro-
posed method, referred to as the accelerated sparse signal
dequantization (ASSD) algorithm, efficiently solves a convex
sparse signal dequantization problem [19], and enables the
design of high-throughput VLSI designs.

3) We detail an analog sub-Nyquist sampling and quan-
tization front-end in 28 nm CMOS. The front-end consists
of a 4-bit flash ADC and a high-speed digital standard-cell-
based pseudo-random non-uniform clock generator unit with
programmable undersampling rate. The front-end acquires
wideband signals non-uniformly with aggregated sampling
rates ranging from 0.3 GS/s to 1.5 GS/s, while CS extends the
effective reconstruction bandwidth of the ADC to 3 GHz.

4) We present a high-throughput digital VLSI design of
the ASSD algorithm. To this end, we deploy a variety of
approximations on algorithm level that enable its efficient im-
plementation in VLSI. We furthermore, develop a massively-
parallel 215-point radix-32 (forward and inverse) fast Fourier
transform (I/FFT) unit that enables our design to detect the
active frequency bands at a rate of more than 1340 RF
spectrum reconstructions per second.

5) We provide extensive system-level simulations with syn-
thetic and real measured data to characterize the performance
and limitations of the proposed A2I converter design for
wideband spectrum sensing applications.

C. Existing A2I Converter Architectures

In recent years, a variety of CS-based A2I converters that
avoid Nyquist sampling have been described in the literature.
The most prominent architectures are summarized next.

1) Random demodulator (RD): The RD performs mixing
of the time-domain signal with a pseudo-random spreading
sequence followed by integration over a block of samples.
The integrated signal is then sampled uniformly and quantized
at a sub-Nyquist rate (depending on the integration length).
While the RD reduces the ADC sampling rate and features low
implementation complexity, the reported systems only support
the reconstruction of discrete multi-tone signals [20]–[23].

2) Modulated wideband converter (MWC): The MWC
builds upon the Xampling framework [24] and mixes an RF
input signal to baseband in multiple channels with a specific
set of periodic waveforms; each baseband signal is then
low-pass filtered and sampled uniformly at sub-Nyquist rate.
Corresponding implementations require one low-rate ADC per
channel and trade the number of channels for the sampling rate
in each channel [25], [26]. The MWC is suitable for static
multiband spectrum environments as the active bands must
be identified using a time-consuming procedure each time the
spectral activity pattern changes.

3) Random modulation pre-integrator (RMPI): The RMPI
resembles the MWC and integrates the mixed signals over
a certain time period instead of filtering each channel. The
corresponding A2I converter designs are, for example, suitable
for the acquisition of radar pulses [13], [27].

4) Non-uniform sampler (NUS): The NUS samples the
incoming signal at irregularly spaced time intervals by taking
only a subset of the samples of a conventional Nyquist
converter. The corresponding implementations only consist of
a sample-and-hold stage and an ADC operating at a sampling
rate corresponding to the shortest sampling period used by the
NUS. Existing NUS implementations mainly differ in the used
clocking scheme: (i) periodic non-uniform sampling (PNUS)
relies on a sequence of non-uniform sampling periods that are
repeated [11]; (ii) randomized non-uniform sampling (RNUS)
deploys a sampling sequence that is composed of randomly
chosen periods from a set of time intervals [12], [28]; (iii)
level-triggered non-uniform sampling (LTNUS) samples the
signal crossings with a given waveform [29], [30].

The A2I converter proposed in this paper relies on a novel
RNUS approach employing coarse quantization (in contrast
to using high-precision ADCs) and includes all the necessary
components on a single chip, i.e., a non-uniform clock gener-
ation circuit, the analog signal acquisition front-end, and the
digital sparse spectrum recovery stage. In contrast, existing
A2I converters perform sparse signal recovery either off-chip,
off-line, or at very low rates; in addition, the analog front-end
of existing solutions only include certain blocks, e.g., required
for sampling and/or quantization, and rely on high-precision
but energy-inefficient ADCs [11], [12].

D. Notation

Lowercase and uppercase boldface letters stand for column
vectors and matrices, respectively. The Hermitian transpose
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of a complex-valued matrix A is designated by AH . The ith
entry of a vector x is denoted by xi or [x]i. The Euclidean (or
`2) norm of a vector x is denoted by ‖x‖2 and the `1-norm
is defined as ‖x‖1 =

∑
i |xi|. The real and imaginary part of

a scalar x ∈ C is denoted by <{x} and ={x}, respectively.

E. Paper Outline

The remainder of the paper is organized as follows. Sec-
tion II introduces the A2I framework and details the accel-
erated sparse signal dequantization (ASSD) algorithm. Sec-
tion III details the non-uniform clock generation unit and
the 4-bit flash ADC. Section IV presents the high-throughput
digital spectrum recovery unit. Section V presents numerical
simulation results and conclusions are drawn in Section VI.

II. QUANTIZED COMPRESSIVE SENSING-BASED
A2I CONVERSION

A conventional way of detecting active frequency bands in
RF signals is to deploy high-precision ADCs that sample the
entire spectrum at Nyquist rate followed by peak detection
in the frequency domain. For wideband signals, however,
such an approach necessitates costly and energy-inefficient
ADCs [5]. Compressive sensing [8], a recently introduced
sampling paradigm, enables one to sample signals at their “in-
formation rate” rather than at their Nyquist rate. For spectrum
sensing applications where only a few frequencies are active
at a given time, this sampling paradigm enables the design of
cost-effective, energy-efficient A2I converters that acquire the
underlying frequency activity information.

In this section, we summarize the principles of CS and
introduce a way of further reducing the cost of practical A2I
converter implementations by means of coarse quantization.
We then present a novel, low-complexity algorithm that recon-
structs sparse signals from coarsely quantized measurements.

A. Compressive Sensing Basics

CS is concerned with the sampling and reconstruction of
signal vectors y ∈ RN using fewer measurements than the
Nyquist rate suggests. More specifically, CS acquires M linear
measurements of the signal vector y as follows [31], [32]:

z = Φy + n, (1)

where Φ ∈ RM×N is a sensing matrix with (often substan-
tially) fewer rows than columns (i.e., M < N ) and n ∈ CM
represents additive measurement noise. Recovering the signal
vector y from the noiseless measurements z = Φy is, in
general, an ill-posed problem. Nevertheless, many man-made
or natural signals have a sparse representation x in a given
orthonormal basis Ψ, i.e., y = Ψx, where only a few entries
K � N of x carry most of the vectors energy; we say
that such signals are approximately K-sparse. This sparsity
property enables CS to obtain accurate estimates of the signal
vector y if the effective matrix D = ΦΨ satisfies certain
mathematical conditions [32].

