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Abstract

We analyze the (computational) complexity distribution of sphere decoding (SD) for random infinite

lattices. In particular, we show that under fairly general assumptions on the statistics of the lattice basis

matrix, the tail behavior of the SD complexity distribution is fully determined by the inverse volume of

the fundamental regions of the underlying lattice. Particularizing this result to N ×M , N ≥ M , i.i.d.

circularly symmetric complex Gaussian lattice basis matrices, we find that the corresponding complexity

distribution is of Pareto-type with tail exponent given by N −M + 1. A more refined analysis reveals

that the corresponding average complexity of SD is infinite for N = M and finite for N > M . Finally,

for i.i.d. circularly symmetric complex Gaussian lattice basis matrices, we analyze SD preprocessing

techniques based on lattice-reduction (such as the LLL algorithm or layer-sorting according to the V-

BLAST algorithm) and regularization. In particular, we show that lattice-reduction does not improve the

tail exponent of the complexity distribution while regularization results in a SD complexity distribution

with tails that decrease faster than polynomial.
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I. INTRODUCTION

Finding the closest lattice point in an infinite lattice is commonly referred to as the closest

lattice point (CLP) problem (see, e.g., [1]). The sphere decoding (SD) algorithm [1]–[8] is a

promising approach for solving the CLP problem efficiently. The (computational) complexity of

SD, as measured in terms of the number of lattice points searched by the algorithm, depends

strongly on the lattice basis matrix and is, in general, difficult to characterize analytically.

However, if the lattice basis matrix is assumed random, the complexity of SD is random as well

and one can resort to a characterization of the complexity distribution of SD. This approach is

similar in spirit to the line of work conducted in the 1960’s aimed at characterizing the complexity

distribution of sequential decoding of convolutional codes [9], [10], where the randomness of

complexity is a consequence of random additive noise. Previous work on the complexity of

SD focused on characterizing the mean and the variance of SD complexity for i.i.d. Gaussian

lattice basis matrices [11]–[14]. Characterizing and understanding the complexity distribution is

important, for example, when SD is used under practically relevant run-time constraints (see,

e.g., [8]). In this paper, we make a first attempt in this direction by analyzing the tail behavior of

the SD complexity distribution in terms of corresponding tail exponents (i.e., polynomial decay

rates). This approach allows us, among others, to characterize the impact of lattice basis matrix

preprocessing–e.g., regularization or lattice-reduction–on the tail behavior of the SD complexity

distribution.

The main contributions of this paper can be summarized as follows:

• Under fairly general assumptions on the statistics of the lattice basis matrix and for a

large class of preprocessing methods, we prove that the tail exponent of the SD complexity

distribution is given by the tail exponent of the distribution of the inverse volume of the

fundamental regions of the underlying lattice. These results comprise, for example, lattice

basis matrices with non-zero mean correlated complex Gaussian distributed entries as well

as preprocessing through lattice-reduction (LR) (see, e.g., [1]).

• Specializing our main result to the case of N ×M , N ≥ M , i.i.d. circularly symmetric

complex Gaussian lattice basis matrices, we find that the complexity distribution of SD is

of Pareto-type (i.e., the corresponding tails decrease polynomially) with tail exponent given

by N −M + 1. We show that this tail exponent cannot be improved (i.e., increased) by LR
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including layer-sorting (LS) (e.g., according to the V-BLAST algorithm [15]) as a special

case. We find, however, that regularization of the lattice basis matrix results in a complexity

distribution with faster-than-polynomially decreasing tails. Here it is important to note that

solving the CLP on a regularized lattice basis matrix does, in general, not yield the solution

to the original CLP.

• For i.i.d. circularly symmetric complex Gaussian lattice basis matrices, we show that the

average (w.r.t. the lattice basis matrix) complexity of SD is infinite for N = M and finite

for N > M ; this complements results derived in [11], [12].

Notation: We write Ai,j for the entry in the ith row and jth column of the matrix A and

xi for the ith entry of the vector x. Slightly abusing common terminology, we call an N ×M ,

N ≥M , matrix A unitary if it satisfies AHA = I, where H denotes conjugate transposition, i.e.,

transposition T followed by element-wise complex conjugation ∗, and I is the identity matrix

of appropriate size. The inverses of A and AH are referred to as A−1 and A−H , respectively.

For a N ×M matrix A, vec(A) = [aT1 . . . a
T
M ]T , where ai, i = 1, . . . ,M , is the ith column

of A. The ordered eigenvalues of a positive semidefinite M ×M matrix A are referred to as

λi(A), i = 1, . . . ,M , with ordering such that 0 ≤ λ1(A) ≤ · · · ≤ λM(A); the corresponding

determinant is given by det(A) =
∏M

i=1 λi(A). The Euclidean- and the Frobenius norm are

denoted by ‖ · ‖ and ‖ · ‖F, respectively, and |X | refers to the cardinality of the set X . The

ceil-function is designated as d·e. Furthermore, CZ stands for the set of Gaussian integers, i.e.,

CZ = Z +
√
−1 Z, where Z is the set of integers. The lattice with N ×M , N ≥ M , full-rank

basis matrix A is defined as

L(A) =
{
Ad : d ∈ (CZ)M

}
⊂ CN .

For N = M , the corresponding covering radius is given by the largest distance from a point in

CM to its closest lattice point in L(A) [16], i.e., by

µ(A) = max
x∈CM

min
d∈(CZ)M

‖x−Ad‖. (1)

E{·} stands for the expectation operator. We write x ∼ χa if the RV x is χ-distributed with

a > 0 degrees of freedom and normalized such that E{x2} = a. The probability density function

(pdf) of the RV x ∼ χa is then given by [17]

fx(t) =
21−a/2

Γ(a/2)
ta−1e−t

2/2, t ≥ 0 (2)
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and fx(t) = 0, t < 0, where Γ(a) =
∫∞

0
ya−1e−ydy refers to the Gamma function. For the

corresponding cumulative distribution function (cdf) we have P
[
x ≤ t

]
= γa/2(t2/2), where

γa(t) denotes the (regularized) lower incomplete Gamma function. If x ∼ χa, the RV y = x2 is

χ2-distributed with a > 0 degrees of freedom and cdf P
[
y ≤ t

]
= γa/2(t/2). A complex Gaussian

RV x with mean µx and variance σ2
x, i.e., x− µx is circularly symmetric Gaussian distributed,

is denoted as x ∼ CN (µx, σ
2
x). The “little o” notation g(x) = o(f(x)), x → x0, stands for

limx→x0 g(x)/f(x) = 0. We write d
= for equality in distribution. The natural logarithm is referred

to as log(·). By g(x)
a∼ f(x), x→ x0, we mean that limx→x0 g(x)/f(x) = 1. We write g(x)

.
=

f(x), x → x0, to mean that limx→x0 log g(x)/log(x) = limx→x0 log f(x)/log(x), assuming, of

course, that the corresponding limits exist. The symbols
.

≤ and
.

≥ are defined analogously. We

write g(x)
.

= x±∞, x→ x0, and g(x)
.

= x0, x→ x0, respectively, for limx→x0log g(x)/log(x) =

±∞ and limx→x0log g(x)/log(x) = 0.

A. The Closest Lattice Point Problem

The CLP problem (or integer least squares problem) refers to computing

d̂ = arg min
d∈(CZ)M

‖r−Hd‖2 (3)

for a given vector r ∈ CN and a given full-rank matrix H ∈ CN×M , N ≥M . In words, solving

(3) amounts to finding the point in the lattice L(H) that is closest (in Euclidean sense) to r. In

communications, (3) is known as the maximum-likelihood (ML) detection problem for detecting

a transmitted vector d′ ∈ (CZ)M based on the linear model

r = Hd′ + w (4)

with H known at the receiver and noise w having i.i.d. circularly symmetric complex Gaussian

components. For example, in the case of ML detection in multiple-input multiple-output (MIMO)

wireless systems with spatial multiplexing, H is the channel matrix, which is typically assumed

to consist of i.i.d. circularly symmetric complex Gaussian components. For examples of further

ML detection problems, which are of the form (3), we refer to [6], [12], [18]. We note that in

the practically relevant case of d′ in (4) being drawn from a finite subset A of (CZ)M , ML

detection corresponds to (3) only if A is relaxed to (CZ)M . Such a relaxation step induces a

performance loss (see, e.g., [19]) but is necessary if, e.g., SD in combination with LLL-based

preprocessing is used.
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B. Sphere Decoding

A prominent approach for solving (3) is the SD algorithm [1]–[8]. In the following, we

consider Fincke-Pohst SD [2] without radius reduction and restarting as done, e.g., in [11]–[14].

The algorithm starts by computing the (unique) QR-decomposition (QRD) H = QR, where

Q is unitary of dimension N ×M and R is an M ×M upper triangular matrix with positive

real-valued elements on its main diagonal. We note that (3) can equivalently be written as

d̂ = arg min
d∈(CZ)M

‖y −Rd‖2 (5)

where y = QHr. Next, (5) is solved subject to a sphere constraint (SC), which amounts to

considering only those lattice points Rd that lie within a hypersphere of radius ρ around y, i.e.,

all d that satisfy

‖y −Rd‖2 ≤ ρ2. (6)

Here, the sphere radius ρ has to be chosen sufficiently large for the search sphere to contain at

least one lattice point Rd. Note, however, that if ρ is chosen too large, too many points will

satisfy the SC and the complexity of SD will be high. As detailed next, triangularization and

the corresponding SC (6) enable an efficient recursive solution of the CLP problem in (3).

