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Abstract—Multiple-input multiple-output (MIMO) detection
algorithms providing soft information for a subsequent channel
decoder pose significant implementation challenges due to their
high computational complexity. In this paper, we show how
sphere decoding can be used as an efficient tool to implement soft-
output MIMO detection with flexible trade-offs between compu-
tational complexity and (error rate) performance. In particular,
we provide VLSI implementation results which demonstrate
that single tree-search, sorted QR-decomposition, channel matrix
regularization, log-likelihood ratio clipping, and imposing run-
time constraints are the key ingredients for realizing soft-output
MIMO detectors with near max-log performance at a chip area
that is only 58% higher than that of the best-known hard-output
sphere decoder VLSI implementation.

Index Terms—Multiple-input multiple-output (MIMO) com-
munication systems, soft-output sphere decoding, VLSI imple-
mentation, MIMO detection.

I. I NTRODUCTION

M ULTIPLE-input multiple-output (MIMO) wireless sys-
tems employ multiple antennas on both sides of the

wireless link and offer increased spectral efficiency (com-
pared to single-antenna systems) by transmitting multiple
data streams concurrently and in the same frequency band
(spatial multiplexing). MIMO technology constitutes the basis
for upcoming wireless communication standards, such as
IEEE 802.11n and IEEE 802.16e.

The main challenge in the practical realization of MIMO
wireless systems lies in the efficient implementation of the
detector which needs to separate the spatially multiplexed data
streams. To this end, a wide range of algorithms offering
various trade-offs between performance and computational
complexity have been developed [2]. Linear detection pro-
ducing hard outputs constitutes one extreme of the com-
plexity/performance trade-off region, while computationally
demanding maximum-likelihood (ML) detection algorithms in
combination with exact a posteriori probability (APP) compu-
tation result in the opposite extreme. In general, the compu-
tational complexity of a MIMO detection algorithm depends
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on the symbol constellation size and the number of spatially
multiplexed data streams, but often also on the instantaneous
MIMO channel realization and the signal-to-noise ratio (SNR).
On the other hand, the overall decoding effort is typically
constrained by the system bandwidth, latency requirements,
and the quest to keep chip area and power consumption
as low as possible. Implementing different algorithms, each
optimized for a maximum allowed decoding effort and/or a
particular system configuration, would entail considerable chip
area overhead and in addition be highly inefficient since large
portions of the chip would remain idle most of the time. A
practical MIMO receiver design should therefore be able to
cover a wide range of complexity/performance trade-offs using
a single tunable detection algorithm.

Contributions: In this paper, we describe a tunable MIMO
detector based on the sphere decoder [3]–[8], with perfor-
mance ranging from that of hard-output successive interference
cancellation (SIC) [9] to that of max-log APP detection [10].
Tuning of the detector is achieved through log-likelihood ratio
(LLR) clipping, channel matrix regularization, and imposing
constraints on the maximum computational complexity of the
decoder (i.e., run-time constraints). With a view towards VLSI
implementation, we elaborate on, and provide refinements of,
the tree-search algorithm outlined in [11] leading to what we
term the single tree-search (STS) approach. We describe how
LLR clipping as proposed in [12] can be incorporated into the
STS algorithm. A framework for systematically characterizing
the complexity/performance trade-offs of the resulting class of
soft-output sphere decoders is formulated. Finally, we present
a suitable VLSI architecture and provide reference implemen-
tation results for max-log soft-output sphere decoding with
LLR clipping.

Notation: Matrices are set in boldface capital letters, vectors
in boldface lowercase letters. The superscriptsT andH stand
for transpose and conjugate transposition, respectively. We
write Ai,j for the entry in theith row and jth column
of the matrix A and bi for the ith entry of the vector
b = [ b1 b2 · · · bN ]T . IN denotes theN×N identity matrix.
Slightly abusing common terminology, we call anN × M
matrix A, whereN ≥ M , satisfyingAHA = IM , unitary.
|A| denotes the cardinality of the setA. E[·] stands for the
expectation operator. The binary complement ofx is denoted
by x.

Outline of the Paper: The remainder of this paper is
organized as follows. Section II reviews the transformation
of the max-log soft-output MIMO detection problem into
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a series of tree-search problems. In Section III, we review
the repeated tree-search (RTS) algorithm proposed in [13]
and introduce the STS algorithm. In Section IV, we describe
methods for reducing the tree-search complexity both in the
RTS and the STS algorithms. A framework for evaluating the
complexity/performance trade-offs of the resulting family of
soft-output sphere decoders is introduced in Section V. In
Section VI, we describe a VLSI architecture for the efficient
implementation of max-log soft-output sphere decoding with
LLR clipping. Corresponding ASIC implementation results are
summarized in Section VII. We conclude in Section VIII.

II. SOFT-OUTPUT SPHEREDECODING

Consider a MIMO system withMT transmit andMR ≥MT

receive antennas. The coded bit-stream is mapped to
MT -dimensional transmit symbol vectorss ∈ OMT , where
O stands for the set of underlying complex-valued scalar
constellation points with|O| = 2Q. Each symbol vectors is
associated with a bit-level label vectorx where, throughout the
paper, symbol vectors and their associated labels will be used
interchangeably. Slightly deviating from our notation rules,
we denote the entries ofx as xj,b, where the indicesj and
b refer to thebth bit in the label of the constellation point
corresponding to thejth entry ofs =

[
s1 s2 · · · sMT

]T
. The

resulting complex baseband input-output relation is given by

y = Hs + n (1)

where H denotes theMR × MT channel matrix andn
is an i.i.d. zero-mean proper complex Gaussian distributed
MR-dimensional noise vector with varianceNo per complex
entry. Throughout this paper, we assume that the receiver has
perfect knowledge of the channel matrix realization. The SNR
per receive antenna is1/No.

