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Abstract—We consider an orthogonal frequency-division multi-
plexing (OFDM)-based downlink transmission scheme for large-
scale multi-user (MU) multiple-input multiple-output (MIMO)
wireless systems. In order to transmit signals with low peak-to-
average (power) ratio (PAR), we propose to exploit the massive
degrees-of-freedom available in large-scale MU-MIMO-OFDM
systems. Specifically, we jointly perform MU precoding, OFDM
modulation, and PAR reduction by solving a convex optimization
problem at the base station. Numerical results demonstrate
tremendous PAR-reduction capabilities of the proposed method,
which eventually enables us to use low-cost RF components for
the large-scale MU-MIMO-OFDM downlink.

I. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) wire-
less communication systems are a promising means to meet
the growing demands for higher throughput and improved
quality-of-service of next-generation multi-user (MU) wireless
systems [2]. The vision is that a large number of antennas at
the base-station (BS) serve a large number of users concur-
rently and in the same frequency band, but with the number of
BS antennas being much larger than the number of users [3],
say a hundred antennas serving ten users. Large-scale MIMO
systems also have the potential to reduce the operational power
consumption at the transmitter and enable the use of low-
complexity schemes for suppressing MU interference (MUI).
All these properties render large-scale MIMO a promising
technology for next-generation wireless systems.

While the theoretical aspects of large-scale MU-MIMO
systems have gained significant attention in the research
community (see, e.g., [2] for an overview), much less is
known about practical transmission schemes. As it was real-
ized in [4], practical implementations of large-scale MIMO
systems will require the use of low-cost and low-power
radio-frequency (RF) components. To this end, reference [4]
proposed a MU precoding scheme for frequency-flat channels,
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which relies on per-antenna constant-envelope (CE) transmis-
sion to enable efficient implementation using non-linear RF
components.

Practical wireless channels typically exhibit frequency-
selective fading and a low peak-to-average (power) ratio
(PAR) precoding solution suitable for such channels would
be desirable. Preferably, the solution should be such that the
complexity required in each (mobile) terminal is small (due to
stringent area and power constraints), whereas heavier process-
ing could be afforded at the BS. Orthogonal frequency-division
multiplexing (OFDM) [5] is an attractive and well-established
way of dealing with frequency-selective channels. In addition
to simplifying the equalization at the receiver, OFDM also
facilitates per-tone power and bit allocation, scheduling in the
frequency domain, and spectrum shaping. However, OFDM
is known to suffer from a high PAR, which necessitates the
use of linear RF components (e.g., power amplifiers) to avoid
out-of-band radiation and signal distortions. Unfortunately,
linear RF components are, in general, more costly and less
power efficient than their non-linear counterparts, which would
eventually result in exorbitant costs for large-scale BS imple-
mentations having hundreds of antennas. Therefore, it is of
paramount importance to reduce the PAR of OFDM-based
large-scale MU-MIMO systems to facilitate corresponding
low-cost and low-power BS implementations.

To combat the challenging linearity requirements of OFDM,
a plethora of PAR-reduction schemes have been proposed
for point-to-point single-antenna and MIMO wireless systems
(see, e.g., [6] for an overview). For MU-MIMO systems,
however, a straightforward adaptation of these schemes is non-
trivial, mainly because MU systems additionally require the
removal of MUI using a precoder [7]. PAR-reduction schemes
suitable for the MU-MISO and MU-MIMO downlink were
described in [8] and [9], respectively, and rely on Tomlinson-
Harashima precoding. Both schemes, however, require special-
ized signal processing in the (mobile) terminals (e.g., modulo
reduction), which prevents their use in conventional MIMO-
OFDM systems, such as IEEE 802.11n or 3GPP LTE.

A. Contributions

In this paper, we present a novel downlink transmission
scheme for large-scale MU-MIMO-OFDM wireless systems.
The proposed method only affects the signal processing at



the BS while leaving the processing required at each terminal
untouched. The key idea is to exploit the excess of degrees-
of-freedom (DoF) offered by equipping the BS with a large
number of antennas and to jointly perform MU precoding,
OFDM modulation, and PAR reduction, referred to as PMP
in the remainder of the paper. We formulate PMP as a con-
vex optimization problem and demonstrate its PAR-reduction
capabilities using numerical simulations.

B. Notation

Lowercase boldface letters stand for column vectors and
uppercase boldface letters designate matrices. For a matrix A,
we denote its transpose, conjugate transpose, and pseudo-
inverse by AT , AH , and A† = AH

(
AAH

)−1
, respectively.