Relevant for our application is the case of Φ being a
randomized subsampling operator1 and Ψ the discrete Fourier
transform (DFT) matrix. In this case, it was shown in [33] that

M ∼ K log4(N) (2)

compressive measurements are sufficient to guarantee the
stable recovery of the (approximately-)sparse signal represen-
tation x from z with overwhelming probability. It is important
to realize that (2) implies that the number of measurements,
M , to be taken only scales in the number of non-zero entries
K (apart from a logarithmic penalty in the dimension N ). In
other words, instead of sampling a spectrally sparse signal x
at Nyquist rate (i.e., by taking N samples), randomized
temporal sub-sampling at sub-Nyquist rates guarantees the
stable recovery of a sufficiently sparse RF spectrum. As a
consequence, CS enables one to acquire sparse wideband RF
signals by taking fewer samples than the Nyquist rate dictates.

Spectrum reconstruction from compressive measurements is
typically carried out by a sparse signal recovery algorithm (see
[34], [35] for algorithm surveys). One of the most prominent
recovery methods, known as basis pursuit de-noising (BPDN),
corresponds to solving the following convex problem [36]:

(BPDN) minimize
x̃

λ‖x̃‖1 +
1

2
‖z−Dx̃‖22,

which delivers an estimate x̂ of the sparse spectrum [35]. The
real-valued regularization parameter λ > 0 is used to trade
sparsity in x̂ for consistency to the measurements z.

B. Quantized Compressive Sensing

In virtually all practical systems, ADCs are used to sample
and quantize the compressive measurements. Hence, instead
of acquiring real-valued measurements as in the simplistic
model (1), quantized measurements are acquired in practice.
The effect of such a quantizer can be modeled as

q = Q(z) = Q(Dx + n), (3)

where Q(·) : R → O is a scalar quantizer (applied element-
wise to a vector), which maps a real number x into Q = |O|
ordered labels according to Q(x) = q if bq−1 < x ≤ bq ,
q ∈ O, where the quantization-bin boundaries satisfy −∞ =
b0 < · · · < bQ = +∞. In the following, B = log2(Q) defines
the number of output bits of the quantizer.

Quantized CS deals with the reconstruction of the sparse
vector x from the quantized measurements collected in q.
Since quantized CS takes into account the effects of finite-
precision ADCs, the model (3) is particularly relevant for
systems employing coarse quantization. The extreme case of 1-
bit compressive measurements has recently gained significant
attention in the literature [15]–[17]. In particular, [16] has es-
tablished that a stable reconstruction of the sparse vector x via
efficient algorithms from M ∼ K log(N/K) measurements
is possible, if the entries of the effective matrix D are i.i.d.
Gaussian distributed. Unfortunately, not much is known about

1A sparse 0/1-matrix with M < N and a single 1 per row and 0 otherwise.
The location of each 1 entry per row is chosen at random and defines which
sample from the N dimensional input vector is taken.
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the general case, i.e., Q > 2 with arbitrary sensing matrices.
Nevertheless, empirical studies carried out in, e.g., [17], [19],
with several algorithms have shown that accurate sparse signal
recovery from quantized measurements is possible with as few
as 4-bit and for a variety of (non-Gaussian) sensing matrices.

A practical consequence of quantized CS is the fact that
it further reduces the dimensionality of the measurements to
be acquired (in addition to temporal subsampling). From a
hardware perspective, coarse quantization (e.g., 4-bit or even
less) enables the use of low-area, low-power ADC architec-
tures. In the A2I converter design proposed in this paper, we
take particular advantage of quantized CS and deploy a low-
complexity, wideband 4-bit flash ADC (see Section III).

C. Basis Pursuit De-Quantization (BPDQ)

A number of sparse signal recovery algorithms for 1-bit
measurements has been proposed in the literature [37]. How-
ever, for the non-binary (but quantized) case, we are only
aware of the approach proposed in [19]; this approach assumes
that the noise vector n in (3) is i.i.d. zero-mean Gaussian
distributed with variance σ2 per complex entry—a reasonable
assumption because most practical systems are subject to
thermal noise. With this assumption, one can compute the
likelihood of each measurement qi as

p(qi |dHi x) =

∫ ui

`i

1√
2πσ2

exp

(
−|ν − dHi x|2

2σ2

)
dν, (4)

where ui = bqi and `i = bqi−1 are the upper and lower bin
boundary positions associated to qi ∈ O, respectively, and dHi
corresponds to the ith row of the effective matrix D = ΦΨ.
We emphasize that (4) explicitly models the statistical input–
output behavior of the quantizer Q(·), avoiding the commonly
used model of additive quantization noise (see, e.g., [38]).

Similarly to (BPDN), the main idea is to minimize the
negative log-likelihood of (4) over all measurements, together
with an `1-norm penalty that induces sparsity of the solution x̂.
We refer to the resulting convex optimization problem as basis
pursuit de-quantization [19]

(BPDQ) minimize
x̃

λ‖x̃‖1 −
M∑
i=1

log p(qi |dHi x̃),

where the parameter λ > 0 trades sparsity of the solution x̂
for consistency to the quantized measurements in q.

D. Accelerated Sparse Signal Dequantization (ASSD)

We now propose a novel computationally more effective
alternative to the algorithm presented in [19], referred to
as accelerated sparse signal dequantization (ASSD). The
ASSD algorithm is capable of recovering sparse vectors from
quantized measurements (3), while (i) requiring lower com-
putational complexity than the method in [19] and (ii) being
suitable for the efficient integration in VLSI (see Section IV).

A common way of solving convex optimization problems
like (BPDN) or (BPDQ) is to use interior point methods [39].
However, such methods typically exhibit high computational
complexity for large-dimensional problems and require con-
siderable numerical precision, which prohibits their efficient

Algorithm 1 Accelerated sparse signal dequantization (ASSD)
1: x1 = y0 = 0N×1 and t1 = 1
2: while k = 1, . . . ,Kmax do
3: yk ← shrink

(
xk + 1

LDH∇f(Dxk)
)

4: tk+1 ← 1
2

(
1 +

√
1 + 4t2k

)
5: xk+1 ← yk +

(
tk−1
tk+1

)
(yk − yk−1)

6: end while

implementation in VLSI. As demonstrated in [40], first-order
methods are the preferred choice for high-throughput sparse
signal recovery in VLSI for approximately sparse signals
having a large number of non-zero coefficients. We therefore
build the ASSD algorithm on the FISTA (short for fast
iterative shrinkage thresholding algorithm) framework [18],
which enables the design of accelerated first-order methods
for minimization problems of the form f(·)+g(·), where f(·)
is convex and continuously differentiable, and g(·) convex, but
potentially non-smooth. By associating f(·) with the negative
log-likelihood function of (BPDQ), and g(·) with the `1-
norm penalty, we obtain Algorithm 1. The ASSD algorithm
performs the following three steps until a maximum number
of iterations, Kmax, has been reached:

1) Gradient step: The gradient step enforces consistency to
the quantized measurements q. To arrive at an explicit gradient
formulation, we set wi = dHi x, and rewrite (4) as

p(qi |wi) = Φ
(
σ−1(ui − wi)

)
− Φ

(
σ−1(`i − wi)

)
,

where Φ(a) = 1√
2π

∫ a
−∞ exp

(
− 1

2ν
2
)
dν is the cumulative

distribution function of a normal random variable. With the
definition f(w) = −

∑M
i=1 log p(qi |wi), the ith entry of the

gradient ∇f(w) is given by [19]

[∇f(w)]i =
exp
(
− |ui−wi|2

2σ2

)
− exp

(
− |`i−wi|2

2σ2

)
√

2πσ2
(
Φ
(
ui−wi

σ

)
− Φ

(
`i−wi

σ

)) . (5)

To ensure convergence of Algorithm 1, we employ a con-
stant step size that is determined by the Lipschitz constant L
(see line 3). This constant is given by L = λ2max(D)/σ2, where
λmax(D) corresponds to the largest singular value of D.

2) Shrinkage step: This step takes into account the `1-norm
in (BPDQ) and enforces sparsity on the vector x. From the
definition g(x) = λ‖x‖1, the complex-valued shrinkage step
in Algorithm 1 (line 3) is given by [18]

shrink(x) =

{
x
|x| max

{
|x| − λ/L, 0

}
if x 6= 0

0 otherwise.
(6)

3) Prediction step: The prediction step in Algorithm 1
(lines 4 and 5) is used to obtain a new estimate of the sparse
vector xk+1. As detailed in [18], the particular update of the
ASSD algorithm yields accelerated convergence rates, which
is key for achieving low computational complexity.

Note Algorithm 1 is suitable for general matrices D = ΦΨ
and for processing on general-purpose processors. To arrive
at an efficient implementation in VLSI, we derive a dedicated
version for sparse RF spectrum recovery in Section IV.
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Fig. 1. Overview of the monolithic A2I converter. The design consists of
a pseudo-random non-uniform clock generator, a low-bit flash ADC, and a
high-throughput digital spectrum recovery stage.

III. ANALOG FRONT-END: SUB-NYQUIST FLASH ADC

We now detail the analog front-end, consisting of a pseudo-
random non-uniform clock generator and a 4-bit flash ADC.
The resulting design is illustrated in Figure 1. To the best of
our knowledge, the only existing hardware implementation of
a NUS-based A2I converter targeting a signal bandwidth of
several GHz was reported in [11]; this design is implemented
using an expensive InP HBT technology for the sample-and-
hold (S&H) stage and a commercial, high-resolution, and
off-chip ADC for the signal conversion stage. In contrast,
the design proposed here builds on a standard 28 nm CMOS
technology for the sampling, conversion, and recovery stage,
and all three units are integrated into the same design.

A. Pseudo-Random Non-Uniform Clock Generator Unit

Random subsampling-based CS for wideband signal acqui-
sition requires a (pseudo)-random non-uniform sampling clock
at high rates. In existing A2I converter designs, such as the
ones presented in [11], [12], the non-uniform sampling clock
is generated off-chip and/or stored in large on-chip register
arrays. Apart from requiring a considerable number of flip-
flops to hold the sampling pattern, a major shortcoming of
such an approach is the inability to adjust the undersampling
rate—allowing to tune the A2I converter to changes in the
sparsity level of the input spectrum—at run-time. To avoid
the use of expensive and rather bulky external equipment, we
propose a low-area and configurable standard cell-based clock-
generation unit that derives a high-rate non-uniform sampling
clock on-chip from an external Nyquist clock with period Tclk;
the architecture is depicted in Figure 2 and detailed next.

1) Architecture: The pseudo-random non-uniform clock
generator unit consists of a linear feedback shift register
(LFSR), a pipelined multiplexer tree, and a shift register (SR).
The multiplexer tree and SR together form a circular shift
register with a variable length according to the selection bits
B′0–B′3 of the multiplexer. A single logical 1, initially set
by the RST signal in the first flip-flop (FF) of the SR, is
propagated by the input clock signal through this circular shift
register. The state of the multiplexer output represents the
non-uniform sampling clock signal φnus. The pseudo-random
sampling period Trnd is an integer multiple of the uniform input
clock period and is given by Trnd = Tmin +Nrnd Tclk, where the
minimum sampling period Tmin is equal to the time it takes for
the logical 1 to propagate through the FFs in the SR whose

clock gate

FF FF

RST

φφφφnus

R

CLK linear feedback shift register (LFSR)

R

CLK

pipelined multiplexer tree

R'

FF

B'0B'1B'2B'3

R'

row of FFsFF

S

B0B1B2B3

shift register (SR)

SELS0S1S2S3

Fig. 2. High-rate pseudo-random non-uniform clock generator unit with
configurable undersampling factor. The clock generation unit is configurable
to generate the following undersampling factors: 4, 4.5, 5.5, 7.5, and 11.5.

output is not connected to the multiplexer tree. The logical 1
has to propagate through those FFs first, before it can reach any
of the multiplexer inputs. Nrnd is the pseudo-random binary
number coded by B′0–B′3, that are the 4 least significant bits
of the LFSR state masked by the bits of the undersampling
configuration signal SEL. In the present design, we chose the
minimum sampling period to be 4 Tclk as the ADC operates in
four phases (see Section III-B). The maximum sampling period
Tmax can be configured via the SEL signal by restricting the
length of the circular shift register either to 19, 11, 7, 5, or
4 FFs. This enables one to tune the undersampling factor at
run-time to one of the following values: 11.5, 7.5, 5.5, 4.5,
and 4. Each setting corresponds to a set of sampling periods
from which a new period is selected pseudo-randomly every
time the logical 1 reaches the multiplexer output, as this event
triggers the LFSR to generate a new (pseudo-)random number.
The LFSR length is 11 and is chosen such that all generated
sampling periods occur approximately equally often.

2) Design: The entire clock generation circuit is built from
33 flip-flops of the fastest type available in the used 28 nm
CMOS standard-cell library. By inserting pipeline registers
into the multiplexer tree, the critical path is reduced to one
standard multiplexer, thereby allowing this design to achieve
a maximum clock frequency of 6 GHz. The estimated power
consumption at the maximum speed is 0.5 mW.