A. Computation of the Max-Log LLRs

Soft-output MIMO detection requires the computation of
LLRs, denoted asL(·), for all bits in the labelx. In order
to reduce the corresponding computational complexity, we
employ themax-log approximation[10], [14]

L
(
xj,b

)
= min

s∈X (0)
j,b

‖y −Hs‖2 − min
s∈X (1)

j,b

‖y −Hs‖2 (2)

whereX (0)
j,b andX (1)

j,b are the sets of symbol vectors that have
the bth bit in the label of thejth scalar symbol equal to 0 and
1, respectively. Note that we do not take into account a priori
information. The max-log approximation entails a performance
loss compared to using the exact LLRs. For the simulation
setup considered in Section V, this loss, in terms of SNR, is
found to be around 0.25 dB over a large range of SNRs. We
furthermore emphasize that the LLRs in (2) are normalized by
the noise varianceNo in order to get rid of the factor1/No on
the right hand side (RHS) of (2). This simplifies the exposition
and does not degrade the error rate performance of the max-
log-based soft-input Viterbi decoder considered in Section V.

For each bit, one of the two minima in (2) is given by the
metricλML = ‖y −HsML‖2 associated with the ML solution

of the MIMO detection problem

sML = arg min
s∈OMT

‖y −Hs‖2. (3)

The other minimum in (2) can be written as

λML
j,b = min

s∈X(xML
j,b )

j,b

‖y −Hs‖2 (4)

where thecounter-hypothesisxML
j,b denotes the binary comple-

ment of thebth bit in the label of thejth entry ofsML. With
(3) and (4) the max-log LLRs can be written as

L
(
xj,b

)
=

{
λML − λML

j,b , xML
j,b = 0

λML
j,b − λML , xML

j,b = 1 .
(5)

From (5) we can conclude that efficient max-log APP MIMO
detection reduces to efficiently identifyingsML, λML, andλML

j,b

for j = 1, 2, . . . ,MT andb = 1, 2, . . . , Q [13].

B. Max-Log APP MIMO Detection as a Tree Search

Transforming (3) and (4) into tree-search problems and us-
ing the sphere decoding algorithm [3]–[8] allows to efficiently
compute the LLRs in (5). To this end, the channel matrix
H is first QR-decomposed according toH = QR, where the
MR × MT matrix Q is unitary, and theMT × MT upper-
triangular matrixR has real-valued positive entries on its main
diagonal. Left-multiplying (1) byQH leads to the modified
input-output relation

ỹ = Rs + QHn with ỹ = QHy

and hence, noting thatQHn has the same statistics asn, to
the equivalent characterization ofλML andλML

j,b as

λML = min
s∈OMT

‖ỹ −Rs‖2 (6)

λML
j,b = min

s∈X(xML
j,b )

j,b

‖ỹ −Rs‖2. (7)

We next define the partial symbol vectors (PSVs)
s(i) = [ si si+1 · · · sMT

]T and note that they can be ar-
ranged in a tree that has its root just above leveli = MT and
leaves, on leveli = 1, which correspond to symbol vectorss.
In the following, the label associated withs(i) is denoted by
x(i). The Euclidean distancesd(s) = ‖ỹ − Rs‖2 in (6) and
(7) can be computed recursively asd(s) = d1 with the partial
Euclidean distances (PEDs)

di = di+1 + |ei|2, i = MT ,MT − 1, . . . , 1 , (8)

the initialization dMT +1 = 0, and the distance increments
(DIs)

|ei|2 =
∣∣∣ỹi −

MT∑

j=i

Ri,jsj

∣∣∣
2

. (9)

Since the dependence of the PEDdi on the symbol vector
s is only through the PSVs(i), we have transformed ML
detectionand the computation of the max-log LLRs into a
weighted tree-search problem: PSVs and PEDs are associated
with nodes, branchescorrespond to DIs. For brevity, we shall
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often say “the nodes(i)” to refer to the node corresponding
to the PSVs(i). Each path from the root down to a leaf
corresponds to a symbol vectors ∈ OMT . The solution of (6)
and (7) corresponds to the leaf associated with the smallest

metric inOMT andX
“

xML
j,b

”

j,b , respectively. The basic building
block underlying the two tree traversal strategies described in
the next section is the Schnorr-Euchner (SE) sphere decoder
(SESD) with radius reduction [15], [16], briefly summarized
as follows: The search in the tree is constrained to nodes which
lie within a radiusr aroundỹ and tree traversal is performed
depth-first, visiting the children of a given node in ascending
order of their PEDs. The basic idea of radius reduction is
to start the algorithm withr = ∞ and to update the radius
according tor2 ← d(s) whenever a leafs has been reached.
This avoids the problem of choosing a suitable initial radius
and still leads to efficient pruning of the tree.

III. T REE-TRAVERSAL STRATEGIES

Computing the LLRs in (5) requires determining the metrics
λML

j,b , which, for givenj, b, is accomplished by traversing only

those parts of the tree that have leaves inX
“

xML
j,b

”

j,b . Since
this computation has to be carried out for every bit, it is
immediately obvious that LLR computation results in an order
of magnitude increase in computational complexity compared
to hard-output sphere decoding. The situation is further ex-
acerbated by the fact that forcing the SESD into subtrees,
when computing the minima in (7) leads to significantly less
efficient tree pruning behavior, which finally results in an
overall complexity increase (over hard-output SESD) of two
orders of magnitude. The STS algorithm introduced below is
key in reducing this computational complexity.

In the following, we discuss two tree traversal strategies
for solving (6) and (7). The first approach described below
was introduced in [13] and will be referred to as repeated
tree search (RTS). The second algorithm builds on a tree
traversal strategy outlined in [11]. With a view towards VLSI
implementation, we propose refinements of the approach in
[11] resulting in what we call the single tree-search (STS)
strategy.

A. Repeated Tree Search (RTS)

The basic idea of the RTS algorithm described in [13] is to
start by solving (6) (using the SESD) and to then rerun the
SESD to solve (7) for each bit (i.e.,QMT times) in the symbol
vector. When rerunning the SESD to determineλML

j,b in (7),
the search tree is prepruned by forcing the decoder to exclude
all nodes from the search for whichxj,b = xML

j,b . For BPSK,
this prepruning procedure is illustrated in Fig. 1. Following
the proposal in [13] and initializing the SESD withr =∞ in
each of theQMT runs required to obtainλML

j,b , will lead to
significant computational complexity. It is therefore important
to realize that (without compromising max-log optimality) the
search radiusrj,b can be initialized by setting it equal to the

minimum value of‖ỹ − Rs‖ over all s ∈ X
“

xML
j,b

”

j,b found
during preceding tree traversals.