Consider the length-k subvectors dk ∈ (CZ)k of d defined as dk = (dM−k+1 · · · dM)T ,

k = 1, . . . ,M , where k is called the layer index. The metric ‖y − Rd‖2 = ‖yM − RMdM‖2

can be computed recursively according to

‖yk −Rkdk‖2 = ‖yk−1 −Rk−1dk−1‖2 + |∆k(dk)|2 (7)

where

|∆k(dk)|2 =

∣∣∣∣yM−k+1 −
M∑

i=M−k+1

RM−k+1,i di

∣∣∣∣2 (8)

denotes the metric update for layer k, Rk refers to the k × k bottom right (upper triangular)

submatrix of R associated with dk, and yk = (yM−k+1 · · · yM)T . Thus, with (7), a necessary

condition for d to satisfy the SC is that any associated dk satisfy the partial SC

‖yk −Rkdk‖2 ≤ ρ2. (9)

This formulation now enables the following approach for finding all integer vectors d that satisfy

(6) in an efficient (recursive) manner. Starting with layer k = 1, the condition (9) reduces to

|yM −RM,MdM |2 ≤ ρ2 (10)
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which states that the M th component dM of all d ∈ (CZ)M satisfying (6) must be located inside

a circle of radius ρ/RM,M and center point yM/RM,M . In the next step, for every dM ∈ CZ

that satisfies (10), one finds all dM−1 ∈ CZ such that (9) is satisfied for k = 2. This procedure

is repeated until k = M . Among the lattice points delivered by the algorithm, the one with

minimum ‖y −Rd‖2 constitutes the solution of (5).

II. COMPLEXITY DISTRIBUTION OF SD

We define the computational complexity of SD as the number of lattice points searched by the

algorithm, i.e., the total number of vectors dk ∈ (CZ)k, k = 1, . . . ,M , that satisfy the partial

SCs in (9) (cf. [11], [20]). Specifically, we define the kth layer complexity of SD as

Sk =
∣∣{dk ∈ (CZ)k : ‖yk −Rkdk‖2 ≤ ρ2

}∣∣ (11)

with the resulting total complexity

S =
M∑
k=1

Sk. (12)

It was shown in [7] that S is proportional (at least for the finite-lattice case) to the VLSI-

implementation complexity of SD.

A. Complexity Distribution and Tail Exponents

The quantities Sk, k = 1, . . . ,M , and S, defined above, are functions of H, r, and ρ. In the

following, we let H and r be random (potentially statistically dependent) and we let ρ be a

deterministic, strictly positive, and finite scalar. For example, in the case of ML detection of the

transmitted data vector d′ in MIMO wireless systems with spatial multiplexing, r is given by

(4), where the entries of H (the channel matrix) and w (the noise vector) are typically assumed

i.i.d. circularly symmetric complex Gaussian. Furthermore, ρ is typically chosen as a function

of the noise variance such that the SD algorithm finds d′ with a certain (high) probability

(cf. [4], [11], [21]). Since H and r are random, Sk and S are random as well and can be

characterized through their respective (complementary) distributions: The layer-wise complexity

distributions P[Sk ≥ L], k = 1, . . . ,M , and the total complexity distribution P[S ≥ L]. While

these distributions are hard to come by analytically, it turns out that the corresponding tail

exponents ξk, k = 1, . . . ,M , and ξ, defined by

P[Sk ≥ L]
.

= L−ξk , L→∞
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and

P[S ≥ L]
.

= L−ξ, L→∞

are amenable to an analytical characterization. We note that S =
∑M

k=1 Sk implies

ξ = min{ξ1, . . . , ξM}. (13)

The tail exponents characterize the tail behavior of the corresponding complexity distributions

in terms of polynomial decay rates in L for L → ∞. We note that the tail exponents are

non-negative by definition. If the tail exponent is infinity or zero, the corresponding complexity

distribution decreases faster or slower than polynomial in L, respectively. In particular, for finite

non-zero tail exponents, the corresponding complexity distributions are of Pareto-type meaning

that they decay polynomially in L for large L.

The tail exponents can be used to draw general conclusions about the corresponding complexity

distributions as follows. If the complexity distributions P[S(1) ≥ L] and P[S(2) ≥ L] have tail

exponents ξ(1) and ξ(2) with ξ(1) > ξ(2), we have P[S(1) ≥ L] < P[S(2) ≥ L] for sufficiently large

L. Similarly, if the complexity distribution P[S ≥ L] has tail exponent ξ, we have

L−(ξ+δ) ≤ P[S ≥ L] ≤ L−(ξ−δ) (14)

for any δ > 0 and sufficiently large L. Larger tail exponents are, in general, desirable as they

imply that the probability of the complexity being atypically large is smaller. This, for example,

is advantageous in the context of MIMO detection under practically relevant run-time constraints,

i.e., when limits on the number of lattice points that can be searched are imposed (see, e.g., [8]).

We conclude this section by emphasizing that the complexity tail exponent as defined above

characterizes one specific characteristic of the corresponding complexity distribution and does

by no means yield a full picture. For example, if P[S ≥ L] = c L−1, with some constant c > 0

not depending on L, the corresponding tail exponent equals 1 irrespective of the multiplicative

constant c. Furthermore, if the tail exponents of P[S(1) ≥ L] and P[S(2) ≥ L] are equal, i.e.,

ξ(1) = ξ(2) = ξ, no order relation between P[S(1) ≥ L] and P[S(2) ≥ L] can be inferred from ξ.

B. Main Result

Preliminaries: The complexity of SD can often be reduced by employing additional channel

matrix preprocessing techniques such as lattice-reduction (LR) (see, e.g., [1]) or regularization
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(see, e.g., [8], [22]). For LR, which includes layer-sorting (LS) as a special case, SD is applied to

the triangularized form of the CLP problem (5) obtained by applying the QRD to HT instead of

H, where T is a unimodular matrix depending solely on H (see Section III-C for more details).

In the remainder of the paper, any type of preprocessing is incorporated into the mapping from

r to y and the mapping from H to R. In particular, we assume that y is a general function of r

and H and that R is a general function of H only, where both functions depend on the specific

preprocessing1. We note that this implies that the submatrices Rk, k = 1, . . . ,M , of R (cf. (9))

are general functions of H only.

Theorem 1: Consider SD with fixed ρ (0 < ρ <∞) and let H and r be random (potentially

statistically dependent). The corresponding kth layer complexity Sk, defined in (11), satisfies

P[Sk ≥ L]
.

= P
[

1

det(RH
k Rk)

≥ L

]
, L→∞ (15)

provided all of the following conditions are met:

• Statistics of H: There exists a constant β ∈ R, β > 0, such that the probability density

function (pdf) f(H) of H satisfies the scaling property

f(H) ≥ βf(aH) (16)

for all H ∈ CN×M and all a ∈ R, a > 1.

• Statistics of H and preprocessing: The covering radius µ(R) of L(R) satisfies

P[µ(R) ≥ L]
.

= L−∞, L→∞. (17)

• Preprocessing: Let det(RH
k Rk) = gk(H) and µ(R) = gµ(H). There exist constants αk, α ∈

R, αk > 0, α > 0, such that the functions gk(H) and gµ(H) satisfy, respectively, the scaling

properties

gk(bH) = bαkgk(H) (18)

and

gµ(bH) = bαgµ(H) (19)

for all H ∈ CN×M and all b ∈ R, b > 0.

Proof: See Appendix A. �

1For example, consider the case that the triangularized form of the CLP problem is obtained by applying the QRD directly to

H, i.e., H = QR, as described in Section I-B. The resulting preprocessing based on direct QRD is captured in the mappings

from r to y and H to R as y = QHr and R = QHH, respectively.
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Basic Proof Approach: We now briefly state the basic proof approach for Theorem 1. The proof

is based on separately establishing the exponential lower bound P[Sk ≥ L]
.

≥ P
[
1/det(RH

k Rk) ≥ L
]
,

L→∞, and the exponential upper bound P[Sk ≥ L]
.

≤ P
[
1/det(RH

k Rk) ≥ L
]
, L→∞, which

then combine to P[Sk ≥ L]
.

= P
[
1/det(RH

k Rk) ≥ L
]
. The starting points for establishing these

bounds are the following upper and lower bounds on the layer complexity Sk (see [23, Ch. 3.2,

Eq. (3.3)]):
Vk(ρ)− µ(Rk)Ak(ρ)

det(RH
k Rk)

≤ Sk ≤
Vk(ρ+ µ(Rk))

det(RH
k Rk)

(20)

where Vk(ρ) and Ak(ρ) denote the volume and the surface area of a hypersphere with radius ρ

in k complex-valued dimensions, i.e.,

Vk(ρ) =
πkρ2k

k!
(21)

and

Ak(ρ) =
2πkρ2k−1

(k − 1)!
. (22)

We note that our proof uses all conditions of Theorem 1, i.e., (16) – (19), to establish the

exponential lower bound, while the exponential upper bound only needs condition (17).

