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Introduction Textbooks, lectures, and homework assignments were the answer to the main educational
challenges of the 19th century, but are now the main bottleneck of the 21st century. In particular, today’s
textbooks are typically static, linear in organization, time-consuming to develop, soon out-of-date, and ex-
pensive. Lectures remain a primarily passive experience of copying down what an instructor says. Homework
assignments that are not graded for weeks provide poor feedback to students on their learning progress. Even
more importantly, today’s courses provide only a “one-size-fits-all” learning experience that does not cater to
the background, interests, and goals of individual students. In contrast, we envision a statistically-minded,
machine-learning based, cognitive tutor that is able to learn about the student as the student learns about
the subject material being taught. This approach would allow the cognitive tutor to naturally assess which
knowledge areas the student understands well, as well as the areas that remain problematic, enabling crucial
tasks such as the automatic recommendation of remedial study material or additional practice problems [1].

Model and methods As a first step towards creating such a cognitive tutor, we propose a novel statistical
framework for representing domain knowledge based on sparse latent factor analysis [2]. We assume that the
underlying knowledge base is decomposable into a set of latent knowledge concepts that are to be learned by
the student. As an example, an introductory calculus course might have latent concepts such as “integration
by parts”, “differentiation of polynomials”, “l’Hôpital’s rule”, etc. For this model, we assume that there are N
students answering a subset of P questions involving K � P,N underlying (latent) concepts. Let the column
vector cj ∈ RK , j ∈ {1, . . . , N}, represent the latent concept understanding of the jth student, wi ∈ RK

represent the concept associations of question i; and let the scalar µi ∈ R model the intrinsic difficulty of
question i. Then, we propose the following model for the student–response relationships:

Zi,j = wT
i cj + µi, ∀i, j, and Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs. (1)

Here, Yi,j ∈ {0, 1} denotes the observed binary-valued response variable of the jth student to the ith question,
where 0 and 1 indicates a wrong and correct response, respectively. Ber(z) designates a Bernoulli distribution
with success probability z and Φ denotes an inverse link function (e.g. logit or probit), which maps a real
value to the success probability in [0, 1] of a binary-valued random variable. The set Ωobs contains the indices
of the observed entries in Y.

To improve the identifiability of our model, we impose additional constraints on W, namely sparsity and
non-negativity. The sparsity assumption implies that we expect each question to be related to only a small
number of concepts, which is typical in most education scenarios. The non-negativity assumption implies
that knowledge of a particular concept does not hurt one’s chances of answering a question correctly. A
particularly useful consequence of this assumption is that large, positive entries in C correspond to concepts
that students have mastered well, while negative values indicate concepts with poor mastery.

We propose two novel SPARFA (short for SPARse Factor Analysis) algorithms for solving the inference
problem in (1). The first method, SPARFA-M, is a low-complexity biconvex-optimization approach based on
the fast iterative shrinkage-thresholding algorithm [3]. The second method, SPARFA-B, is a Markov chain
Monte-Carlo (MCMC) algorithm that computes full posterior estimates for all parameters of interest (see [4]
for a related algorithm). Both methods enable us to determine i) a model for how concepts intersect with
questions and ii) each student’s understanding of the concepts. In addition, both algorithms can further
make use of side information, such as tags (or labels) on questions provided by content authors, which further
enhances the intelligibility of the knowledge decomposition.
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Figure 1: Question–concept association graph recov-
ered by SPARFA-B. Circles and rectangles designate
concepts and questions, respectively; the values in the
rectangles indicate intrinsic question difficulties.

Concept 1 Concept 2

Changes to land (45%) Evidences of the past (74%)
Properties of soil (28%) Mixtures and solutions (14%)
Uses of energy (27%) Environmental changes (12%)

Concept 3 Concept 4

Alternative energy (76%) Properties of soil (77%)
Environmental changes (19%) Environmental changes (17%)
Changes from heat (5%) Classifying matter (6%)

Concept 5

Formation of fossil fuels (54%)
Mixtures and solutions (28%)
Uses of energy (18%)

Table 1: Three most important tags and the associ-
ated relative weights for the five concepts recovered
in an 8th grade Earth-science curriculum.

Results We have demonstrated the validity of the SPARFA approach on several real-world educational
datasets. An example of its capabilities is provided in Figure 1, which shows the recovered knowledge base
for an 8th grade Earth-science curriculum maintained by the STEMscopes organization [5]. The data consists
of 145 students answering 80 questions that have been tagged by the content authors. The observed data is
highly incomplete, with only 13.5% of the total question/answer pairs being observed. Our proposed SPARFA
algorithms are able to recover the underlying question–concept associations, interpret the meaning of each
concept using tag information (shown in Table 1), and measure the intrinsic difficulty of each question. In
addition, SPARFA can determine the concept mastery for individual students and provide human-readable
feedback to students, i.e., which tags they have mastered well and which they have not.

Conclusions Our proposed statistical framework and both SPARFA algorithms automatically decompose
an educational domain into its constituent knowledge concepts by only evaluating binary-valued student
response data to a set of questions and user-provided tags on each question. Moreover, the output of the
SPARFA algorithms allow for the convenient visualization of course content via a bipartite graph consisting
of question and concept nodes. Our algorithms further provide estimates of the concept mastery for each
student in the course, which enables a number of vital tasks for cognitive tutoring, including automating
personalized feedback to students, recommending new questions, and refining course-content.
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