0
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Fig. 1. Example, assuming a BPSK-constellation, of the prepruning proce-
dure in the RTS approach. Counter-hypotheses to the ML solution are found
by forcing the sphere decoder through the dashed branches.

The main disadvantages of the RTS are:

i) the repeated traversal of large parts of the tree which
entails a large number of redundant computations;

ii) significantly less efficient pruning behavior when com-
puting theλML

j,b caused by the need to minimize over

the subsetsX
“

xML
j,b

”

j,b . The underlying reason is that
pruning efficiency decreases significantly when forcing
the sphere decoder through specific branches at levels
further down the tree.

As noted in [17], the problem in ii) can partly be mitigated by
changing the detection order in each run. The resulting need
for multiple QR decompositions, however, leads to an overall
increase in terms of hardware complexity.

B. Single Tree Search

The key to more efficient (compared to RTS) tree traversal
is to ensure that every node in the tree is visited at most
once. This can be accomplished by searching for the ML
solution and all counter-hypotheses concurrently. The basic
idea behind such an approach has been outlined in [11]. In
the following, with a view towards VLSI implementation,
we provide refinements of the idea in [11]. Specifically, we
formulate update rules and a pruning criterion based on a
list containing the metricλML, the corresponding labelxML,
and the metricsλML

j,b . The main idea is to search the subtree
originating from a given node only if the result can lead to
an update of at least one of the metrics in the list, i.e., either
λML or one of theλML

j,b . In the ensuing discussion, the current
ML hypothesis and the corresponding metric are denoted by
xML andλML, respectively.

1) List Administration: The algorithm is initialized with
λML = λML

j,b =∞ (∀ j, b). Whenever a leaf with correspond-
ing label x has been reached, the decoder distinguishes be-
tween two cases:

i) If a new ML hypothesis is found, i.e.,d(x) < λML, all
λML

j,b for which xj,b = xML
j,b are set toλML followed
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by the updatesλML ← d(x) and xML ← x. In other
words, for each bit in the ML hypothesis that is changed
in the process of the update, the metric of theformer
ML hypothesis becomes the metric of thenewcounter-
hypothesis, followed by an update of the ML hypothesis.
This procedure ensures that at all timesλML

j,b is the metric
associated with a valid counter-hypothesis to the current
ML hypothesis.

ii) In the case whered(x) ≥ λML, only the counter-
hypotheses have to be checked. For allj and b such
that xj,b = xML

j,b and d(x) < λML
j,b , the decoder updates

λML
j,b ← d(x).

2) Pruning criterion: The second key aspect of the STS
algorithm is the following tree pruning criterion. Consider
a given nodes(i) (on level i) and the corresponding partial
label x(i) consisting of the bitsxj,b (j = i, i + 1, . . . ,MT ,
b = 1, 2, . . . , Q). Assume that the subtree originating from the
node under consideration and corresponding to the bitsxj,b

(j = 1, 2, . . . , i− 1, b = 1, 2, . . . , Q) has not been expanded
yet. The pruning criterion fors(i) along with its subtree is com-
piled from two conditions. First, the bits in the partial labelx(i)

are compared with the corresponding bits in the label of the
current ML hypothesisxML. All metricsλML

j,b with xj,b = xML
j,b

found in this comparison may be affected when searching the
subtree ofs(i). Second, the metricsλML

j,b (j = 1, 2, . . . , i− 1,
b = 1, 2, . . . , Q) corresponding to the counter-hypotheses in
the subtree ofs(i) may be affected as well. In summary, the
metrics which may be affected during the search in the subtree
emanating from the nodes(i) are given by the set

A
(
x(i)

)
= {al} =

=
{

λML
j,b

∣∣ (
j ≥ i, b = 1, 2, . . . , Q

) ∧ (xj,b = xML
j,b )

}

∪
{

λML
j,b

∣∣ j < i, b = 1, 2, . . . , Q
}

.

The nodes(i) along with its subtree is pruned if its PED
d
(
s(i)

)
satisfies

d
(
s(i)

)
> max

al∈A
(
x(i)

) al . (10)

This pruning criterion (illustrated in Fig. 2) ensures that a
given node and the entire subtree originating from that node
are explored only if this could lead to an update of eitherλML

or of at least one of theλML
j,b . Note thatλML does not appear

in A(
x(i)

)
asλML < λML

j,b (∀ j, b).

IV. M ETHODS FORCOMPLEXITY REDUCTION

So far, we discussed strategies which solve (2) exactly and
hence do not compromise performance of the max-log APP
decoder. The goal of this section is to describe methods, again
with a view towards VLSI implementation, that allow to trade-
off decoder complexity with (error rate) performance.

The complexity measure employed throughout this paper is
the number of nodes (including the leaves, but excluding the
root) visited by the decoder. In Section VI, we show that this
simple complexity measure provides a good indication for the
complexity of a corresponding VLSI implementation.

��� ��� � � �
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x
(i)
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1 0
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0
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0
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Fig. 2. Example of the STS pruning criterion (MT = 5 and two bits per
symbol): The partial labelx(i) determines which counter-hypotheses may be
affected during the search of the subtree emanating from the current node.