Discussion of the Theorem: Theorem 1 states that the tail exponent of P[Sk ≥ L] is fully

characterized by the tail exponent of P[1/det(RH
k Rk) ≥ L] provided that conditions (16) – (19)

are satisfied. It is immediate that the tail exponent of P[Sk ≥ L] then depends only on the statistics

of the lattice basis matrix H and neither on the statistics of r nor on the particular choice of ρ

as long as 0 < ρ < ∞. The conditions (16) – (19) constitute fairly general requirements on the

statistics of the lattice basis matrix H and on the preprocessing method. For example, in Appendix

B, it is shown that the conditions (16) – (19) are satisfied for direct QRD if the entries of H

are jointly Gaussian with arbitrary non-singular covariance matrix and arbitrary finite mean, i.e.,

for H being a Rayleigh- or Ricean-fading MIMO channel with non-singular covariance matrix.

In Section III-C, it is furthermore demonstrated that Theorem 1 also comprises preprocessing

techniques based on LR such as V-BLAST LS or LR according to the LLL algorithm.

It is interesting to note that det(RH
k Rk) is the volume of the fundamental regions of L(Rk)

[16]. A well-known approximation for Sk is given by [23]

Ŝk =
Vk(ρ)

det(RH
k Rk)

(23)
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where Vk(ρ) was defined in (21). This approximation simply counts the number of fundamental

regions (each occupied by exactly one lattice point) that fit into the k-dimensional search sphere

and becomes exact if averaging of Sk is performed over yk assumed uniformly distributed over

L(Rk) [23]. Motivated by this insight, Ŝk was used in [1] and [20] to assess the complexity of

different SD variants. It immediately follows that (15) can equivalently be written as

P[Sk ≥ L]
.

= P
[
Ŝk ≥ L

]
, L→∞ (24)

which holds for arbitrary statistics of r (or, equivalently, yk) and no averaging over yk is required.

Finally, we emphasize that Theorem 1 does not depend on the specific shape of the search

region, a k-dimensional hypersphere in the SD case. Indeed, the theorem continues to hold if

the search sphere is replaced by a general bounded search region with a non-empty interior (see

Appendix C). This, for example, includes a SD variant based on the l∞-norm [14] where the

induced search regions are hypercubes.

III. TAIL EXPONENTS FOR I.I.D. GAUSSIAN ZERO-MEAN H

In the remainder of the paper, we assume lattice basis matrices H whose entries are i.i.d.

Gaussian with zero-mean and variance σ2
H (this model is often used in the context of MIMO

detection). Specializing Theorem 1 to this case is shown below to lead to particularly simple

and interesting results.

A. Tail Exponents for Direct QRD

As shown in Appendix B, all the conditions of Theorem 1 are met for direct QRD and for

the entries of H being jointly Gaussian distributed with arbitrary non-singular covariance matrix

and arbitrary finite mean. This evidently includes the i.i.d. Gaussian zero-mean case considered

here and, hence, the relation

P[Sk ≥ L]
.

= P
[

1

det(RH
k Rk)

≥ L

]
, L→∞ (25)

holds for k = 1, . . . ,M . Using results from [24] on the near-zero behavior of the eigenvalues

of complex Wishart matrices, it is shown in Appendix D that

P[det(RH
k Rk) ≤ ε]

.
= εN−M+1, ε→ 0 (26)
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for k = 1, . . . ,M . For SD with direct QRD and i.i.d. Gaussian zero-mean lattice basis matrices,

the result in (26) together with (25) now establishes that

P[Sk ≥ L]
.

= L−(N−M+1), L→∞, k = 1, . . . ,M. (27)

Evidently, the corresponding total complexity then satisfies (see (13))

P[S ≥ L]
.

= L−(N−M+1), L→∞. (28)

We can now draw the following conclusions:

• The distributions of the individual layer and total complexities are of Pareto-type with tail

exponents ξk = ξ = N −M + 1, k = 1, . . . ,M .

• Increasing N (i.e., the number of receive antennas in a MIMO detection context) for fixed

M (i.e., the number of transmit antennas) results in improved (i.e., larger) complexity tail

exponents.

Relation to Diversity Order: The complexity tail exponent N − M + 1 is reminiscent of

the SNR exponent (or diversity order) of conventional suboptimum MIMO detection schemes

such as linear and successive interference cancellation (SIC) schemes. Specifically, the error

probability Pe(SNR) as a function of the signal-to-noise ratio (SNR) of such schemes satisfies

Pe(SNR)
.

= SNR−(N−M+1), SNR→∞ (in contrast to optimum detection where one would get

Pe(SNR)
.

= SNR−N , SNR → ∞). In fact, this equivalence is not a coincidence as the same

statistical properties of H are responsible for the diversity order of linear or SIC detectors and

for the complexity tail exponent of SD. In particular, we note that the typical error event analysis

in [25, Chapter 3] reveals that (see also [26])

Pe(SNR)
.

= P
[
R2
M,M <

1

SNR

]
, SNR→∞ (29)

for the error probability of the first detected data symbol in SIC detection (which determines

the overall diversity order). On the other hand, for the first layer complexity distribution of SD,

it follows from Theorem 1 that

P[S1 ≥ L]
.

= P

[
1

R2
M,M

≥ L

]
, L→∞

which has the same structure as the right hand side (RHS) of (29). Consequently, we obtain the

same exponents for the diversity order and the first layer complexity distribution. For the other

layer complexity distributions no such direct link can be established.
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B. Refined Analysis for Direct QRD

As already mentioned, a shortcoming of the tail exponent analysis is that the impact of

multiplicative constants is not captured. As a result, for example, the tail exponent analysis

does not capture the impact of the sphere radius ρ on the complexity distribution of SD. In the

following, we provide a more refined analysis of the first layer complexity distribution P[S1 ≥ L]

for direct QRD on i.i.d. Gaussian zero-mean lattice basis matrices H. This characterization

reveals, among other factors, the influence of the sphere radius ρ on P[S1 ≥ L] and, furthermore,

allows us to derive a lower bound on the total complexity distribution P[S ≥ L], which we

use to draw interesting conclusions on the average (w.r.t. to H and r) total complexity of SD

complementing results derived in [11], [12].

From (20) for k = 1 together with µ(R1) = µ(RM,M) = RM,M/
√

2 ≤ RM,M , we obtain

πρ2 − 2πRM,Mρ

R2
M,M

≤ S1 ≤
π(ρ+RM,M)2

R2
M,M

which can equivalently be written as

π

((
ρ

RM,M

− 1

)2

− 1

)
≤ S1 ≤ π

(
ρ

RM,M

+ 1

)2

.

Consequently, we obtain

P

[
ρ2

R2
M,M

≥ L′

]
≤ P[S1 ≥ L] ≤ P

[
ρ2

R2
M,M

≥ L′′

]

where L′ =
(√

L
π

+ 1 + 1
)2

and L′′ =
(√

L
π
− 1
)2

. Furthermore, since
√

2
σH
RM,M ∼ χ2(N−M+1)

[27, Lemma 2.1], we arrive at

γN−M+1

(
ρ2

σ2
HL
′

)
≤ P[S1 ≥ L] ≤ γN−M+1

(
ρ2

σ2
HL
′′

)
. (30)

These upper and lower bounds together with L′ a∼ L′′
a∼ L/π, L→∞, and V1(ρ) = πρ2 yield

P[S1 ≥ L]
a∼ γN−M+1

(
V1(ρ)

σ2
HL

)
, L→∞. (31)

Next, noting that

γa(y) =
1

a!
ya(1 + o(1)), y → 0

we obtain

P[S1 ≥ L]
a∼ 1

(N −M + 1)!

(
σ2
H

V1(ρ)
L

)−(N−M+1)

, L→∞. (32)
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Compared to P[S1 ≥ L]
.

= L−(N−M+1), L→∞, we have thus obtained a finer picture of the first

layer complexity distribution since multiplicative constants are also captured. More specifically,

(32) quantifies the impact of the sphere radius ρ and shows, as expected, that P[S1 ≥ L] increases

with increasing ρ for large L. Next, we note that (32) establishes a stronger version of (24) for

the first layer. In particular, (31) together with P
[
Ŝ1 ≥ L

]
= P

[
V1(ρ)

R2
M,M
≥ L

]
= γN−M+1

(
V1(ρ)

σ2
HL

)
implies that

P[S1 ≥ L]
a∼ P
[
Ŝ1 ≥ L

]
, L→∞.

We can now trivially lower-bound the distribution P[S ≥ L] of the total complexity according

to P[S ≥ L] ≥ P[S1 ≥ L]. Together with the lower bound P[S1 ≥ L] ≥ γN−M+1

(
ρ2

σ2
HL
′

)
(see (30))

and using L′ ≥ 4 + L, γa(x) ≥ e−x x
a

a!
(this is a direct consequence of the series expansion of

the incomplete Gamma function [28, Sec. 6.5]), and e−ρ2/σ2
H(L+4) ≥ e−ρ

2/4σ2
H , we obtain

P[S ≥ L] ≥ C (L+ 4)−(N−M+1) (33)

where

C =
1

(N −M + 1)!