B. 4-bit Flash Analog-to-Digital Converter

The second component of the analog front-end is the
ADC that samples and coarsely quantizes the compressive
measurements. In the proposed A2I converter design, we use a
high-rate ADC that acquires 4-bit samples in the GS/s regime.2

High-speed ADCs with sampling rates of several GS/s and
resolutions up to 6-bit often deploy expensive SiGe, InP,
or GaAs technologies [41]. Alternatively, wideband CMOS
ADCs targeting similar bandwidth and precision either rely on
extensive time-interleaving [42], or use for instance integrated
inductors to overcome the limits imposed by the technol-
ogy [5]. However, both approaches lead to a considerable

2As it will be shown in Section V-B, 4-bit precision represents a good
trade-off between circuit complexity and spectrum reconstruction accuracy.
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Fig. 3. Circuit diagram of the 4-bit flash ADC: (a) overview; (b) comparator and the associated timing diagram; (c) preamplifier; (d) double-tail latch.

increase in circuit complexity and power consumption, which
would be in contrast with our attempt to keep the level of
sophistication of the analog front-end at a minimum. Note
that targeting resolutions above 8-bit at several GS/s would
still be feasible in deep sub-micron CMOS technologies [43],
[44]. Such implementations, however, require expensive digital
calibration circuits to compensate for circuit imperfections.
Hence, to push our paradigm of shifting complexity from the
analog to the digital domain to the limit, we decided to develop
a 4-bit flash ADC in 28 nm CMOS, which enables sampling
rates of several GS/s at minimum hardware overhead.

1) Architecture: Targeting a modest resolution of 4-bit, a
flash ADC appeared to be the natural choice for our design.
An overview of the 4-bit flash ADC is shown in Figure 3(a).
The ADC consists of 15 identical comparators Q1, . . . ,Q15

preceded by a shared sampling switch, and of a resistor ladder
for the generation of the voltage references. Each comparator
is composed of a static differential-difference-preamplifier
(DDPA), followed by a double-tail latch (DTL) and a standard
SR-latch [45], as shown in the lower half of Figure 3(b).
The SR-latch simply keeps the comparator output stable,
allowing the encoder to perform the thermometric-to-binary
conversion. The preamplifier serves the main function of
track-and-hold (T&H) stage, eliminating propagation delay
differences between the comparators, and additionally provides
a modest amplification. To avoid the use of dedicated sampling
capacitors, we use the total gate capacitance of the input
transistors (approximately equal to 500 fF) to sample the
input signal. To eliminate the signal-dependent modulation of
the switch on-resistance, which would degrade linearity, the
sampling switch is controlled by a bootstrapped clock phase
named φnus [46]; this clock is derived from the non-uniform
clock-generator. The four phases required to operate the ADC
are schematically depicted in the upper part of Figure 3(b).
The DDPA is built from two resistively loaded differential

pairs that compare the differential input with the differential
voltage reference, as depicted in Figure 3(c).

The latching stage is detailed in Figure 3(d), and is realized
by means of a double-tail voltage sense amplifier similar to the
one reported in [47]. The latch is operated with a single clock
phase φe which keeps the circuit complexity to a minimum.
However, compared to the circuit topology proposed in [47],
the drain of the input transistors M1 and M2 is directly tied
to the gate of M6 and M7 in order to inject the differential
signal into the latch and to trigger it. The four reset devices
M12–M15 on the other hand are driven by the phase φe. The
high current required in the latching stage necessitates the use
of large transistors for M6 and M7, whereas M12–M15 can be
kept at the minimum size. It is therefore convenient to connect
the large devices M6 and M7 to the output of the first stage
to minimize their contribution to the input-referred offset.

Moreover, the small gain of approximately 2 provided by
the DDPA relaxes the matching requirements of the DTL,
allowing us to employ small and fast transistors in the latch
for maximum speed. The kick-back noise generated by the
switching activity of the latch is attenuated by the static
preamplifier, which prevents it from propagating backwards
toward the input or toward the reference ladder. Furthermore,
during the latch phase φe, the DTL is completely disconnected
from the DDPA by means of the pair of switches controlled
by φe to suppress kick-back noise even further.

2) Design: The entire analog front-end was designed in a
28 nm 1P7M bulk CMOS technology with a single 1.0 V sup-
ply. The resulting flash ADC achieves a maximum sampling
rate of 6 GS/s. However, the entire A2I converter design is
constrained by the external Nyquist clock from which the 4-
phased timing of the ADC is deduced. Given the maximum
operating frequency of the non-uniform clock generator of
6 GHz, the maximum sampling rate of the entire analog front-
end is limited to 1.5 GS/s. In contrast to conventional Nyquist
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rate data acquisition, this fact is not limiting the reconstruction
bandwidth of the overall system, as the ASSD algorithm is
based on sub-sampling, and effectively extends the conversion
bandwidth of the ADC to 3 GHz.

The performance of the 4-bit flash ADC has been ex-
tensively characterized in all process corners by means of
Cadence Spectre simulations. In a simulated single-tone test
with a 400 mVpp full-scale sinusoidal input the ADC achieved
25.8 dB SNDR at maximum clock rate, which corresponds to
an effective number of bits (ENOB) of 4.0 bit. Each of the
15 static preamplifiers absorbs 200µA from the 1.0 V supply,
while the entire analog front-end consumes an estimated power
of 4.5 mW at 1.5 GS/s; this is expected to be negligible
compared to the power consumption of the digital part, and
compares favorably to designs reported in literature targeting
similar speed and resolution, such as the one in [5]. We
finally note that the layout of the analog front-end is part of
ongoing work. However, a comparison of the proposed ADC
design with a structurally similar reference 3.5-bit flash ADC
implemented in 130 nm CMOS [48], allows us to obtain a
pessimistic area estimate of about 0.1 mm2 in 28 nm CMOS.

IV. DIGITAL PART: HIGH-THROUGHPUT ASSD UNIT

Virtually all existing A2I converter designs delegate the
task of signal reconstruction to off-line CPU or GPU pro-
cessing [11]–[13]. High-throughput and energy-efficient sparse
signal recovery, however, can only be achieved by dedicated
VLSI implementations, because even the most efficient algo-
rithms exhibit high computational complexity [40]. To arrive
at high-throughput sparse spectrum recovery from coarsely
quantized and compressive measurements, we next detail a
variety of optimizations for the ASSD algorithm. We then
develop a corresponding VLSI design in 28 nm CMOS, which
directly interfaces with the analog front-end.

A. ASSD Algorithm Optimizations for Spectrum Recovery
In order to obtain a high-throughput ASSD design with

finite-precision (fixed-point) arithmetics, we introduce a host
of new algorithm-level optimizations and approximations that
facilitate an efficient integration in VLSI.