A. LLR Clipping

The dynamic range of LLRs is typically not bounded. How-
ever, practical systems need to constrain the magnitude of the
LLR values to enable fixed-point implementation. Evidently
this will lead to a performance degradation. A straightforward
way of ensuring that LLR values are bounded is to clip them
after the detection stage so that

∣∣L(xj,b)
∣∣ ≤ Lmax, ∀j, b . (11)

We emphasize that the constraint in (11) refers to the nor-
malized LLRsL(xj,b) as defined in (2) so thatLmax is a
normalizedmaximum LLR value.

a) LLR Clipping for RTS: It has been noted in [12]
that (11) can be built into the RTS algorithm as a constraint
leading to a reduction in search complexity. The basic idea
is to recognize that (5) together with (11) results in an upper
bound on the radiusrj,b (as illustrated in Fig. 3). To this end,
rj,b is initialized as described in Section III-A followed by an
immediate update according to

rj,b ← min
{
rj,b, λ

ML + Lmax

}
(12)

which ensures that (11) is satisfied. Note that as a consequence
of (12), metrics associated with counter-hypotheses for which
no valid lattice point is found equalλML + Lmax.

b) LLR Clipping for STS:LLR clipping can be built into
the STS algorithm by simply applying the update

λML
j,b ← min

{
λML

j,b , λML + Lmax

}
, ∀j, b (13)

after carrying out the steps in Case i) of the list administration
procedure described in Section III-B. The remaining steps of
the STS algorithm are not affected.

Both in the RTS and the STS algorithm, forLmax =∞, we
obviously get the exact max-log LLRs, whereas forLmax = 0,
we obtain hard-output SESD performance as the decoder
output isxML, λML, andL(xj,b) = 0 for all j andb. Smaller
values ofLmax lead to more aggressive pruning of the tree
and hence to reduced search complexity. We shall see in
Section V that as we reduceLmax, the decoder performance
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Fig. 3. LLR clipping reduces the search radius tormax = λML + Lmax

around the received point̃y.

degrades gracefully, eventually resulting in hard-output ML
performance. The parameterLmax can therefore be used to
efficiently adjust the detection complexity/performance trade-
off. We conclude by noting that LLR clipping as described
above goes beyond the initial motivation of constraining the
word-width used to represent LLR values in binary logic.

B. Sorting and Regularization

Sorting: A common approach to reduce complexity in
sphere decoding without compromising performance is to
adapt the detection order of the spatial streams to the instanta-
neous channel realization by performing a QR-decomposition
on HP (rather thanH), where P is a suitably chosen
MT × MT permutation matrix. More efficient pruning of
the search tree is obtained if sorting is performed such that
“stronger streams” (in terms of effective SNR) correspond
to levels closer to the root, i.e., ifP is chosen such that
the main diagonal entries ofR in HP = QR are sorted in
ascending order. Solving this problem exactly would result in
prohibitive complexity. A heuristic algorithm resulting in a
good complexity/performance trade-off was proposed in [18]
and will be referred to as sorted QR-decomposition (SQRD)
in the following.

Regularization:Poorly conditioned channel realizationsH
lead to high search complexity due to the low effective SNR
on one or more of the effective spatial streams. An efficient
way to counter this problem is to operate on aregularized
channel matrix by computing the (sorted) QR-decomposition
of [

H
αIMT

]
P = QR (14)

whereα is a suitably chosen regularization parameter,Q is a
unitary (MR + MT ) × MT matrix andR is of dimension

MT ×MT . Partitioning Q according toQ =
[
QT

1 QT
2

]T

,
whereQ1 is of dimensionMR ×MT andQ2 is of dimension
MT ×MT , the max-log LLRs in (2) can be approximated as

L
(
xj,b

) ≈ min
s̃∈X (0)

j,b

‖ỹ −Rs̃‖2 − min
s̃∈X (1)

j,b

‖ỹ −Rs̃‖2 (15)

where ỹ = QH
1 y and s̃ = Ps. The LLRs in (15) need to be

reordered at the end of the detection process to account for
the permutation induced byP.

Note that even thoughQ is unitary, Q1 will, in general,
not be unitary, which is the reason for the LLRs in (15) being
an approximation to the exact (max-log) LLRs in (2). The
basic idea underlying this approximation is to perform the QR-
decomposition on the regularized channel matrix and to apply
the result to the physical channel matrix. In the following, we
provide a qualitative discussion of the error incurred by this
procedure. We start by noting that, as a consequence of (14),
we have

ỹ = Rs̃ + ñ (16)

with the effective noise-plus-(self)-interference (NPI) vector

ñ = −αQH
2 s + QH

1 n.

Eq. (16) shows that the approximation in (15) amounts
to pretending that̃n is i.i.d. circularly symmetric complex
Gaussian thereby neglecting that i)ñ depends ons, ii) the
self-interference term−αQH

2 s is not Gaussian (as we are
using finite constellations), and iii)Q1 is, in general, not
unitary which results inQH

1 n not being i.i.d. Nevertheless,
computing the covariance matrix of̃n, by averaging overn
and s, allows to identify good choices for the regularization
parameterα. Assuming, for simplicity of exposition, that
E[ssH ] = 1

MT
IMT

, straightforward manipulations reveal that

K = E
[
ññH

]
=

(
RRH

)−1

|α|2
(
|α|2
MT
−No

)
+ NoIMT .

Setting α = ±√NoMT corresponds to an MMSE regular-
ization [19], results inK = NoIMT , and yields a good per-
formance/complexity trade-off. We emphasize, however, that
settingα = ±√NoMT will not render the effective NPI vector
ñ Gaussian. In the remainder of the paper, we denote the QR-
decomposition in (14) withα = ±√NoMT as MMSE-SQRD.
An important practical aspect of MMSE-SQRD results from
the fact that the noise varianceNo has to be estimated. We
found that, in general, even slight overestimation ofNo will
lead to a noticeable performance degradation, whereas slight
underestimation does not seem to constitute a problem.