(
ρ2

σ2
H

)N−M+1

e
− ρ2

4σ2
H .

The total complexity distribution can therefore be lower-bounded by a Pareto distribution with

exponent N−M+1. We note that this result is similar in spirit to results obtained in the context

of sequential decoding of convolutional codes over additive white Gaussian noise channels, where

randomness results from random additive noise. Specifically, in [9], [10] it was shown that the

complexity distribution of sequential decoding is lower-bounded by a Pareto distribution; the

corresponding exponent was found to depend on the code rate and on the noise variance.

The Pareto lower bound (33) can be used to draw a number of interesting conclusions on the

expected total complexity E{S}, where the expectation is taken over H (assumed i.i.d. Gaussian

and zero-mean) and r (arbitrary statistics). Starting from

E{S} =

∫ ∞
0

P[S ≥ L] dL (34)

the lower bound in (33) yields

E{S} ≥ C

∫ ∞
0

(L+ 4)−(N−M+1) dL. (35)

The integral on the RHS of (35) does not converge for N = M as the integrand behaves as

L−1 in this case. Consequently, E{S} is infinite for N = M . This complements results on the
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average complexity of SD derived in [11], [12]. Specifically, [12, Corollary 1, Eqn. (5)] provides

an expression for E{S} for the special case (with respect to our assumptions) of r given by (4)

in terms of an infinite sum over incomplete Gamma functions. Based on this expression it seems

hard to draw general conclusions on E{S}. The lower bound in (35), however, immediately

shows that this sum does not converge for N = M . Moreover, for N > M , E{S} is finite and,

consequently, [12, Corollary 1, Eqn. (5)] converges in this case. To see this, we start from (34)

together with the upper bound

P[S ≥ L] ≤

1, for L ≤ L0

L−(N−M+1−δ0), for L > L0

(36)

for sufficiently large L0 and δ0 < 1 (cf. the upper bound in (14)). Inserting (36) into (34), we

get

E{S} ≤
∫ L0

0

dL+

∫ ∞
L0

L−(N−M+1−δ0) dL

which implies E{S} < ∞ for any N > M . We can therefore conclude that the average total

complexity E{S} of SD is bounded for N > M while it is unbounded for N = M . Along

these lines, we note that the Pareto lower and upper bounds on P[S ≥ L] according to (33) and

(36), respectively, can be used to show directly that all moments E{Sa} with a < N −M + 1

are finite while all corresponding higher order moments with a ≥ N −M + 1 are infinite. For

example, for N = M + 1, E{S} is finite (as shown above) while the second moment E{S2}

(and, hence, the variance of S) is infinite.

C. Tail Exponents for LR-Based Preprocessing

Next, we analyze the tail behavior of the complexity distribution induced by LR-based pre-

processing. We define LR-based preprocessing (see, e.g., [1]) as applying, prior to the QRD, the

transformation G = HT, where T is an M ×M unimodular matrix, i.e., Ti,j ∈ CZ, ∀i, j, and

|det(T)| = 1. The matrix T can, in general, depend on H and is obtained, for example, through

the LLL algorithm [29], which finds a basis matrix G of the lattice L(H) that is closer to an

orthogonal matrix than H. Another important preprocessing technique is LS (e.g., according to

the V-BLAST algorithm [15]), which is just a special case of LR obtained by restricting T to

be a permutation matrix (i.e., exactly one entry in each row and in each column of T is equal

to one and all other entries are equal to zero).
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The triangularized form of the CLP problem, when LR-based preprocessing is applied, is

given by (5) with R and y replaced by R̃ and ỹ = Q̃Hr, respectively, where Q̃ and R̃ are the

QR-factors of G, i.e., G = Q̃R̃. Consequently, R in Theorem 1 is now replaced by R̃. If we

denote the corresponding solution of (5) as d̃, the final solution of (3) is d̂ = Td̃.

1) Verifying the Conditions of Theorem 1 for LR-Based Preprocessing: Let us first verify

the conditions of Theorem 1 for LR-based preprocessing of an i.i.d. Gaussian zero-mean lattice

basis matrix H. Condition (16) just depends on the statistics of H and was already verified

in Appendix B-A for the more general class of lattice basis matrices that follow a correlated

Ricean-fading distribution. To verify the remaining conditions, we start by noting that

QRT = Q̃R̃. (37)

Furthermore, let us write RT = Q′R′, where Q′ and R′ are the QR-factors of RT. With (37),

we obtain QQ′R′ = Q̃R̃. Since QQ′ is unitary and the QR-factors are unique, it follows that

QQ′ = Q̃ and, hence, R′ = R̃, which results in

R = Q′ R̃T−1. (38)

Using (38) along with the facts that T−1 is unimodular (since T is unimodular) and Q′ is unitary,

it can be shown that

µ(R) = µ(R̃) (39)

and

det(RHR) = det(R̃HR̃). (40)

Hence, LR preserves the covering radius as well as the volume of the fundamental regions

associated with R.

Since (17) and (19) hold for direct QRD (see Appendix B-B and Appendix B-C, respectively),

it follows from (39) that conditions (17) and (19) are also satisfied for LR-based preprocessing.

As condition (18) is satisfied for direct QRD (see Appendix B-C), it follows from (40) that

condition (18) is satisfied for LR-based preprocessing for layer k = M . Hence, all the conditions

of Theorem 1 are satisfied for LR-based preprocessing for k = M . As shown in Section III-C2

below, this will be sufficient to draw very general conclusions about the tail behavior of the total

complexity distribution incurred by LR-based preprocessing.
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For the layers k < M , condition (18) cannot be guaranteed if we allow T to be an arbitrary

function of H. It turns out, however, that all LR algorithms delivering a unimodular transforma-

tion matrix T that is invariant to a positive scaling of H, i.e., H and bH for all b ∈ R, b > 0,

result in the same T, satisfy condition (18) also for k = 1, . . . ,M −1. In this case, if R̃ denotes

the lattice-reduced R-factor of H, the lattice-reduced R-factor of bH is bR̃, as a consequence of

the uniqueness of the QRD. Hence, gk(bH) = det(b2R̃H
k R̃k) = b2kdet(R̃H

k R̃k) = b2kgk(H) and

condition (18) is satisfied with αk = 2k for k = 1, . . . ,M (as is the case for direct QRD, see

Appendix B-C). An LR algorithm with this property satisfies Theorem 1 for all k = 1, . . . ,M

and is referred to as a standard LR algorithm. All previously proposed LR algorithms in the

literature that we are aware of are standard. Specifically, it can be shown, by inspection, that the

LLL algorithm [29], the Seysen algorithm [30], LS according to the V-BLAST algorithm [15],

and the sorted-QRD in [31] are all standard LR algorithms.

2) Tail Exponents for General LR-Based Preprocessing: As stated above, for general (i.e.,

not necessarily standard) LR-based preprocessing and k = M , the equivalence in (40) implies

P[SM ≥ L]
.

= P
[

1

det(RH
MRM)

≥ L

]
, L→∞.

Combined with (27) this allows us to conclude that

P[SM ≥ L]
.

= L−(N−M+1), L→∞ (41)

or, equivalently, ξM = N−M+1 for general LR-based preprocessing. Consequently, (13) implies

that the tail exponent of the total complexity distribution for general LR-based preprocessing

satisfies

ξ ≤ N −M + 1.

We can therefore conclude that general LR-based preprocessing does not improve the tail

exponent of the total complexity distribution as compared to that obtained for direct QRD (cf.

(28)). It is, however, important to note that LR-based preprocessing techniques typically reduce

the computational complexity of SD, an aspect not reflected by our tail exponent result. In

Section III-C4, we will see that the tail exponents associated with the layers k < M can be

improved by LR-based preprocessing using the LLL algorithm.

DRAFT February 27, 2011



17

3) Tail Exponents with Layer-Sorting: Let us next specialize LR-based preprocessing to the

case of standard LS2, where T is a (potentially H-dependent) permutation matrix that is invariant

to positive scaling of H. In this case, we can characterize the tail exponents of the corresponding

total complexity and layer-wise complexity distributions precisely. As shown in Appendix E, for

any LS strategy, we obtain

P
[
det
(
R̃H
k R̃k

)
≤ ε
]

.
= εN−M+1, ε→ 0, k = 1, . . . ,M

which is identical to the near-zero behavior obtained for direct QRD (see (26)). For standard LS

strategies, Theorem 1 holds (see Section III-C1) and implies

P [Sk ≥ L]
.

= L−(N−M+1), L→∞, k = 1, . . . ,M. (42)

Hence, ξk = ξ = N −M + 1, and we can conclude that standard LS does not improve the layer

complexity tail exponents as compared to direct QRD (cf. (27)).

4) Tail Exponents with LLL: For LR based on the LLL algorithm, Theorem 1 implies that

P[Sk ≥ L]
.