The entry in the kth row and `th column of A is [A]k,`; the kth
entry of a is designated by [a]k. The M ×M identity matrix
is denoted by IM , the M ×N all-zeros matrix by 0M×N , and
FM refers to the M ×M discrete Fourier transform (DFT)
matrix. The Euclidean (or `2) norm of a is denoted by ‖a‖2,
‖a‖∞ = maxk|[a]k| stands for the `∞-norm, and the `∞̃-
norm [10] is defined as ‖a‖∞̃ = max

{
‖<{a}‖∞, ‖={a}‖∞

}
with <{a} and ={a} representing the real and imaginary
part of a, respectively. Sets are designated by upper-case
calligraphic letters; the cardinality and complement of the
set T is |T | and T c, respectively.

II. PRELIMINARIES

We start by introducing the system model followed by an
overview of MU precoding schemes and of fundamental PAR
issues arising in OFDM-based communication systems.

A. System Model

We consider an OFDM-based MU-MIMO downlink sce-
nario as depicted in Fig. 1. The BS is assumed to have a
significantly larger number of transmit antennas N than the
number M � N of independent terminals (users); each ter-
minal is equipped with a single antenna only. The signal vector
sw ∈ OM contains information for each of the M users, where
w = 1, . . . ,W indexes the OFDM tones, W corresponds to
the total number of OFDM tones, O represents the set of scalar
complex-valued constellations, and [sw]m ∈ O corresponds
to the symbol at tone w to be transmitted to user m. We
normalize the symbols to satisfy E

{
|[sw]m|2

}
= 1/M . To

shape the spectrum of the transmitted signals, OFDM systems
typically specify certain unused tones (e.g., at both ends of the
spectrum [5]). Hence, we set sw = 0M×1 for w ∈ T c where T
designates the set of tones used for data transmission.

In order to remove MUI, the signal vectors sw, ∀w
are passed through a precoder, which generates W vec-
tors xw ∈ CN according to a given precoding scheme (see
Section II-B). Since precoding causes the transmit power
P =

∑W
w=1‖xw‖22 to depend on the signals sw, ∀w and the

channel state, we normalize the precoded vectors xw, ∀w prior
to transmission as

x̂w = xw/
√∑

W
w=1‖xw‖22, w = 1, . . . ,W,

to ensure unit transmit power. We emphasize that this normal-
ization is an essential step in practice (i.e., to meet regulatory
power constraints), but to simplify the presentation, the nor-
malization is omitted in the description of the precoders to
follow (but normalization employed in the simulation results
shown in Section IV). Hence, in what follows xw and x̂w are
treated interchangeably.

The (normalized) vectors xw, ∀w are then re-ordered (from
user orientation to transmit-antenna orientation) according to
the following one-to-one mapping:

[x1 · · · xW ] = [a1 · · · aN ]
T
, (1)

where the W -dimensional vector an corresponds to the
(frequency-domain) signal to be transmitted from the nth
antenna. The time-domain samples are obtained by applying
the inverse DFT (IDFT) according to ân = FH

Wan followed
by parallel-to-serial (P/S) conversion. Prior to modulation and
transmission over the wireless channel, a cyclic prefix (CP) is
added to the (time-domain) samples ân, ∀n to avoid ISI [5].

To simplify the exposition, we specify the input-output
relation of the wireless channel in the frequency domain only.
Concretely, we consider

yw = Hwxw + nw, w = 1, . . . ,W, (2)

where yw denotes the wth receive vector, Hw ∈ CM×N

represents the MIMO channel matrix associated with the
wth OFDM tone, and nw is an M -vector of i.i.d. complex
Gaussian noise with zero-mean and variance N0 per entry.
The average receive signal-to-noise-ratio (SNR) is defined by
SNR = 1/N0. Finally, each of the M user terminals per-
forms OFDM demodulation to obtain the received (frequency-
domain) signals [yw]m, w = 1, . . . ,W (see Fig. 1).

B. Linear MU Precoding Schemes

In order to avoid MUI, precoding must be employed at the
BS. To this end, we assume the channel matrices Hw, ∀w to be
known perfectly at the transmit-side.1 Linear precoding now
amounts to transmitting xw = Gwsw, where Gw ∈ CN×M

is a suitable precoding matrix. One of the most prominent
precoding schemes is least-squares (LS) precoding (or linear
zero-forcing precoding), which corresponds to Gw = H†w
and perfectly removes all MUI since HwH

†
w = IM . In Sec-

tion IV, we will also consider matched filter (MF) precoding,
which amounts to setting Gw = HH

w but does not perfectly
remove MUI. Nevertheless, MF precoding was shown in [3]
to perfectly remove MUI in the large-antenna limit, i.e., when
N →∞.