C. Run-Time Constraints

The computational complexity (required to find the ML
solution and the LLR values) of the algorithms discussed
so far depends on the realization of the random channel
matrix as well as on the noise realization. Consequently, the
decoder throughput is variable, which constitutes a problem
in many practical application scenarios. Moreover, the worst-
case complexity corresponds to an exhaustive search. In order
to meet the practically important requirement of a fixed
throughput, the algorithm run-time must be constrained. This,
in turn, leads to a constraint on the maximum detection effort
or, equivalently, a constraint on the maximum number of
nodes the sphere decoder is allowed to visit. Clearly, this
will, in general, prevent the detector from achieving ML or
max-log APP performance. It is therefore important to find
a way of imposing run-time constraints while keeping the
resulting performance degradation at a minimum. Moreover,
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Fig. 4. Comparison of repeated tree search (RTS), single tree search (STS),
and the list sphere decoder (LSD) as proposed in [10], all using SQRD
preprocessing. The numbers next to the curves correspond toLmax for RTS
and STS and to the list size in the case of the LSD.

in practice, it is highly desirable to have a smooth performance
degradation as the run-time constraint becomes more stringent.

In the following, we restrict ourselves to the STS algorithm.
A straightforward way of enforcing a run-time constraint is to
terminate the search, on a symbol vector by symbol vector
basis, after a maximum number of visited nodes. The STS
decoder then returns the best solution found so far, i.e., the
current ML and counter-hypotheses. A better solution is to
impose an aggregate run-time constraint ofNDavg visited
nodes for an entire block ofN symbol vectors1 [20]. The
maximum number of visited nodes allocated to the detection of
the kth symbol vector can, for example, be chosen according
to the maximum-first (MF) scheduling strategy as

Dmax(k) = NDavg −
k−1∑

i=1

D(i)− (N − k)MT (17)

for k = 1, 2, . . . , N whereD(i) denotes the actual number of
visited nodes for theith symbol vector. The concept behind
(17) is that decoding a given symbol vector is allowed to
consume all of the remaining run-time within the block ofN
symbol vectors up to a safety margin of(N − k)MT visited
nodes. This margin allows to find at least the hard-output SIC
solution for all remaining symbol vectors. SettingDavg = MT

maximizes the throughput, but reduces the performance to
that of hard-output SIC. We emphasize that, under run-time
constraints, there may be LLRs at the end of the decoding
process that have not been updated from their initial value of
∞ and hence need to be set toLmax.

V. PERFORMANCE/COMPLEXITY TRADE-OFFS

System engineers typically face the problem of designing
a receiver that achieves a prescribed target frame error rate

1In an OFDM-based MIMO system,N would, for example, be the number
of OFDM tones.

(FER) at a prescribed throughput. The quality of the receiver
implementation can then be measured by the minimum SNR
required to achieve this target FER at the specified throughput.
In the following, we assess the complexity/performance trade-
offs of the receiver concepts described in Sections III and IV
by plotting the average (over independent channel and noise
realizations) number of visited nodes as a function of this
minimum SNR. Since the number of visited nodes is related to
the required chip area per throughput [16], the corresponding
results allow to associate a reduction in hardware complexity
(e.g., chip area) to an SNR penalty.

All simulation results below are for a rateR = 1/2
(generator polynomials[133o 171o] and constraint length7)
convolutionally encoded MIMO-OFDM system [21] with
MT = MR = 4, 16-QAM constellation (using Gray mapping),
N = 64 tones, and soft-input Viterbi decoding [22]. Note that
for Lmax = 0, one has to employ a hard-input Viterbi decoder.
One frame consists of1024 randomly interleaved (across space
and frequency) bits and corresponds to one OFDM symbol. A
TGn type C channel model [23] is used and in all simulations,
SNR is the per receive antenna SNR.

A. Comparison of Tree-Search Strategies

Fig. 4 compares the performance of RTS and STS max-
log APP decoders, and the list sphere decoder (LSD) [10]
for different target FERs and different values ofLmax. In the
case of the LSD, changing the list size allows to adjust the
complexity/performance trade-off.

The STS algorithm is seen to outperform the RTS strategy
in terms of average complexity by a factor of 4 to 8.

The implementation of the LSD requires memory and logic
for the administration of the candidate list, not accounted for
in this comparison. Fig. 4 shows that even when this additional
complexity is ignored, the STS is still superior to the LSD.
Under stringent complexity constraints the STS shows SNR
advantages over the LSD of up to 1.5 dB.

B. Impact of Sorting and Regularization

Fig. 5 compares the impact of sorting and regularization on
the complexity/performance trade-off of the STS algorithm.
Specifically, we show the trade-off curves corresponding to
SQRD, MMSE-SQRD, and standard (unsorted) QRD at a
target FER of 0.01. It can be seen that the improvement
resulting from sorting (i.e., SQRD vs. QRD) becomes sig-
nificant for stringent (but realistic) complexity constraints.
Further improvements, in the low-complexity regime, are
obtained from regularization using MMSE-SQRD. In the
high-complexity regime, the performance penalty incurred by
regularization (see the discussion in Section IV-B) eventually
renders MMSE-SQRD inferior to SQRD.

C. LLR Clipping

Both Fig. 4 and Fig. 5 show that, as discussed in Sec-
tion IV-A, adjusting the LLR clipping levelLmax allows
to sweep an entire family of sphere decoders ranging from
the exact max-log APP SESD (Lmax = ∞) to hard-output
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Fig. 5. Comparison of unsorted QRD, SQRD and MMSE-SQRD prepro-
cessing applied to STS. The numbers next to the curves correspond toLmax.
For Lmax = 0, the performance equals that of hard-output SESD.

SESD (Lmax = 0). It is interesting to observe that aggressive
clipping according toLmax = 0.2 yields close to max-
log APP performance. Increasing the LLR clipping level
beyond this value increases complexity without a noticeable
performance improvement. Furthermore, we observe that the
decoder performance degrades gracefully as we decreaseLmax

thereby reducing the average search complexity. In summary,
the LLR clipping level can be used to conveniently adjust the
decoderat runtimeto a given complexity constraint.

D. Run-time Constraints

In Fig. 6, we demonstrate the impact of imposing a run-time
constraint according to a maximum ofNDavg visited nodes
for a frame ofN = 64 symbol vectors using the strategy
described in Section IV-C. The resulting curves essentially
consist of two regions:
• If the LLR clipping levelLmax is high (corresponding to

high average search complexity), the run-time constrained
detector is not able to compute accurate LLR values,
which results in (very) poor performance, unlessDavg is
large. ForDavg = 128, the performance is, indeed, very
close to that of the unconstrained max-log APP SESD.