= P
[

1

det(R̃H
k R̃k)

≥ L

]
, L→∞, k = 1, . . . ,M. (43)

Based on (43), it is shown in Appendix F that

P[Sk ≥ L]
.

≤ L−
N
k , L→∞, k = 1, . . . ,M (44)

or, equivalently, ξk ≥ N/k. Comparing with ξk = N−M+1 for direct QRD (cf. (27)) or standard

LS (cf. (42)), we can conclude that LLL preprocessing improves the tail exponents at least up

to layer k ≤ dN/(N −M + 1)e − 1. Hence, as compared to direct QRD or standard LS, LLL

improves the tail exponents of the lower layers. However, we again note, as shown in Section

III-C2, that the tail exponents of the total complexity distribution cannot be improved by LLL

preprocessing. In the following, consider N = M . We have ξk = M/k > 1, k = 1, . . . ,M − 1,

and ξM = 1 (see (43) or (41)), which, together with (13), establishes that the tail behavior of the

total complexity distribution of SD with LLL preprocessing is dominated by the tail behavior

of the M th layer complexity distribution; in particular, we have ξ = ξM = 1, as is the case with

direct QRD and standard LS.

2LS according to the V-BLAST algorithm [15] and the sorted-QRD algorithm [31] fall into the category of standard LS

algorithms.
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D. Tail Exponents with Regularization

Next, we analyze the tail behavior of the regularized CLP problem

d = arg min
d∈(CZ)M

‖z− Fd‖2 (45)

with the (N +M)×M regularized lattice basis matrix

F =

[
H

κI

]
(46)

where κ ∈ R, κ > 0, is the regularization parameter (see, e.g., [8]) and z is the length-(N +M)

vector z = [rT 0T ]T . A regularization with a specific κ is, for example, obtained by minimum-

mean square error (MMSE) based preprocessing (see, e.g., [6], [8], [22] or MMSE generalized

decision-feedback equalization in [32]). We emphasize that the solution of the regularized CLP

problem (45) will, in general, not equal the solution of the original CLP problem. It turns out,

however, that for suitably chosen κ, regularization induces only a small performance loss while

the resulting reduction in SD complexity can be significant [6], [8].

The triangularized form of the regularized CLP problem (45) is given by (5) with R and

y replaced by R and y = Q
H
z, respectively, where Q and R are the QR-factors of F, i.e.,

F = QR. We again consider H to be zero-mean i.i.d. Gaussian and next verify that condition

(17) for R is satisfied. Condition (17), as shown in Appendix A-B, is sufficient to state the

exponential upper bound

P[Sk ≥ L]
.

≤ P

[
1

det
(
R
H

k Rk

) ≥ L

]
, L→∞, k = 1, . . . ,M. (47)

Following the steps leading from (61) to (62), we get

P
[
µ
(
R
)
≥ L

]
≤ P[‖F‖F ≥ L] .

From (46), we have ‖F‖2
F = ‖H‖2

F + κ2M , which implies

P
[
µ
(
R
)
≥ L

]
≤ P

[
‖H‖2

F + κ2M ≥ L2
]

.
= P

[
‖H‖F ≥ L

]
, L→∞. (48)

As shown in Appendix B-B (cf. (62) – (66)), we have P
[
‖H‖F ≥ L

] .

≤ L−∞, L → ∞, for H

correlated Gaussian distributed with arbitrary finite mean. Hence, (48) implies P
[
µ
(
R
)
≥ L

] .

≤
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L−∞ and condition (17) of Theorem 1 is satisfied for regularization-based preprocessing and

i.i.d. Gaussian zero-mean H, which proves (47).

Let us next analyze the RHS of (47). The interlacing theorem for bordered matrices [33,

Theorem 4.3.8] implies that (cf. (77))

λi

(
R
H

k Rk

)
≥ λi

(
R
H
R
)
, i = 1, . . . , k. (49)

Furthermore, using (46), we can write λi

(
R
H
R
)

= λi

(
FHF

)
= λi

(
HHH

)
+ κ2, which,

together with (49), shows that λi
(
R
H

k Rk

)
≥ κ2 and, consequently,

det
(
R
H

k Rk

)
≥ κ2k (50)

i.e., det
(
R
H

k Rk

)
is strictly positive for any regularization parameter κ > 0. Inserting (50) into

(47) therefore yields

P[Sk ≥ L]
.

= L−∞, L→∞, k = 1, . . . ,M.

We can now conclude that the distributions of the individual layer and total complexities of

SD with regularization decrease faster than polynomial in L. This is in stark contrast to direct

QRD and LR preprocessing, which (as shown in the previous sections) have total complexity

distributions that are of Pareto-type with tail exponent N −M + 1. We conclude by noting that

the performance degradation induced by regularization can be very small while the complexity

improvements (as indicated by the faster-than-polynomial tail behavior) can be significant.

IV. NUMERICAL RESULTS

We consider SD for data detection in N×M MIMO wireless systems with spatial multiplexing,

where r = Hd′ + w (cf. (4)) with the entries of H and w assumed i.i.d. CN (0, 1/M) and

i.i.d. CN (0, σ2), respectively, and with the transmitted vector d′ ∈ (CZ)M . We note that the

complexity of SD is random in H and w and does not depend on the particular d′, which is

due to the fact that any sums/differences of valid lattice points are again valid lattice points.

Following the approach proposed in [4], [11], [21], the sphere radius ρ in (6) is chosen such

that the transmitted data vector d′ is found by the SD algorithm with probability 0.99. This is

accomplished by setting

P
[
‖w‖2 ≤ ρ

]
= γN

(
ρ2

σ2

)
= 0.99
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Fig. 1. Distribution of total complexity P[S ≥ L] of SD with direct QRD, V-BLAST LS, and LLL preprocessing for 4 × 4

and 5× 4 MIMO systems.
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Fig. 2. Distributions of individual layer complexities P[Sk ≥ L], k = 1, 2, 3, 4, and of total complexity P[S ≥ L] of SD for a

4× 4 MIMO system with (a) direct QRD and (b) LR-based preprocessing using the LLL algorithm.

and solving for ρ, i.e., ρ = σ
√
γ−1
N (0.99). For 1/σ2 we assume a value of 15 dB, which results

in ρ ≈ 0.5636.

Fig. 1 shows the total complexity distribution P[S ≥ L] in double log-scale for SD with direct

QRD, V-BLAST LS [15], and with LLL preprocessing [34, with parameter δ = 3/4] for 4× 4

and 5× 4 MIMO systems. We can draw the following conclusions:

• For direct QRD in the 4 × 4 case, the total complexity distribution in Fig. 1 exhibits a

large-L behavior of L−1 as predicted by (28) for N = M .

• Adding one receive antenna improves the tail behavior significantly and leads to a large-L

behavior of L−2 as predicted by (28).
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• LLL preprocessing and V-BLAST LS reduce the complexity, as compared to direct QRD,

but do not change the tail exponent of the total complexity distribution (see Section III-C).

For the same setup as in Fig. 1 for the 4 × 4 case, Fig. 2 shows the layer-wise complexity

distributions P[Sk ≥ L], k = 1, 2, 3, 4, and the total complexity distribution P[S ≥ L] with (a)

direct QRD and (b) LLL preprocessing, respectively. We can draw the following conclusions:

• For direct QRD, all layer-wise complexity distributions (see Fig. 2(a)) exhibit a large-L

behavior of L−1 as predicted by (27) for N = M .

• With LLL preprocessing, the tail exponents of the layer-wise complexity distributions at

the lower layers are improved as compared to that of direct QRD (compare Fig. 2(b) with

Fig. 2(a)). However, the last layer (in this case layer 4) exhibits a large-L behavior of L−1

(see Fig. 2(b)) and, hence, dominates the tail behavior of the total complexity distribution

(see (12) and (13)).

V. CONCLUSIONS

We analyzed the tail behavior of the (computational) complexity distribution of the sphere

decoding (SD) algorithm in random infinite lattices. Our results complement and extend previous

work that characterized the mean and the variance of SD complexity. In particular, we charac-

terized the tail behavior of the complexity distribution in terms of corresponding tail exponents

(i.e., polynomial decay rates). We found that the tail exponent of the SD complexity distribution

is given by the tail exponent of the distribution of the inverse volume of the fundamental regions

of the underlying lattice. This result was shown to hold under fairly general assumptions on

SD preprocessing and on the statistics of the lattice basis matrix including, e.g., preprocessing

based on lattice-reduction (LR) and the case of the lattice basis matrix being correlated Ricean

distributed.

For N ×M i.i.d. circularly symmetric complex Gaussian lattice basis matrices, we found that

the complexity distribution of SD is of Pareto-type with tail exponent given by N −M + 1.