1) Precomputed Lipschitz constant: For general matri-
ces D, the ASSD algorithm requires the calculation of the
Lipschitz constant L = λ2max(D)/σ2. In the present sparse
spectrum recovery application, D corresponds to a randomly-
subsampled DFT matrix; for this particular sensing matrix, the
maximum singular value is given by 1 and hence, we have
L = 1/σ2; this parameter is stored in a configuration register
to avoid computation of the Lipschitz constant in VLSI.

2) Precomputed prediction weights: Straightforward com-
putation of the sequence tk, required to accelerate the con-
vergence of Algorithm 1 on lines 4 and 5, involves the
execution of costly square root and division operations. Since
the sequence tk depends only on the iteration counter k, we
can precompute the quantity τk = (tk − 1)/tk+1 on line 5 of
Algorithm 1 and store it in a look-up table (LUT). This trick
allows us to avoid costly arithmetic circuitry at the cost of a
128-entry LUT for the values τk, since the final design is able
to carry out a maximum of 128 iterations.

3) Approximate gradient calculation: The gradient step (5)
involves the evaluation of transcendental functions, which
cannot be implemented efficiently in VLSI using fixed-point
arithmetics. Nevertheless, inspection of (5) reveals that the gra-
dient can be approximated with the piece-wise linear function

[∇f(w)]i ≈


ui−wi

σ2 wi > ui
0 `i ≤ wi ≤ ui
`i−wi

σ2 wi < `i,

(7)

especially for small values of σ2. This approximation can
be implemented efficiently in VLSI using basic arithmetic
circuitry and comparison logic. As will be discussed in Sec-
tion V-C, the approximation delivers comparable performance
to an algorithm variant that computes the gradient exactly.

4) Approximate shrinkage: The complex-valued shrinkage
operation (6) requires a division of x = <{x} + i · ={x} by
|x| =

√
<{x}2 + ={x}2, which involves significant hardware

overhead and is prone to numerical issues in fixed-point
arithmetics. To avoid both issues, we perform shrinkage for
the real and imaginary part of x ∈ C as follows:

shrink(x) ≈ η<{x}+ i · η={x}. (8)

Here, η(v) = sign(v) max
{
|v| −λ/L, 0

}
corresponds to real-

valued shrinkage, which can be implemented at minimum
hardware cost. Our own simulations have shown that using
the approximation (8) instead of (6) causes only a minor
performance loss (see Section V-C for the details). Note that
we precompute and store the quantity λ/L = λσ2 in a
configuration register of the recovery unit.

B. High-Level Architecture of the ASSD Algorithm

With the algorithm optimizations summarized above, we
can implement the ASSD algorithm efficiently in VLSI; Fig-
ure 4(a) details the corresponding high-level architecture.

1) Input memories: The analog front-end delivers a single-
bit signal indicating the sampling instant and the correspond-
ing 4-bit time-domain samples to the digital recovery stage.
Both, the incoming sampling instants and the 4-bit samples are
stored in on-chip SRAMs ω and sq , respectively. Targeting
the reconstruction of a 215-dimensional RF spectrum, both
memories contain 215 entries, each corresponding to a possible
sampling instant. As we perform non-uniform sub-Nyquist
sampling, only a pseudo-random sub-set of the 215 time-
domain entries of sq contains valid (observed) samples. A
logical 1 in the ω SRAM identifies a valid sample in the sq
memory. The look-up table q (called q LUT) contains the
digital values representing the upper and lower quantization
bin positions ui and `i, respectively. This LUT is built from
flip-flops and enables us to compensate for mismatches in the
15 analog reference voltages and for the comparators’ offsets.
The 4-bit samples directly address the entries of the q LUT.

2) Architecture overview: The ASSD architecture shown
in Figure 4(a) comprises three main units: The approximate
gradient unit implementing the piece-wise linear gradient ap-
proximation (7), the approximate shrinkage unit realizing (8),
and the 215-point radix-32 I/FFT unit performing the forward
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and backward FFT. Spectrum recovery is achieved by alter-
nately performing forward and inverse FFTs. The approximate
gradient calculation is carried out during the last cycles of the
inverse FFT. In this phase, data coming from the I/FFT unit
is processed by the approximate gradient unit and the result is
directly fed back to the FFT memory, ready for the forward
transform. Similarly, during the last cycles of the forward FFT
operation, shrinkage and linear prediction are performed. The
corresponding results are simultaneously written back to the
FFT memory, ready for the inverse FFT required in the next
iteration. The result of the shrinkage step is available at the
output of the ASSD unit and, in the final iteration of the
algorithm, this result corresponds to the RF spectrum estimate.
The number of clock cycles required to carry out one ASSD
iteration corresponds to the sum of the cycles required for one
forward and one inverse FFT.

C. High-Throughput Parallel I/FFT Unit

The input dimensionality and throughput of the FFT unit
determine the spectral and temporal resolution of the A2I
converter. While targeting a total reconstruction bandwidth
of 3 GHz, sensing the activity within the narrow bands of
today’s communication standards needs an FFT of at least
215 points corresponding to a resolution of 183 kHz per bin.3

This choice of the FFT size and bandwidth evidently results in
spectral leakage, which can either be mitigated by adding an
appropriate windowing filter or by acquiring and processing
more samples at a given sampling rate. Increasing the FFT
size can be done at compile time of the design, but results
in longer processing time and larger memories, and therefore,
would substantially increase the silicon area of the entire A2I
converter. In addition, the proposed A2I converter architecture
requires a high-throughput I/FFT unit in order to achieve high
temporal resolution, i.e., to detect fast changes in the spectral

3The channel bandwidth of many established communication standards,
such as GSM, is as low as 200 kHz.

activity. The highest throughput is achieved by fully parallel
FFT architectures [49], which result in increased complexity
compared to, e.g., cascade FFT architectures. However, for
our case, this cost is balanced by the benefit of enabling the
simultaneous processing of multiple data items by the gradient
and shrinkage units, which further accelerates the ASSD
implementation. To simultaneously achieve high throughput
and high spectral resolution, we decided to develop a parallel
memory-based 215-point I/FFT unit detailed next.