• For small Lmax, the performance is dominated by the
impact of clipping rather than by the impact of the run-
time constraint.

In summary, we can conclude that for a given run-time con-
straint there exists an optimum LLR clipping level, in the sense
of minimizing the SNR required to achieve a certain target
FER. It is therefore important to choose the LLR clipping
level in accordance with the average run-time constraint.

VI. VLSI A RCHITECTURE FORMAX -LOG STS
SOFT-OUTPUT SPHEREDECODING

Since the proposed max-log STS SESD VLSI implemen-
tation is based on the one-node-per-cycle (ONPC) VLSI
architecture developed in [16] for hard-output SESD, we start
our discussion by briefly reviewing relevant aspects of [16].
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Fig. 6. Impact of imposing run-time constraints with maximum-first
scheduling on STS SESD with MMSE-SQRD preprocessing.

A. A Brief Review of the ONPC Architecture in [16]

The VLSI architecture proposed in [16] employs two func-
tional units:

Metric Computation Unit (MCU):The MCU handles the
forward iteration in the search tree by identifying the starting-
point for the SE enumeration (i.e., the current node’s child
that has the smallest PED) using the direct-QAM enumeration
algorithm initially proposed in [10] and slightly modified
in [16]. The basic idea behind this enumeration method for
QAM constellations is as follows: The QAM constellation
is first decomposed into subsets of constellation points that
have the same modulus, referred to as phase-shift keying
(PSK) subsets. Within each of these PSK subsets, the child
associated with the smallest PED can be identified based on
the phase ofbi = ỹi−

∑MT

j=i+1 Ri,jsj only. The corresponding
minimum PEDs (one for each subset) are then computed
and compared. The minimum PED across subsets identifies
the starting point for the SE enumeration. If the resulting
child neither corresponds to a leaf nor qualifies for pruning,
the decoder proceeds in forward direction by declaring this
child as the next parent node to be examined by the MCU
(cf. ① in Fig. 7).

Metric Enumeration Unit (MEU):The MEU maintains a
list of preferred children, one for each node between the root
and the parent of the node whose children are currently under
examination by the MCU. To this end, the MEU follows the
MCU on its path through the tree with one cycle delay. While
the MCU visits a node, the MEU considers this node’s siblings
and identifies the one that should be visited next according to
the SE criterion. This sibling is found by applying the direct-
QAM enumeration principle described above, where within
each PSK subset the next (according to the SE criterion)
candidate follows immediately by zig-zag enumeration along
the circle. The decision on the preferred child across subsets
must again be made by explicit computation and comparison
of the smallest PEDs of the individual PSK subsets.

When the forward iteration stalls, either because the child
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Fig. 7. Block diagram of the proposed VLSI architecture for the soft-output
STS SESD. Additional units, compared to the hard-output SESD described
in [16], are highlighted.

identified by the MCU corresponds to a leaf or must be pruned,
the MEU provides a new parent node to the MCU in the
next clock cycle (cf.② in Fig. 7). This parent node is chosen
by the MEU, following the depth-first paradigm, from those
members of the list of preferred children which do not qualify
for pruning.

B. VLSI Architecture for STS SESD

The block diagram of the proposed max-log STS SESD
VLSI implementation is shown in Fig. 7. Compared to the ar-
chitecture for hard-output SESD described in [16], changes are
made in the MCU and two additional units are required, one
for list administration as described in Section III-B1 and one
for the implementation of the pruning criterion as described
in Section III-B2. We shall next describe the specifics of these
changes.

1) Architectural Changes in the MCU:From a high-level
architectural perspective, there is one fundamental difference
between tree-traversal for hard-output SESD and for the STS
algorithm: When the node currently examined by the MCU
is on the level just above the leaves (i.e., on leveli = 2),

the hard-output SESD considers only one child, namely the
one associated with the smallest PED. The STS algorithm,
however, has to compute the PEDs of all children that do not
qualify for pruning according to the criterion (10) since these
children may lead to updates of the metricsλML

j,b . To perform
this leaf enumerationprocedure, the STS decoder must revisit
the current node at leveli = 2, which requires additional clock
cycles and a leaf enumeration unit shown in Fig. 7. This unit
does, however, not require an additional arithmetic unit for the
PED computation as it can reuse the PED computation unit in
the MCU (cf. ③ in Fig. 7).

2) List Administration and Tree Pruning:In addition to the
modifications in the MCU described above, the STS algorithm
requires the following two additional units:

List-Administration Unit (LAU): The LAU is responsible
for maintaining and updating the list containingxML, λML,
and theλML

j,b . The corresponding unit is active during the leaf-
enumeration process described above. Since the update rules
implemented by the LAU (see Section III-B1) require only a
small number of logic operations, the silicon area of this unit
is small (see Table II) and is dominated by the storage space
required for the metricsλML andλML

j,b .
Pruning Criterion Unit (PCU): The PCU is responsible

for computing the reference metrics, i.e., the RHS of (10),
required to implement the corresponding pruning criterion.
From a VLSI implementation perspective, the reference metric
on level i depending on the partial labelx(i) constitutes a
major problem. More specifically, this dependence causes the
criterion for pruning the child of a parent node on level
i + 1 to depend on the partial labelx(i) of that child. This,
in turn, implies that enumeration of the children on level
i in ascending order of their PEDs according to the SE
criterion can not be applied, which results in the need for
exhaustive-search enumeration and is thus ill-suited for VLSI
implementation [16]. An adjustment of the pruning criterion
in (10) solves this problem. To this end, we define

B
(
x(i+1)

)
= {bl} =

=
{

λML
j,b

∣∣ (
j > i, b = 1, 2, . . . , Q

) ∧ (xj,b = xML
j,b )

}

∪
{

λML
j,b

∣∣ j ≤ i, b = 1, 2, . . . , Q
}

and prune the nodes(i) along with its subtree ifd
(
s(i)

)

satisfies

d
(
s(i)

)
> max

bl∈B(x(i+1))
bl . (18)

Note that the RHS of the modified pruning criterion (18)
depends on the partial labelx(i+1) rather than onx(i).
Consequently, the enumeration of the children of a node on
level i + 1 can be carried out using the SE criterion.