This shows that increasing N (e.g., the number of receive antennas in the context of MIMO

wireless communications) for given M (e.g., the number of transmit antennas) results in larger

tail exponents. By means of a more refined analysis of the complexity distribution of SD, we

also showed that the average complexity of SD is infinite for N = M and finite for N > M ,

which complements average complexity results derived in the literature. We finally found that
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the tail exponent of N −M + 1 cannot be increased by preprocessing based on lattice-reduction

including layer-sorting and the LLL algorithm as special cases while regularization results in a

SD complexity distribution with tails that decrease faster than polynomial. We note, however,

that lattice-reduction based preprocessing typically reduces the complexity of SD (although this

is not reflected in the tail exponents of the complexity distributions) and that regularization-based

preprocessing can be applied prior to lattice-reduction for further complexity reduction.

Throughout the paper, we considered the Fincke-Pohst variant of the SD algorithm with a

fixed and lattice-independent choice of the sphere radius. The tools developed in this paper

could turn out useful in analyzing the complexity distribution of more advanced SD approaches.

Specifically, it would be interesting to understand the impact of a lattice-dependent choice of

the sphere radius (as used in Schnorr-Euchner variants of the SD algorithm) on the tail behavior

of the complexity distribution. Furthermore, most of our results do not capture multiplicative

and additive constants that appear in the complexity distribution. A more refined analysis would

clearly be desirable.
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APPENDIX A

PROOF OF THEOREM 1

A. Exponential Lower Bound

For establishing the exponential lower bound, we use the lower bound on Sk given in (20),

which, together with µ(Rk) ≤ µ(R), k = 1, . . . ,M , yields3

P[Sk ≥ L] ≥ P
[
Vk(ρ)− µ(R)Ak(ρ)

det(RH
k Rk)

≥ L

]
.

Next, consider a constant c ∈ R, c > 0, such that Vk(ρ) − cAk(ρ) > 0 and define c′ =

Vk(ρ)− cAk(ρ) > 0. We then have

P[Sk ≥ L] ≥ P [H ∈ B] (51)

3Note that condition (17) implies full-rank Rk with probability one. Consequently, det(RH
k Rk) > 0 and µ(Rk) <∞ with

probability one. However, it is straightforward to show that Theorem 1 also holds in the case where Rk is rank-deficient with

non-zero probability, where we would have P[Sk ≥ L]
.
= P

ˆ
1/det(RH

k Rk) ≥ L
˜ .

= L0, L→∞.
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where

B =

{
H :

(
c′

gk(H)
≥ L

)
∩ (gµ(H) ≤ c)

}
with det(RH

k Rk) = gk(H) and µ(R) = gµ(H). With property (16), we further obtain

P[H ∈ B] =

∫
H∈B

f(H)dH ≥ β

∫
H∈B

f(LδH)dH

for all δ > 0, L > 1, and some β > 0. Performing the change of variables H′ = LδH and

invoking conditions (18) and (19) yields

P[H ∈ B] ≥ β L−2MNδ P[H ∈ B′] (52)

where

B′ =
{

H :

(
c′

gk(H)
≥ L1−δαk

)
∩ (gµ(H) ≤ cLδα)

}
.

Next, noting that for two events A1 and A2, by the inclusion-exclusion principle, P[A1 ∩A2] ≥

P[A1]− P[Ā2], where Ā2 denotes the complementary event of A2, we get

P[H ∈ B′] ≥ P
[

c′

gk(H)
≥ L1−δαk

]
− P
[
gµ(H) > cLδα

]
.

Now (17) with µ(R) = gµ(H) and δ, α > 0 implies P
[
gµ(H) > cLδα

] .
= L−∞, L→∞, which,

together with (51) and (52), yields

P[Sk ≥ L]
.

≥ L−2MNδ P
[

c′

gk(H)
≥ L1−δαk

]
, L→∞.

Let us write P[1/gk(H) ≥ L]
.

= L−a, L → ∞, for some constant a ≥ 0. We then have P[Sk ≥

L]
.

≥ L−2MNδ−(1−δαk)a, L → ∞. As this result holds for arbitrarily small values of δ, we can

conclude that P[Sk ≥ L]
.

≥ L−a
.

= P[1/gk(H) ≥ L], L→∞, which establishes the exponential

lower bound.

B. Exponential Upper Bound

To establish the exponential upper bound, we start from the upper bound on Sk in (20), which

yields

P[Sk ≥ L] ≤ P
[
Vk(ρ+ µ(R))

det(RH
k Rk)

≥ L

]
(53)

where, again, we used µ(Rk) ≤ µ(R), k = 1, . . . ,M . Note that P[xy ≥ L] =

P
[
(xy ≥ L) ∩ (y < Lδ)

]
+ P
[
(xy ≥ L) ∩ (y ≥ Lδ)

]
≤ P

[
x ≥ L1−δ ] + P

[
y ≥ Lδ

]
for any two
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RVs x, y ∈ R and any constant δ ∈ R, 0 < δ < 1. Applying this to (53) with x = 1/det(RH
k Rk)

and y = Vk(ρ+ µ(R)), we get

P[Sk ≥ L] ≤ P
[

1

det(RH
k Rk)

≥ L1−δ
]

(54)

+ P
[
Vk(ρ+ µ(R)) ≥ Lδ

]
.

With (21) and the binomial theorem, we can write

Vk
(
ρ+ µ(R)

)
=
πk

k!

2k∑
i=0

(
2k

i

)
ρ2k−iµ(R)i. (55)

Next, applying the general property

P

[
M∑
i=1

xi ≥ L

]
≤

M∑
i=1

P
[
xi ≥

L

M

]
(56)

which holds for any set of RVs xi, i = 1, . . . ,M , together with (55) yields

P
[
Vk(ρ+ µ(R)) ≥ Lδ

] .

≤
2k∑
i=0

P
[
µ(R)i ≥ Lδ

]
, L→∞.

Property (17) (for the terms corresponding to i > 0) and P[c′′ ≥ L]
.

= L−∞, L → ∞,

for any constant c′′ ≥ 0 (for the term corresponding to i = 0) now directly imply

P
[
Vk(ρ+ µ(R)) ≥ Lδ

] .
= L−∞, L→∞, and, hence, by (54)

P[Sk ≥ L]
.

≤ P
[

1

det(RH
k Rk)

≥ L1−δ
]
, L→∞.

As before, writing P
[
1/det(RH

k Rk) ≥ L
] .

= L−a, L → ∞, for some constant a ≥ 0, we get

P[Sk ≥ L]
.

≤ L−(1−δ)a, L → ∞. As this result holds for arbitrarily small values of δ, we

can conclude that P[Sk ≥ L]
.

≤ L−a
.

= P
[
1/det(RH

k Rk) ≥ L
]
, L → ∞, which establishes the

exponential upper bound.

APPENDIX B

THE CONDITIONS OF THEOREM 1 HOLD FOR

CORRELATED RICEAN FADING AND DIRECT QRD

In the following, we show that conditions (16) – (19) are satisfied for direct QRD of a jointly

complex Gaussian distributed lattice basis matrix H with arbitrary non-singular covariance matrix

and arbitrary finite mean. With h = vec(H) ∈ CNM , the pdf f(h) of h is given by [35]

f(h) = c1 e
−(h−µ)HC−1(h−µ) (57)

where µ = E{h}, C = E{(h− µ)(h− µ)H}, and c1 = 1/(πNMdet(C)).
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A. Condition (16)

We start by noting that condition (16) of Theorem 1 can equivalently be written as

f(h) ≥ βf(ah) (58)

for all h ∈ CNM and all a ∈ R, a > 1, with some constant β ∈ R, β > 0. Inserting (57) into

(58) reveals that it suffices to show that

(h− µ)HC−1(h− µ) ≤ (ah− µ)HC−1(ah− µ) + β′ (59)

for β′ = −log(β). Reformulating (59) gives(
(a+ 1)h− µ

)H
C−1

(
(a+ 1)h− µ

)
− µHC−1µ +

a+ 1

a− 1
β′ ≥ 0. (60)

Since the first term on the left hand side of (60) is always positive, it remains to show that there

exists a constant β′ (equivalently, a constant β = e−β
′) such that

a+ 1

a− 1
β′ ≥ µHC−1µ

for all a ∈ R, a > 1. Indeed, since (a + 1)/(a − 1) ≥ 1, any β′ ≥ µHC−1µ, or, equivalently,

any β ≤ e−µHC−1µ establishes condition (58), which concludes the proof.

B. Condition (17)

We first note that the squared covering radius µ2(R) can be upper-bounded according to (see

Appendix G and, for real-valued lattices, [20, Prop. 1])

µ2(R) ≤ 1

2

M∑
i=1

R2
i,i. (61)

Further upper-bounding the RHS of (61) by
∑M

i=1R
2
i,i and noting that R2

i,i ≤ ‖hi‖2 for direct

QRD, we obtain µ2(R) ≤ ‖H‖2
F and, consequently,

P [µ(R) ≥ L] ≤ P
[
‖H‖F ≥ L

]
. (62)

Next, property (56) applied to the RHS of (62) results in

P [µ(R) ≥ L] ≤
N∑
i=1

M∑
j=1

P
[
|Hi,j| ≥

L√
NM

]
. (63)
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Noting that in the case of Ricean fading, as assumed here, Hi,j
d
= µi,j + H̃i,j , i = 1, . . . , N ,

j = 1, . . . ,M , where µi,j = E{Hi,j} and H̃i,j ∼ CN (0, σ2
i,j), the terms on the RHS of (63) can

be upper-bounded as

P
[
|Hi,j| ≥

L√
NM

]
= P

[
|µi,j + H̃i,j| ≥

L√
NM

]
≤ P

[
|µi,j|+ |H̃i,j| ≥

L√
NM

]
.