1) Choice of FFT architecture: The number of clock
cycles required to calculate an N -point FFT scales with
N/(mr) logr(N), where m is the number of parallel radix-r
processing elements (PE). Hence, by choosing higher radix
orders and/or instantiating multiple PEs, one can increase
the throughput of the FFT unit. Our goal is to identify an
FFT architecture that maximizes the throughput while not
resulting in excessive silicon area. To this end, it is helpful
to analyze the maximum number K of ASSD iterations that
can be completed during N cycles which is the time it takes
for the sampling phase to finish. Noting that the number of
frequency bins of the FFT is also equal to N , we obtain
K = mr/(16 logr(N)), where we assumed the digital logic
to run 8× slower than the Nyquist clock. The most hardware-
efficient FFTs are obtained when the number of points is a
power of the radix number. Thus, for a spectral resolution of
215 points, one can choose between architectures based on
radix-2, radix-8 and radix-32. By assuming a minimum of
K = 20 iterations, all possible radix numbers clearly result in
prohibitive silicon complexity under the real-time constraint.
Consequently, as a good trade-off between silicon area and
achievable recovery throughput, we decided to implement a
215-point inverse/forward fast FFT unit (Figure 4(b)) based
on a single radix-32 PE. This particular choice is due to the
observation that FFT architectures using higher radix orders
are smaller in size for a given throughput; the number of
instantiated complex-valued multipliers m(r−1) is lower and
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the interconnect network between memory and PEs, which is
a logarithmic function of the number of inputs m · r to the
PEs, is less complex. The chosen FFT configuration allows
ASSD-based spectrum recovery 30× below real-time.

2) VLSI design: In each clock cycle, the radix-32 PE
requires access to 32 data items from a memory and writing the
corresponding 32 results back to the same memory locations.
To achieve such a massive parallelism without causing access
contentions, we partition the FFT memory into 64 independent
banks (see Figure 4(b)). To minimize the area of the FFT
memory, we use multiple single-port memories in combina-
tion with a specifically designed memory access scheme that
ensures contention-free read and write access. Concretely, in
each clock cycle, data for the radix-32 PE is retrieved from
a specific set of 32 memories, whereas the FFT’s output of a
previous cycle is stored in the remaining 32 memories.

The radix-32 PE (see Figure 4(c)) is built from a combi-
nation of a radix-16 stage and a radix-2 stage in a split-radix
fashion [50]. The radix-16 stage is performed by two identical
radix-16 PEs (Figure 4(d)), each consisting of 8 multiplier-less
radix-4 PEs (Figure 4(e)) and 31 complex-valued multipliers.
The inverse FFT can be calculated using the same PE, with
the aid of multiplexers in the data path. The data path of the
forward FFT is inverted to conform to the data path of the
inverse FFT, where the data items first pass through the radix-
2 step and finally arrive at the complex multipliers fed with the
complex conjugate coefficients. The same data-path inversion
is used in the radix-16 PEs. To maximize the clock frequency
and, hence, the recovery throughput, the radix-32 PE features
a total of 11 pipelining stages, of which 2 stages are used in
the complex-valued multipliers.

The resulting I/FFT unit is capable of computing a 215-
point I/FFT in 3097 clock cycles, which is close to the
theoretical minimum of 3072 cycles achievable with a single
radix-32 unit. The extra cycles are due to pipelining and the
contention-free memory access scheme. We finally note that
this architecture is roughly 80× faster than a conventional
single PE radix-2 FFT design in the same technology. Post-
synthesis timing results for the I/FFT unit in 28 nm CMOS
show that we can achieve a maximum clock frequency of
830 MHz, which leads to a throughput of more than 8.7 GS/s.
We note that a related VLSI implementation of a 215-point
FFT was reported in [51]; this design contains 4 parallel
radix-2 PEs and achieves 9 MS/s in 90 nm CMOS.

D. Fixed-Point Parameters

To minimize circuit area and power consumption, and to
maximize the throughput, the entire ASSD architecture uses
fixed-point arithmetic. All signal word-widths were established
using extensive simulations of a Matlab golden model, to
ensure an implementation loss well-below the quantization
error of the ADC. The acquired time-domain signal is quan-
tized with 4 bit precision. The quantization bin boundaries are
programmable to any 14 bit value, which provides sufficient
resolution to compensate for possible mismatches/offsets in
the analog front end. The real and complex part of data in the
radix-32 PE are represented by 24 bit, which also define the

word-length of the FFT memories, as well as the precision in
the gradient and thresholding units. Thus, both the time- and
frequency-domain signals are represented with 24 bit. The FFT
twiddle-factors use 18 bit, while the τ LUT has 8 bit entries.

V. RESULTS AND DISCUSSION

We now characterize the performance and implementation
complexity, as well as the limitations, of the proposed wide-
band A2I converter. The front-end design of the digital part
has been completed including register-transfer level (RTL)
description and gate-level netlist compiled using the available
28 nm CMOS standard cell library, and will be discussed next.

A. Performance Measures and Algorithm Parameters

In order to evaluate the spectral activity detection capabil-
ities of the proposed A2I converter, we conduct a series of
experiments using the following performance metrics:
• True positive detection rate: The number of correctly

detected active frequency bins divided by the total number
of effectively active bins.

• False positive detection rate: The number of frequency
bins falsely found to be active by the A2I converter
divided by the total number of inactive bins.

• Reconstruction signal-to-noise ratio (RSNR): The signal
power in the active frequency bins (as detected by the
A2I converter) divided by the remaining signal power.

The optimal detection threshold for identifying active fre-
quency bands depends on algorithm parameters that are dif-
ficult to determine in practice (e.g., the ambient noise floor
and the signal sparsity level). Therefore, we set the spectral
activity threshold to −6.02B−1.76−10 log10(N)+20 [dB],
i.e., 20 dB above the quantization noise floor, which performed
best in our simulations. Here, B = log2(Q) is the number
of bits of the quantizer, and N the number of FFT points;
the term 10 log10(N) takes the normalization constant of the
FFT into account. We set the regularization parameter λ of the
ASSD algorithm to the value which results in the highest true
positive and smallest false positive detection rate separately
for each resolution. As the quantization noise of the ADC
is the predominant source of noise in the ASSD algorithm,
σ2 was set to the quantization noise power of the considered
resolution and is given by V 2

LSB/12, with VLSB being the
voltage difference between the quantization levels.

B. Spectrum Sensing Performance

To characterize the impact of the signal sparsity and the
noise sensitivity on the detection rate, we carried out simula-
tions using a floating-point model of the A2I converter includ-
ing the algorithmic approximations discussed in Section IV-A.
Synthetic test data was used in which the percentage of active
frequency bins was set according to the desired sparsity level,
while the location and spectral magnitude were both chosen at
random.4 To obtain the desired signal-to-noise ratio (SNR) in
the test data, i.i.d. zero-mean Gaussian noise with appropriate

4The locations and non-zero entries were generated using an i.i.d. uniform
and i.i.d. zero-mean Gaussian distribution with unit variance, respectively.
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variance was added to the time-domain data. All results were
averaged over 10 simulation trials, each running for 100
iterations of the ASSD algorithm.