C. Peak-to-Average Ratio (PAR)

OFDM transmission causes the signals ân, ∀n to exhibit
a large dynamic range [5]. Such signals are susceptible to
non-linear distortions (e.g., saturation or clipping) typically
induced by real-world RF components. To avoid unwanted

1In large-scale MU-MIMO systems, channel-state information at the trans-
mitter would probably be acquired through pilot-based training in the uplink
and by exploiting reciprocity of the wireless channel [2], [3].



Fig. 1. Large-scale MU-MIMO-OFDM downlink (left: BS with N transmit antennas; right: M independent single-antenna terminals). The proposed downlink
transmission scheme, referred to as PMP, combines MU precoding, OFDM modulation, and PAR reduction (highlighted by the dashed box in the BS).

out-of-band radiation and signal distortions altogether, linear
RF components and PAR-reduction schemes are key to suc-
cessfully deploy OFDM in practical systems.

1) PAR Definition: The dynamic range of the transmitted
OFDM signals is typically characterized through the peak-to-
average (power) ratio (PAR). We define the PAR at the nth
transmit antenna as2

PARn =
2W‖ân‖2∞̃
‖ân‖22

. (3)

To minimize distortion due to hardware non-linearities, the
transmit signals should have a PAR that is close to one, which
can either be achieved by CE transmission [4] or by using
sophisticated PAR-reduction schemes.

2) PAR-Reduction Schemes for OFDM: In order to reduce
the PAR in single-antenna and point-to-point MIMO systems,
a large number of PAR-reduction algorithms have been devel-
oped in the last decade (see, e.g., [6] for an overview). For
the MU-MIMO downlink, a method has been introduced re-
cently in [9]; this method, however, requires dedicated signal-
processing algorithms at both ends of the wireless link (e.g.,
modulo reduction in the receiver). In contrast, the transmission
scheme presented next aims at reducing the PAR by only
exploiting the excess of transmit antennas available at the
BS, which has the key advantage of being transparent to the
receivers, i.e., it does not require any special signal-processing
algorithms in the (mobile) terminals.

III. DOWNLINK TRANSMISSION SCHEME

The main idea of the downlink transmission scheme devel-
oped next is to jointly perform MU precoding, OFDM mod-
ulation, and PAR reduction, by exploiting the DoF available
in large-scale MU-MIMO systems. To convey the underlying
idea, we start by considering a simplified MIMO system. We
then present the MU-MIMO-OFDM downlink transmission
scheme in full detail.

2We emphasize that alternative PAR definitions exist in the literature, e.g.,
using the `∞-norm in the nominator instead of the `∞̃-norm (and W instead
of 2W ). Nevertheless, the relation 1

2
‖ân‖2∞ ≤ ‖ân‖2∞̃ ≤ ‖ân‖2∞ shown

in [10, Eq. 12] ensures that reducing the PAR as defined in (3) also reduces
an `∞-norm-based PAR definition (and vice versa). Moreover, the theory and
algorithms presented in this paper can, for example, be formulated to directly
reduce an `∞-norm-based PAR.

A. Basic Idea and Fundamental Properties

Let us consider a narrow-band flat-channel MU-MIMO
system with the real-valued input-output relation y = Hx+n
and an M × N channel matrix satisfying M < N . To
eliminate MUI, the transmit-vector x must satisfy the pre-
coding constraint s = Hx, which ensures that y = s + n
when transmitting the vector x. Since M < N , the equation
s = Hx is underdetermined; this implies that there are, in
general, infinitely many solutions x satisfying the precoding
constraint. In order to find a suitable vector ẋ having a
small dynamic range (or low PAR), we consider the following
convex optimization problem:

(P-INF) minimize
x̃

‖x̃‖∞ subject to s = Hx̃.

As (P-INF) minimizes the magnitude of the largest entry of x̃,
we can expect that its solution ẋ exhibits low PAR.