C. Impact of List Administration and Tree Pruning on Com-
plexity

We argued throughout the paper that, for a ONPC archi-
tecture, the number of visited nodes is equal to the number
of clock cycles required for decoding thus reflecting the true
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Fig. 8. Average number of visited nodes of the STS algorithm compared
with the average number of clock cycles of the corresponding VLSI implemen-
tation (with MMSE-SQRD preprocessing). The numbers next to the curves
correspond to LLR clipping levels.

silicon complexity of the algorithm. However, for the proposed
STS architecture the number of clock cycles will be larger than
the number of visited nodes shown in the numerical results
in Section V, for two reasons: First, modifying the pruning
criterion (10) to result in (18) leads to less efficient pruning
as

max
bl∈B(x(i+1))

bl ≥ max
al∈A

(
x(i)

) al.

The corresponding complexity increase is, however, signif-
icantly smaller than what would be incurred if exhaustive
search enumeration on (10) would be applied. The second
reason for the number of clock cycles being higher than the
number of visited nodes is that every time the leaf-enumeration
process is performed, one additional cycle is consumed to
detect the end of the enumeration process. Consequently, the
proposed VLSI architecture no longer strictly follows the
ONPC paradigm. The results in Fig. 8 show, however, that the
impact of the two effects discussed above leads to the number
of clock cycles being only slightly higher than the number of
visited nodes.

D. Architectural Considerations for RTS

In this section, we would like to discuss architectural consid-
erations for possible implementations of the RTS strategy. As
described in Section III-A, the RTS approach corresponds to
repeated runs of a hard-output SESD which, in principle, can
be implemented efficiently using the ONPC VLSI architecture
introduced in [16]. However, forcing the decoder to search

only over the setX
“

xML
j,b

”

j,b when computing the counter-

hypothesesλML
j,b requires to constrain the search to a subset

of admissible constellation points, which, moreover depend
on the (bits to symbol) mapping. Consequently, as depicted
in Fig. 9, straightforward zig-zag enumeration can no longer
be applied. In addition, as demonstrated in Fig. 9, different

0010 0110 1110 1010

0011 0111 1111 1011

0001 0101 1101 1001

0000 0100 1100 1000

0010 0110 1110 1010

0011 0111 1111 1011

00 10 01 10 11 10 10 10

00 00 01 00 11 00 10 00

Fig. 9. Example for SE enumeration in a PSK subset (of 16-QAM with
Gray mapping) when searching forλML

j,b with b = 1, 2 and with xML
j,b = 1

for b = 1, 2. The bits under consideration have been set in boldface font.

counter-hypotheses will result in different sets of allowed
constellation points, which induces an irregularity that results
in an increase in hardware complexity. The problem can
be mitigated to a certain extent by adjusting the mapping.
However, this, in general, results in a (bit error rate) per-
formance degradation. Alternatively using exhaustive search
enumeration, as described in [16], to computeλML and the
counter-hypothesesλML

j,b , is not a viable option as it results in
significant overhead in terms of chip area and in an increase
in the length of the critical path. For a quantitative analysis of
the impact of exhaustive-search enumeration (in hard-output
SESD) the interested reader is referred to [16].

VII. ASIC I MPLEMENTATION RESULTS

In order to assess the true silicon complexity (chip area
and achievable clock frequency) of the proposed STS-based
soft-output SESD, we implemented the VLSI architecture de-
scribed in the previous section in 0.25µm CMOS technology
for a MIMO system with MT = MR = 4 using 16-QAM
modulation. The resulting chip layout is shown in Fig. 10. The
design parameters of the decoder are summarized in Table I
which, for reference, also contains the design parameters of
an `2-norm hard-output SESD, following the design princi-

TABLE I
DESIGN PARAMETERS OF HARD-OUTPUT SESDAND SOFT-OUTPUT STS

ASICS IN 0.25µm CMOS TECHNOLOGY

Hard-output SESD Soft-output STS

Gate equivalentsa 34.4 kGE 56.8 kGE

Core area 1.2 mm2 1.9 mm2

Max. clock frequencyb 73 MHz 71 MHz

AT-productc 0.164µm2s 0.268µm2s

a To provide technology-independent area characterization, the number of
gate equivalents (GEs) is specified. One GE corresponds to the area of a two-
input drive-one NAND gate.

b The results on clock frequency are extracted from a post-layout static timing
analysis and are representative for the manufactured ASIC within an accuracy
of a few percent.

c The area-timing (AT) product of a VLSI circuit is a measure for its true
silicon complexity. It is given by the product of the chip area divided by the
maximum allowed clock frequency.
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TABLE II
DETAILED CHIP AREA BREAKDOWN OF THE DIFFERENT FUNCTIONAL

UNITS IN A HARD-OUTPUT SESDAND IN A SOFT-OUTPUT STS SESD

Hard-output SESD Soft-output STS
Area [kGE] Area [%] Area [kGE] Area [%]

Mem. (y,R) 4.6 13.4 4.5 7.9
MCU 16.6 48.3 18.5 32.6
MEU 11.9 34.6 10.9 19.2
Output buffer 0.8 2.3 5.0 8.8
Control logic 0.5 1.6 0.5 0.9
LAU

- -
8.4 14.7

PCU 6.4 11.3
LLR Comp. 2.6 4.6

Total 34.4 100 56.8 100

ples employed for thè∞-norm hard-output SESD described
in [16].

Hardware Complexity:We can see from Table I that the
chip area required by the soft-output STS SESD is only 58%
higher than that required by a corresponding`2-norm hard-
output SESD. The detailed area breakdown in Table II shows
that most of the area increase results from the LAU, the PCU,
and the arithmetic unit that computes the LLRs. Further area
increase is due to the need to store the LLRs in the output
buffer of the ASIC. The additional Schnorr-Euchner enumera-
tion unit in the MCU required for leaf enumeration adds only
1.9 kGEs to the overall area. The soft-output STS SESD ASIC
shows only slightly lower maximum clock frequency than the
corresponding hard-output SESD. The reason underlying this
only negligible reduction in maximum clock frequency is that
most of the additional logic required by the STS SESD ASIC
can be kept off the critical path and has thus little influence
on the maximum clock frequency.