1) Impact of signal sparsity: Figure 5(a) characterizes the
impact of the signal sparsity level on the true positive and false
positive detection rates for a different number of quantization
bits B. The SNR of the input signal was set to exceed the
corresponding signal-to-quantization-noise ratio by 3 dB. As
it can be seen in Figure 5(a), reducing the signal sparsity
level from 10 % to 0.1 % active bins improves the detection
performance. The performance drop visible around a sparsity
level of 1 % active bins is a consequence of the chosen
undersampling factor and the choice of λ. Both the parameters
can be set at run-time in order to adapt the A2I converter
to the signal’s sparsity level. For the presented results, the
undersampling factor was set to 11.5, while the appropriate
λ values are 2.3 for 2 bit, 3.7 for 3 bit, 8.8 for 4 bit, 55 for
5 bit, and 165 for 6 bit resolution. While there are considerable
performance differences between 2-bit and 4-bit quantization,
4-bit and higher achieve similar performance. Thus, we con-
clude that 4-bit quantization provides a reasonable trade-off
between spectrum activity detection performance and ADC
implementation complexity.

Figure 5(b) characterizes the impact of the signal sparsity
level on the RSNR for a different number of quantization
bits B. Interestingly, for each resolution, the RSNR exceeds
the corresponding SQNR below a certain sparsity level; this

is because the ASSD algorithm is capable of mitigating the
effects of thermal and quantization noise by imposing sparsity
to the recovered spectrum. In other words, the ASSD algorithm
effectively dequantizes the recovered sparse RF spectrum.

2) Impact of thermal noise: Figures 5(c) and 5(d) charac-
terize the impact of the noise level on the detection rate and
RNSR for input SNR levels ranging from −10 dB to 60 dB;
the signal sparsity level was set to 0.5 % for all trials, while
the λ values are as in Section V-B1. We observe that the true
positive detection rate quickly drops for input SNRs below
0 dB, whereas larger SNRs show good detection performance.
Similarly, the RSNR starts to approach the input SNR at low
SNR levels. In summary, for a sufficiently high input SNR, the
proposed A2I converter is capable of achieving true and false
positive detection rates close to 100 % and 0 %, respectively.

C. Impact of Approximations and Fixed-Point Arithmetic
The VLSI design of the A2I converter was facilitated by

employing various algorithm-level approximations (see Sec-
tion IV-A) and by means of fixed-point arithmetic. Both of
these measures induce implementation-related non-idealities
that evidently affect the detection performance. Figure 6 com-
pares the detection rates using an ideal floating-point model,
a floating-point model including the approximations, and the
fixed-point golden model of the A2I converter. The parameter
set was identical for all the models: The SNR was 3 dB below
the quantization noise level, λ = 2.0, and the undersampling
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factor was 7.5. The ASSD algorithm performed 100 iterations
and the results were averaged over 10 Monte-Carlo trials.

As it can be seen from Figure 6, the used algorithm-level ap-
proximations only entail a small loss in detection performance;
the performance of the fixed-point implementation is further
reduced. However, we emphasize that careful parameter tuning
recovers this performance loss by a large extent.

D. Simulations with Real-World Data

In order to assess the real-world performance of the pro-
posed A2I converter, we carried out Matlab-based simulations
using real-world signals acquired by a 2.1 GHz frequency
analyzer during daytime at ETH Zurich, Switzerland. The
input spectrum, shown in light gray in Figure 7, includes
distinct channel aggregates with several MHz of bandwidth
at 900 MHz and 1800 MHz, and several single and multi-
tone signals. The RF spectrum was recovered by a Matlab
fixed-point golden model of the proposed A2I converter (blue
and dark gray circles); the results for this experiments are
summarized in Table I and remain consistent for different
signal trials. For this scenario the undersampling factor was
set to 5.5, which corresponds to an average sampling rate of
1.09 MHz, i.e., the average sampling rate was 3.85× below the

TABLE I
PERFORMANCE SUMMARY FOR REAL-WORLD TEST DATA

Quantization [bit] 4 Active threshold [dB] -45
Tmin [Tclk] 4 Signal SNR [dB] 21.9
Tmax [Tclk] 7 True positive rate [%] 60
Undersampling 5.5 False positive rate [%] < 0.1
ASSD iterations 100 Reconstruction SNR [dB] 26.3

TABLE II
POST-SYNTHESIS RESULTS IN 28 nm CMOS

Analog Front-End

Max. uniform sampling rate [GS/s] 1.5
Non-uniform sampling rates [GS/s] 0.3–1.5
Undersampling factors 4, 4.5, 5.5,7.5, 11.5
ADC max. power cons.a [mW] 4.5
ADC idle power cons. [mW] 3.0
Clock generator power cons.a [mW] 0.5
Energy efficiency [pJ/sample] 2.9
Areab [mm2] 0.1

Digital ASSD Unit

Max. clock frequency [MHz] 830
Max. throughputc [MS/s] 220
Standard cell area [mm2] 1.1
Standard cell based logicd [MGE] 1.7
SRAM macro cell area [mm2] 1.0
Memory size [MBit] 3.3
Power consumptione [W] 1.8

aEstimated power consumption at max. frequency, Vdd = 1 V, and 300 K.
bConservative estimate; layout is ongoing work.
cAt Kmax = 20 ASSD algorithm iterations.
d1 GE equals 0.4896µm2 in the given 28 nm CMOS technology.
eEstimated power consumption at 830 MHz, Vdd = 1 V, and 300 K.

Nyquist frequency of 4.2 GHz. The optimal value of λ = 2
has been determined via simulations; the detection threshold
was set at −45 dB in order to obtain roughly 1 % active bins.

From Figure 7, we can see that the dominant frequency
peaks5 are detected with high accuracy. We note, however,
that the true detection rate is reduced compared to the tests
performed using synthetic data. This can be partly attributed to
the fact that the input spectrum is only approximately sparse.
In order to improve the detection performance for frequency
bands of low SNR, one must resort to methods that either
exploit specific features of the underlying communication
standards or take multiple RF spectra into account [11].

E. Design Results of the A2I Converter

The design results for the analog, as well as the digital
front-end, are summarized in Table II. The analog front-
end is capable of acquiring wideband signals at an average
sampling rate as low as 522 MS/s using sampling frequencies
ranging from 0.3 GS/s to 1.5 GS/s. The non-uniform pseudo-
random clock generator runs at a maximum clock frequency
of 6 GHz, which results in a maximum sampling rate of
1.5 GS/s. We emphasize that the clock generator allows us
to configure the undersampling factor up to 11.5, which
renders the analog front-end power efficient in comparison to

5The two dominant aggregates at 900 MHz and 1800 MHz can be attributed
to signals resulting from European GSM bands.