To characterize the benefit of having a large number of
transmit antennas at the BS on the PAR when using (P-INF)
for precoding, we use a result derived in [11, Prop. 1]. If H
has full rank and 1 ≤M < N , then the PAR of the solution ẋ
resulting from (P-INF) generally3 satisfies

PARP-INF =
N‖ẋ‖2∞
‖ẋ‖22

≤ N

N −M + 1
. (4)

From this observation, we see that for a constant number of
users M and in the large-antenna limit N →∞, the bound (4)
implies that PARP-INF → 1. Hence, for systems having a
significantly larger number of transmit antennas than users—
as is the case for typical large-scale MU-MIMO systems [2],
[3]—a precoder that implements (P-INF) is able to achieve a
PAR arbitrarily close to unity. This means that in the large-
antenna limit of N → ∞, (P-INF) yields constant-envelope
signals, while being able to perfectly eliminate the MUI.

B. Joint Precoding, Modulation, and PAR Reduction (PMP)

The application of (P-INF) to each time-domain sample
after OFDM modulation would reduce the PAR but, un-
fortunately, would no longer allow the equalization of ISI
using conventional OFDM demodulation. To enable the use

3Note that [11, Prop. 1] implicitly excludes certain specific instances of H.



of conventional OFDM demodulation in the receiver, we next
formulate the convex optimization problem to jointly perform
MU precoding, OFDM modulation, and PAR reduction.

We start by specifying the necessary constraints. In order to
remove MUI, the following precoding constraints must hold:

sw = Hwxw, w ∈ T . (5)

To ensure certain desirable spectral properties of the transmit-
ted OFDM signals, the inactive OFDM tones (indexed by T c)
must satisfy the following shaping constraints:

0N×1 = xw, w ∈ T c. (6)

PAR reduction is achieved similarly to (P-INF), with the main
difference that we want to minimize the `∞̃-norm of the
time-domain samples ân, ∀n. In order to simplify notation,
we define the (linear) mapping between the time-domain
samples ân, ∀n, and the wth (frequency-domain) transmit
vector xw as xw = fw(â1, . . . , âN ), where the linear function
fw(·) applies the DFT according to an = FW ân, ∀n and
performs the re-ordering defined in (1).

With (5) and (6), we are able to formulate the downlink
transmission scheme as a convex optimization problem:

(PMP)


minimize
ã1,...,ãN

max
{
‖ã1‖∞̃ , . . . , ‖ãN‖∞̃

}
subject to sw = Hwfw(ã1, . . . , ãN ), w ∈ T

0N×1 = fw(ã1, . . . , ãN ), w ∈ T c.

The vectors ân, ∀n which minimize (PMP) correspond to
the time-domain OFDM samples to be transmitted from each
antenna. Following the reasoning of Section III-A, we expect
these vectors to have low PAR (see Section IV for correspond-
ing simulation results).

C. Solving (PMP) at Low Computational Complexity

The high dimensionality of (PMP) for large-scale MIMO
systems necessitates corresponding efficient optimization al-
gorithms. To this end, an efficient algorithm for solving a
relaxed version of (PMP), referred to as fast iterative truncation
algorithm (FITRA), was developed in [1]. This algorithm
requires to restate (PMP) into Lagrangian form as

(PMP-L) minimize
a

λ‖a‖∞̃ +
∥∥b−Ca

∥∥2
2
,

where a = [ âT1 · · · âTN ]T contains all time-domain vectors,
b is a concatenation of sw, w ∈ T and |T c| all-zeros vectors
of dimension N , the matrix C implements4 the right-hand-side
of the constraints (5), and λ > 0 is a regularization parameter.

A common approach to solve optimization problems of the
form (PMP-L) is to use interior-point methods [12]. Such
methods, however, often require prohibitively high computa-
tional complexity for the problem sizes faced in large-scale
MIMO systems. Hence, to enable practical implementation of
PMP, more efficient algorithms are of paramount importance.
To this end, one can use FITRA developed in [1], which

4For the sake of simplicity of exposition, the actual structural details of the
matrix C are omitted.

efficiently solves (PMP-L) and, hence, performs PMP at low
computational complexity.

IV. SIMULATION RESULTS

In this section, we demonstrate the efficacy of the proposed
joint precoding, modulation, and PAR reduction approach.

A. Simulation Parameters

The simulation results shown next are for a MU-MIMO-
OFDM system having N = 100 antennas at the BS and
serving M = 10 single-antenna terminals. We employ OFDM
with W = 128 tones and use a spectral map T as specified
in the 40 MHz-mode of IEEE 802.11n. We consider coded
transmission, i.e., for each user, we independently encode
216 information bits using a convolutional code (rate-1/2,
generator polynomials [133o 171o], and constraint length 7),
apply random interleaving (across OFDM tones), and map the
coded bits to a 16-QAM constellation (using Gray labeling).