Again employing property (56), we get

P
[
|Hi,j| ≥

L√
NM

]
≤ P

[
|µi,j| ≥

L

2
√
NM

]
+ P
[
|H̃i,j| ≥

L

2
√
NM

]
. (64)

Noting that |H̃i,j| is χ2-distributed, we obtain

P
[
|H̃i,j| ≥

L

2
√
NM

]
= e

− L2

4NMσ2
i,j . (65)

Next, we define µmax = maxi,j|µi,j| (which, according to our finite-mean assumption, is finite)

and σ2
max = maxi,j σ2

i,j . For L > 2
√
NM µmax, the first term on the RHS of (64) is zero, which

together with (65) implies

P
[
|Hi,j| ≥

L√
NM

]
≤ e

− L2

4NMσ2
max

for sufficiently large L. Hence, using (63), we obtain

P [µ(R) ≥ L] ≤ NMe
− L2

4NMσ2
max (66)

for sufficiently large L. Finally, condition (17) is verified by noting that e
− L2

4NMσ2
max

.
= L−∞,

L→∞.

C. Conditions (18) and (19)

We start by noting that the R-factor of bH with b ∈ R, b > 0, is given by bR as a direct

consequence of the uniqueness of the QRD. We therefore get gk(bH) = det(b2RH
k Rk) =

b2kdet(RH
k Rk) = b2kgk(H), which shows that condition (18) is satisfied with αk = 2k. Condition

(19) can be verified as follows. By the definition of the covering radius (1), we can write

µ(bR) = max
x∈CM

min
d∈(CZ)M

‖x− bRd‖

= b max
x∈CM

min
d∈(CZ)M

∥∥∥x
b
−Rd

∥∥∥
= b µ(R)

implying that gµ(bH) = µ(bR) = b µ(R) = b gµ(H). This shows that condition (19) is satisfied

with α = 1.
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APPENDIX C

THEOREM 1 FOR GENERAL SEARCH REGIONS

In the following, we show that Theorem 1 continues to hold if the search sphere around yk

is replaced by a general bounded search region Rk ⊂ Ck with non-empty interior. Following

(11), the complexity S̃k of SD with search region Rk is given by

S̃k =
∣∣{dk ∈ (CZ)k : (yk −Rkdk) ∈ Rk

}∣∣ .
The proof is based on separately establishing the exponential upper bound

P
[
S̃k ≥ L

] .

≤ P
[

1

det(RH
k Rk)

≥ L

]
, L→∞ (67)

and the exponential lower bound

P
[
S̃k ≥ L

] .

≥ P
[

1

det(RH
k Rk)

≥ L

]
, L→∞ (68)

through, respectively, circumscribing and inscribing Rk by properly chosen hyperspheres.

We start by proving (67). Since Rk is bounded, it can be circumscribed by a hypersphere with

finite radius ρ(1) implying that ‖yk −Rkdk‖ ≤ ρ(1) for all (yk −Rkdk) ∈ Rk. Consequently,

if we denote by Sk(ρ
(1),yk) the complexity of conventional SD according to (11) with radius

ρ = ρ(1) and center yk, we have S̃k ≤ Sk(ρ
(1),yk) and

P
[
S̃k ≥ L

]
≤ P

[
Sk(ρ

(1),yk) ≥ L
]
. (69)

Next, we note that Theorem 1 does not depend on the particular choice of the sphere radius ρ(1).

Hence, (15) (if the conditions of Theorem 1 are met) can be applied directly to the RHS of (69),

which establishes the exponential upper bound (67). It remains to establish the corresponding

exponential lower bound (68). Since Rk has non-empty interior, it can be inscribed by a

hypersphere with strictly positive radius ρ(2) and any center m ∈ Ck such that yk−Rkdk ∈ Rk

whenever ‖yk −m−Rkdk‖ ≤ ρ(2). Consequently, S̃k ≥ Sk(ρ
(2),yk −m), which results in

P
[
S̃k ≥ L

]
≥ P

[
Sk(ρ

(2),yk −m) ≥ L
]
. (70)

Theorem 1 depends neither on the radius ρ(2) nor on the center yk −m of the search sphere

and, hence, (15) (if the conditions of Theorem 1 on the statistics of the lattice basis matrix and

on preprocessing are satisfied) can be applied directly to the RHS of (70), which establishes the

exponential lower bound (68). The proof is concluded by combining (67) and (68).
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APPENDIX D

NEAR-ZERO BEHAVIOR OF DET(RH
k Rk)

In the following, we show (26) for direct QRD and lattice basis matrices H whose entries are

i.i.d. CN (0, σ2
H). We first note that the nonzero entries of R are statistically independent with

√
2

σH
Ri,i ∼ χ2(N−i+1) and Ri,j ∼ CN (0, σ2

H), for i = 1, . . . ,M , j > i [27, Lemma 2.1]. Hence,

the submatrix Rk has the same statistics as the matrix R
′

k, which would be obtained by QRD

of a (k + ∆)×k, ∆ = N−M , matrix Hk having i.i.d. CN (0, σ2
H) entries. This implies that

the eigenvalues of RH
k Rk have the same statistics as the eigenvalues of HH

k Hk = R
′H
k R

′

k, i.e.,

λi
(
RH
k Rk

) d
= λi

(
HH
k Hk

)
, i = 1, . . . , k. We thus have

P[det(RH
k Rk) ≤ ε] = P

[
k∏
i=1

λi
(
HH
k Hk

)
≤ ε

]
(71)

so that the analysis of the near-zero behavior of det(RH
k Rk) can be based on results in [24],

which establish the near-zero behavior of the eigenvalues λi
(
HH
k Hk

)
for i.i.d. Gaussian zero-

mean matrices Hk.

Following [24], we start by performing the variable transformations λi
(
HH
k Hk

)
= εαi , i =

1, . . . , k, and we assume ε < 1 (note that this implies α1 ≥ · · · ≥ αk). Setting α = (α1 · · · αk)T,

we can rewrite (71) as

P[det(RH
k Rk) ≤ ε] = P[α ∈ B] (72)

where B = {α : α1 + · · ·+ αk ≥ 1}. From [24, p. 1079], it follows that

P[det(RH
k Rk) ≤ ε]

.
= P[α ∈ B′], ε→ 0 (73)

where

B′ = {α : α1 + · · ·+ αk ≥ 1, α1 ≥ · · · ≥ αk ≥ 0}.

Furthermore, from [24, p. 1080], we have

P[α ∈ B′] .
= εminα∈B′

Pk
i=1(∆+2i−1)αi , ε→ 0. (74)

The minimum of
∑k

i=1(∆ + 2i − 1)αi over α ∈ B′ is achieved by setting α1 = 1, α2 =

0, . . . , αk = 0, which results in

min
α∈B′

k∑
i=1

(∆ + 2i− 1)αi = ∆ + 1.
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Combining this result with (73) and (74), and using ∆ = N −M , we obtain

P[det(RH
k Rk) ≤ ε]

.
= εN−M+1, ε→ 0 (75)

which concludes the proof.

APPENDIX E

NEAR-ZERO BEHAVIOR OF DET
(
R̃H
k R̃k

)
FOR LS

In the following, we show that

P
[
det
(
R̃H
k R̃k

)
≤ ε
]

.
= εN−M+1, ε→ 0, k = 1, . . . ,M (76)

is satisfied for any LS strategy, i.e., if T is a permutation matrix, and for i.i.d. zero-mean

Gaussian H. Recall that R̃k refers to the k× k bottom right (upper triangular) submatrix of the

R-factor R̃, obtained by QRD of HT, i.e., HT = Q̃R̃, where T is the (in general, H-dependent)

permutation matrix obtained by the LS algorithm. The proof of (76) will be accomplished by

separately establishing the exponential upper bound P
[
det
(
R̃H
k R̃k

)
≤ ε
] .

≤ εN−M+1, ε → 0,

and the exponential lower bound P
[
det
(
R̃H
k R̃k

)
≤ ε
] .

≥ εN−M+1, ε→ 0, which then combine to

(76). Both bounds are obtained by relating the near-zero behavior of det
(
R̃H
k R̃k

)
to the near-zero

behavior of the smallest eigenvalue of HHH.