12 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

conventional Nyquist rate ADCs with the same reconstruction
bandwidth. The digital ASSD unit includes memory macro-
cells operating at low maximum clock frequency, i.e., in the
range of 0.5 GHz to 1.5 GHz depending on the SRAM size
and aspect ratio. Nevertheless, the limiting factor in terms
of maximum operating frequency is the radix-32 PE of the
I/FFT unit, which is capable of achieving a maximum of
830 MHz, which is roughly 1/7 of the 6 GHz Nyquist input
clock. The designed A2I converter front-end delivers the non-
uniform samples to the on-chip spectrum reconstruction stage,
which in turn recovers a 215-bin spectrum with a spectral
resolution of 183 kHz per bin. The effective recovered spectral
bandwidth of the proposed A2I converter is 3 GHz. The
power estimates of the analog front-end were obtained from
transistor-level simulations using Cadence Virtuoso Spectre.
The indicated area estimates for the digital part were reported
by Synopsys Design Compiler after synthesis of the design. In
addition, a coarse power estimate based on extracted switching
activity from functional simulations was obtained from Mentor
Graphics Modelsim and Synopsys Design Compiler.

F. Comparison to Existing NUS-based A2I Converters
We now compare the proposed monolithic A2I converter to

other NUS-based A2I converter systems reported in literature.
Pfetsch et al. [52] propose a system based on off-the-shelf

components. An FPGA is used to control an ADC via pre-
calculated pseudo-random clock signals. Spectrum recovery is
carried out on a DSP for bandwidths in the kHz regime.

Wakin et al. [11] report a system built around a custom,
high-speed sample-and-hold stage (S&H) in a 0.45µm InP
HBT technology. The S&H is controlled by a pseudo-random
clock signal generated off-chip. The quantization is performed
by an off-the-shelf 14-bit 400 MS/s ADC. Spectrum recovery
is realized off-line on a PC using a two-stage recovery method
based on a 216-point FFT. The design achieves a 2.4 GHz ef-
fective bandwidth resulting in a spectral resolution of 73 kHz.

Trakimas et al. [12] demonstrate an integrated A2I sam-
pling and quantization front-end in 90 nm CMOS. The design
consists of a S&H stage and a 10-bit successive approxima-
tion register (SAR) ADC that is clocked asynchronously via
a pseudo-random clock signal generated off-chip. Spectrum
recovery up to 100 MHz of bandwidth is performed off-line.

With respect to the above implementations, our A2I con-
verter encompasses all necessary components, i.e., a non-
uniform sampling clock generator, an ADC stage, and a digital
spectrum recovery unit. Moreover, our design is capable of
acquiring RF signals in the GHz range using state-of-the-art
CMOS technology, which is in stark contrast to the design
in [11] that relies on expensive InP HBT technology.

We note that other A2I converter systems, such as the ones
in [53], [54], remain at the conceptual stage of development,
without actually providing circuit results. A corresponding
performance analysis and comparison based on real circuit
designs is certainly interesting and left for future work.

G. Limitations of the Proposed A2I Converter
The proposed A2I converter suffers from a variety of

limitations, which are mainly a direct consequence of CS.

The considered spectrum recovery algorithm is based on
the assumption that the RF spectrum is sparsely populated;
hence, our approach naturally fails in situations where this
condition is not satisfied. In situations where the spectrum is
densely populated, one needs to resort to conventional high-
rate and energy-inefficient ADCs. Nevertheless, as shown in
Figure 5(a), the detection performance degrades gracefully for
an increasing number of active frequency bands.

Virtually all CS recovery algorithms require a set of algo-
rithm parameters, which are, in general, difficult to determine
in practice. In our case, we deployed extensive simulations to
determine the underlying parameter set. The development of
a principled way of setting these parameters or even adapting
them to the signal sparsity is left for future work.

Even though we deploy a highly optimized ASSD unit, our
design recovers RF spectra at rates roughly 30× below real-
time. A corresponding real-time implementation would require
a substantial investment in silicon area (e.g., by means of
parallel recovery unit instances). However, such a brute-force
solution would increase the circuit area and power consump-
tion by about 30× and, hence, would be rather unsuitable for
applications targeting low cost, low area, and low power.

Finally, we emphasize that accurately detecting weak active
frequency bands suffers from a fundamental dynamic range
reduction problem [55] and thus, remains challenging. A pos-
sible way to overcome this limitation would be to aggregate a
series of reconstructed RF spectra to improve the performance
at low SNR, similarly to [11]; such an approach, however,
sacrifices temporal resolution for dynamic range, and increases
the storage requirements and processing latency.

VI. CONCLUSIONS

In this work, we have reported the design of a mono-
lithic, wideband, CS-based analog-to-information converter for
spectrum sensing applications. The proposed A2I converter
is designed in 28 nm CMOS and contains a 3 GHz signal
acquisition stage built from a 4-bit flash ADC that samples
the time-domain signals at sub-Nyquist rates using a non-
uniform sampling clock generated directly on-chip. The RF
spectral activity is recovered on-chip from coarsely quan-
tized and compressive measurements by means of a novel
accelerated sparse signal dequantization (ASSD) algorithm.
To achieve a high recovery throughput, we have developed
a corresponding high-throughput VLSI architecture relying
on a massively parallel radix-32 inverse/forward fast Fourier
transform (I/FFT) unit. System simulations with synthetic and
real-world data have shown that the proposed design is capable
of accurately detecting sparse spectral activity information at
low implementation cost.

The proposed monolithic A2I converter demonstrates a
potential paradigm shift in the design of modern signal con-
version circuits. In particular, CS with coarse quantization
enables one to reduce the complexity and implementation
effort in the analog front-end at the price of a more complex
digital recovery circuit. Such an approach is of particular
interest in advanced CMOS technologies, where the design
of corresponding analog circuits becomes more and more
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challenging; in contrast, standard-cell based digital design
fully benefits from technology scaling, and digital logic will
become even more inexpensive. In addition, the deployment of
sophisticated digital signal processing algorithms enables one
to compensate for quantization artifacts or mismatches/non-
idealities of analog front-ends implemented in nanometer
CMOS technologies.

We conclude by noting that alternatives to CS-based A2I
converter designs for spectrum sensing have been proposed
in the literature, such as energy detection [56], matched
filter detection [57], cyclostationary feature detection [57],
multi-resolution spectrum sensing [58], or Nyquist folding
receivers [59]. All these methods exploit specific features of
the underlying communication signals (e.g., periodicity) to
detect the active frequency components. The consideration of
such signal properties has the potential to further improve the
sensitivity of spectrum sensing; a thorough investigation of
such methods in combination with the proposed A2I converter
design is an interesting open research topic.
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