To implement (PMP-L), we use FITRA as detailed in [1]
with a maximum number of K = 2000 iterations and a
regularization parameter of λ = 0.25. In addition to LS and
MF precoding, we also consider a baseline precoding and
PAR-reduction method. To this end, we employ LS precoding
followed by truncation of the entries of the time-domain
samples ân, ∀n; we use a clipping strategy where one can
specify a certain target PAR.

The precoded and normalized vectors are then transmitted
over a frequency-selective channel modeled as a tap-delay line
with T = 4 taps. The time-domain channel matrices Ĥt,
t = 1, . . . , T , that constitute the impulse response of the
channel, have i.i.d. circularly symmetric Gaussian distributed
entries with zero mean and unit variance. To detect the
transmitted information bits, each user m performs soft-output
demodulation of the received symbols [yw]m, w = 1, . . . ,W
and applies a soft-input Viterbi decoder.

B. Performance Measures

To compare the PAR characteristics of different precoding
schemes, we use the complementary cumulative distribution
function (CCDF) defined as

CCDF(PAR) = P{PARn > PAR}.

The error-rate performance is characterized by the average
(across users) symbol-error rate (SER); a symbol is said to
be in error if at least one of the information bits per received
OFDM symbol is decoded in error. To characterize the amount
of signal power that is transmitted outside the set of active
tones T , we define the out-of-band (power) ratio (OBR) as
follows:

OBR =
|T |
∑

w∈T c‖xw‖22
|T c|

∑
w∈T ‖xw‖22

.

Note that for LS and MF precoding, we have OBR = 0, as
they operate independently on each of the W tones; for PMP
or LS followed by clipping, we have OBR > 0 in general.



(a) PAR performance comparison. PMP effectively reduces the PAR com-
pared to LS and MF precoding, whereas LS+clip achieves 4 dB PAR. (Note
that the curves of LS and MF overlap.)

(b) Symbol error-rate (SER) performance. Renormalization causes 1 dB
SNR-performance loss for PMP compared to LS. The loss of LS+clip is
caused by normalization and residual MUI.

Fig. 2. PAR and SER performance for various precoding schemes. The target PAR for LS+clip is 4 dB and λ = 0.25 for PMP using on FITRA.

C. Performance and Capabilities of PMP

Figure 2 demonstrates the efficacy of PMP and compares
its PAR-reduction and error-rate performance to those of LS
and MF precoding, as well as to LS precoding followed by
clipping (denoted by “LS+clip”). One can immediately see that
PMP reduces the PAR by more than 11 dB compared to LS
and MF precoding (at CCDF(PAR) = 1%); LS+clip achieves
4 dB PAR deterministically. In order to maintain a constant
transmit power, the signals resulting from PMP require a
stronger normalization (roughly 1 dB) than the signals from
LS precoding; this behavior causes the SNR-performance loss
compared to LS (see Fig. 2(b)). The performance loss of MF
and LS+clip is mainly caused by residual MUI. The OBR of
LS+clip is −11.9 dB, which is a result of ignoring the spectral
constraints, whereas the OBR of PMP is negligible (i.e., less
than −52 dB). We finally emphasize that the regularization
parameter λ of FITRA used for solving (PMP) enables a
trade-off between error-rate performance, OBR, and PAR-
reduction performance. A corresponding detailed discussion
can be found in the journal version of this paper [1].

V. CONCLUSIONS

We have proposed a framework to jointly perform pre-
coding, modulation, and PAR reduction, referred to as PMP,
which exploits the large number of degree-of-freedoms offered
by large-scale MU-MIMO systems. In essence, the downlink
channel matrix has a high-dimensional null-space, which en-
ables us to shape the transmit signals to have “hardware-
friendly” properties, such as low PAR. By formulating PMP as
a convex optimization problem, one can use the fast iterative
truncation algorithm (FITRA) developed in [1] to carry out
PMP at low computational complexity.

Numerical experiments have shown that PMP is able to

reduce the PAR by more than 11 dB compared to conventional
precoding methods, without creating noticeable out-of-band
interference; both properties substantially alleviate the linearity
requirements of the radio-frequency (RF) components. Fur-
thermore, since PMP only affects the signal processing at the
BS, it can be deployed in existing MIMO-OFDM wireless
communication systems, such as IEEE 802.11n.
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