A. Exponential Upper Bound

We first note that R̃kR̃
H
k is a principal submatrix of R̃R̃H due to the upper triangular structure

of R̃. Furthermore, we have that λi
(
R̃kR̃

H
k

)
= λi

(
R̃H
k R̃k

)
and λi

(
R̃R̃H

)
= λi

(
R̃HR̃

)
, which,

together with the interlacing theorem for bordered matrices [33, Theorem 4.3.8], implies that

λi
(
R̃H
k R̃k

)
≥ λi

(
R̃HR̃

)
, i = 1, . . . , k. (77)

Due to R̃HR̃ = THHHHT (recall that HT = Q̃R̃) with T being a permutation matrix

and hence unitary, λi
(
R̃HR̃

)
= λi

(
HHH

)
, i = 1, . . . ,M . Together with (77), we obtain

λi
(
R̃H
k R̃k

)
≥ λi

(
HHH

)
, i = 1, . . . , k, which results in

det
(
R̃H
k R̃k

)
≥

k∏
i=1

λi
(
HHH

)
.
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We can therefore conclude that

P
[
det
(
R̃H
k R̃k

)
≤ ε
]
≤ P

[
k∏
i=1

λi
(
HHH

)
≤ ε

]
. (78)

Similar to Appendix D (cf. (72) – (75)), the near-zero behavior of the RHS can be analyzed by

means of the results in [24]. Specifically, we obtain

P

[
k∏
i=1

λi
(
HHH

)
≤ ε

]
.

= εN−M+1, ε→ 0

which, together with (78), establishes the desired exponential upper bound.

B. Exponential Lower Bound

Evidently, we have

P
[
det
(
R̃H
k R̃k

)
≤ ε
]
≥ P

[(
λ1

(
R̃H
k R̃k

)
≤ ε
)
∩
(
λk
(
R̃H
k R̃k

)
≤ 1
)]
. (79)

We next derive a sufficient condition for the event(
λ1

(
R̃H
k R̃k

)
≤ ε
)
∩
(
λk
(
R̃H
k R̃k

)
≤ 1
)

(80)

which will imply a lower bound on the RHS of (79). This lower bound will not depend on the

particular LS strategy employed, since it will be given in terms of the eigenvalues λi(HHH),

i = 1, . . . ,M , and the corresponding eigenvectors ui of HHH.

From the decomposition

(
HHH

)−1
=

M∑
i=1

1

λi(HHH)
uiu

H
i

we get [(
HHH

)−1
]
m,m
≥ 1

λ1(HHH)
|u1,m|2

where |u1,m|2 =
[
u1u

H
1

]
m,m

. Let us now consider the event

λ1(HHH) ≤ νε and |u1,m|2 > ν, m = 1, . . . ,M (81)

for some constant ν < 1/M . We obtain[(
HHH

)−1
]
m,m
≥ 1

ε
, m = 1, . . . ,M. (82)
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The diagonal elements of
(
HHH

)−1 can be related to the diagonal elements of
(
R̃H
k R̃k

)−1 as

follows. Let us first write R̃ as

R̃ =

[
R̃k̄ A

0 R̃k

]

where R̃k̄ is an (M−k)× (M−k) upper triangular matrix and A is an (M−k)×k full matrix.

For the inverse of this partitioned matrix we obtain [33, Section 0.7.3]

R̃−1 =

[
R̃−1
k̄
−R̃−1

k̄
AR̃−1

k

0 R̃−1
k

]
(83)

which implies that
(
R̃H
k R̃k

)−1 is a principal submatrix of
(
R̃HR̃

)−1 obtained by deleting the

first M − k rows and columns of
(
R̃HR̃

)−1. Since (THHHHT)−1 =
(
R̃HR̃

)−1,
(
R̃H
k R̃k

)−1 is

also a principal submatrix of T−1(HHH)−1T−H . In particular, this results in[(
R̃H
k R̃k

)−1
]
i,i

=
[
T−1(HHH)−1T−H

]
M−k+i,M−k+i

, i = 1, . . . , k. (84)

Furthermore, since T is a permutation matrix, the matrix T−1(HHH)−1T−H has the same

diagonal elements (just at different positions) as the matrix (HHH)−1. Therefore, (84) together

with (82) implies that [(
R̃H
k R̃k

)−1
]
i,i
≥ 1

ε
, i = 1, . . . , k

which results in

λ1

(
R̃H
k R̃k

)
≤ ε (85)

upon using
1

λ1

(
R̃H
k R̃k

) ≥ [(R̃H
k R̃k

)−1
]
i,i
, i = 1, . . . , k.

Consequently, the events (81) imply (85), which corresponds to the first event in (80). It now

remains to establish a sufficient event for the second event in (80), i.e., for λk
(
R̃H
k R̃k

)
≤ 1.

From the interlacing theorem for bordered matrices [33, Theorem 4.3.8] applied to HHH and

R̃H
k R̃k (see Section E-A), we have λM(HHH) ≥ λk

(
R̃H
k R̃k

)
. Consequently, λM(HHH) ≤ 1

implies λk
(
R̃H
k R̃k

)
≤ 1. With (79) and all the established sufficient events for (80), we obtain

P
[
det
(
R̃H
k R̃k

)
≤ ε
]
≥ P

[(
λ1(HHH) ≤ νε

)
∩
(
λM
(
HHH

)
≤ 1
)]

P
[
|u1,m|2 > ν, ∀m

]
where we used the fact that the eigenvectors ui, i = 1, . . . ,M , are statistically independent of

the eigenvalues λi(HHH), i = 1, . . . ,M , [27, Lemma 2.6]. Since u1 is uniformly distributed
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on the unit sphere [27, Lemma 2.6], we have P[|u1,m|2 > ν, ∀m] > 0 for any ν < 1/M . This

finally implies

P
[
det
(
R̃H
k R̃k

)
≤ ε
] .

≥ P
[(
λ1(HHH) ≤ ε

)
∩
(
λM
(
HHH

)
≤ 1
)]
, ε→ 0

.
= εN−M+1, ε→ 0

where the exponential equality again follows directly from [24, p. 1080].

APPENDIX F

EXPONENTIAL UPPER BOUND FOR LLL

In the following, starting from

P[Sk ≥ L]
.

= P
[

1

det(R̃H
k R̃k)

≥ L

]
, L→∞ (86)

we prove (44) for LR-based preprocessing using the LLL algorithm. In this case, R̃ is obtained

by QRD of G, i.e., G = Q̃R̃, with G denoting the LLL-reduced basis associated with H. The

diagonal elements of R̃ satisfy the well-known LLL conditions [29], [34]

R̃2
m,m ≥ c R̃2

m−1,m−1, m = 2, . . . ,M (87)

for some constant c > 0 (more precisely, 0 < c < 0.5), which gives

R̃2
m,m ≥ cm−1 R̃2

1,1, m = 1, . . . ,M. (88)

Based on (88), we can now lower-bound

det(R̃H
k R̃k) =

k∏
i=1

R̃2
M−i+1,M−i+1

according to

det(R̃H
k R̃k) ≥ c′ R̃2k

1,1 (89)

where c′ = ca with a =
∑k

i=1(M − i). Furthermore, since R̃ is upper triangular, R̃1,1 is the

Euclidean norm of a basis vector associated with L(R̃). Hence, R̃1,1 ≥ γ(R̃), where γ(R̃)

denotes the length of the shortest nonzero vector in L(R̃), i.e., γ(R̃) = mind∈(CZ)M,d6=0‖R̃d‖.

From (38) we can conclude that γ(R̃) = γ(R). With γ(R) = γ(H), we obtain R̃1,1 ≥ γ(H),

which, upon using (89), results in

det(R̃H
k R̃k) ≥ c′ γ2k(H). (90)
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Inserting (90) into the RHS of (86) yields

P[Sk ≥ L]
.

≤ P
[
γ2k(H) ≤ L−1

]
, L→∞. (91)

From [36, Lemma 3] we have

P
[
γ(H) ≤ L−1

]
≤

c
′′L−2N , for M < N

c′′L−2Nmax{−(−lnL)N+1, 1}, for M = N

with some constant c′′, which, together with (91), establishes the final result (44).

APPENDIX G

UPPER BOUND (61) ON µ2(R)

We first define d̂SIC as the detection result obtained by successive interference cancelation

(SIC) (see, e.g., [31]). Noting that dk = [dM−k+1 dTk−1]T , the components of d̂SIC are obtained

by solving M scalar minimization problems according to

d̂SIC,M−k+1 = arg min
dM−k+1∈CZ

∣∣∣∆k

([
dM−k+1 d̂TSIC,k−1

]T)∣∣∣2, k = 1, . . . ,M (92)

starting with k = 1, where the metric update |∆k(dk)|2 is defined in (8). Since d̂SIC is a

suboptimum solution to the CLP problem (5), we have

µ2(R) = max
y∈CM

min
d∈(CZ)M

‖y −Rd‖2 ≤ max
y∈CM

‖y −Rd̂SIC‖2. (93)

The distance ‖y−Rd̂SIC‖2 achieved by the SIC detector can be further upper-bounded as follows.

Since (92) corresponds to a simple scalar minimization problem over Gaussian integers that are

scaled by RM−k+1,M−k+1, we obtain∣∣∆k

(
d̂SIC,k

)∣∣2 ≤ 1

2
R2
M−k+1,M−k+1, k = 1, . . . ,M

for any y. Consequently, we have

‖y −Rd̂SIC‖2 =
M∑
k=1

∣∣∆k

(
d̂SIC,k

)∣∣2
≤ 1

2

M∑
k=1

R2
M−k+1,M−k+1

which, together with (93), establishes (61) and hence concludes the proof.
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