Detection Throughput: Fig. 11 shows the complexity/
performance trade-off of the reference`2-norm hard-output

Fig. 10. Layout of an STS-based soft-output SESD ASIC in 0.25µm CMOS
technology.
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Fig. 11. Throughput characteristics of the soft-output STS SESD and
the reference hard-output SESD VLSI implementation with MMSE-SQRD
preprocessing.

SESD and the soft-output STS described in Section VI in terms
of the throughput

Θ =
RQMT

E[C]
fclk [bit/s]

measured ininformation-bits per second as a function of the
minimum required SNR to achieve a FER of 0.01. Here,
fclk is the maximum clock frequency of the circuit under
consideration andE[C] denotes the average (over channel and
noise realizations) number of clock cycles required to detect
a symbol vector. Note that the dedicated hard-output SESD
implementation achieves a slightly higher throughput than the
STS SESD implementation with2 Lmax = 0. This is due to the
slightly higher maximum clock frequency of the corresponding
hard-output SESD (see Table I).

VIII. C ONCLUSIONS

Sphere decoding is a suitable tool to implement MIMO
detection with variable complexity/performance trade-off. In
particular, adjusting the LLR clipping level and imposing
maximum run-time constraints is an efficient way of realizing
an entire family of decoders with (error rate) performance
ranging from exact max-log soft-output to hard-output SIC.
The keys to achieving low hardware complexity are the single
tree-search strategy described in Section III-B, MMSE-SQRD
preprocessing, LLR clipping, and run-time constraints with
maximum-first scheduling. Our VLSI implementation results
indicate that the silicon area required by a soft-output STS
SESD is only about 58% higher than the area required for
a corresponding̀2-norm hard-output SESD implementation.
This paves the way for a VLSI implementation of iterative
MIMO detection based on sphere decoding.

2Recall that forLmax = 0, the (error rate) performance of the STS SESD
algorithm corresponds to that of a hard-output SESD.



300 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26. NO. 2, FEBRUARY 2008

REFERENCES

[1] C. Studer, M. Wenk, A. Burg, and H. Bölcskei, “Soft-output MIMO
detection algorithms: Performance and implementation aspects,” inProc.
of the 40th Asilomar Conf. on Signals, Systems, and Computers, Oct.
2006, pp. 2071–2076.

[2] H. Bölcskei, D. Gesbert, C. Papadias, and A. J. van der Veen, Eds.,
Space-Time Wireless Systems: From Array Processing to MIMO Com-
munications. Cambridge Univ. Press, 2006.

[3] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,”Mathematics
of Computation, vol. 44, pp. 463–471, Apr. 1985.

[4] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,”Math. Programming,
vol. 66, no. 2, pp. 181–191, Sept. 1994.

[5] E. Viterbo and E. Biglieri, “A universal decoding algorithm for lattice
codes,”Colloq. GRETSI, vol. 14, pp. 611–614, Sept. 1993.

[6] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,”IEEE Transactions on Information Theory, vol. 45, no. 5, pp.
1639–1642, July 1999.

[7] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for
space-time codes,”IEEE Communications Letters, vol. 4, no. 5, pp. 161–
163, May 2000.

[8] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding
in digital communications,”IEEE Transactions on Signal Processing,
vol. 53, no. 4, pp. 1474–1484, Apr. 2005.

[9] A. Paulraj, R. Nabar, and D. Gore,Introduction to Space-Time Wireless
Communications. Cambridge Univ. Press, 2003.

[10] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,”IEEE Transactions on Communications,
vol. 51, no. 3, pp. 389–399, Mar. 2003.

[11] J. Jaldén and B. Ottersten, “Parallel implementation of a soft output
sphere decoder,” inProceedings Asilomar Conf. on Signals, Systems
and Computers, Nov. 2005, pp. 581–585.

[12] M. S. Yee, “Max-Log-Map sphere decoder,” inProc. IEEE ICASSP
2005, vol. 3, Mar. 2005, pp. 1013–1016.

[13] R. Wang and G. B. Giannakis, “Approaching MIMO channel capacity
with reduced-complexity soft sphere decoding,” inProc. of IEEE Wire-
less Communications and Networking Conf. (WCNC), vol. 3, Mar. 2004,
pp. 1620–1625.

[14] B. Steingrimsson, T. Luo, and K. M. Wong., “Soft quasi-maximum-
likelihood detection for multiple-antenna wireless channels,”IEEE
Transactions on Signal Processing, vol. 51, no. 11, pp. 2710–2719, Nov.
2003.

[15] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp.
2201–2214, Aug. 2002.

[16] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bölcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,”IEEE Journal of Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, July 2005.

[17] P. Marsch, E. Zimmermann, and G. Fettweis, “Smart candidate adding:
A new low-complexity approach towards near-capacity MIMO detec-
tion,” in Proceedings of the 13th European Signal Processing Conf.
(EUSIPCO), Sept. 2005.

[18] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K.-D. Kammeyer, “Effi-
cient algorithm for decoding layered space-time codes,”IEE Electronics
Letters, vol. 37, no. 22, pp. 1348–1350, Oct. 2001.

[19] D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer, “MMSE
extension of V-BLAST based on sorted QR decomposition,” inProc.
IEEE Vehicular Technology Conf. (Fall), vol. 1, Oct. 2003, pp. 508–
512.

[20] A. Burg, M. Borgmann, M. Wenk, C. Studer, and H. Bölcskei, “Ad-
vanced receiver algorithms for MIMO wireless communications,” in
Proceedings of the Design Automation and Test Europe Conf. (DATE),
vol. 1, May 2006, pp. 593–598.

[21] H. Bölcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-
based spatial multiplexing systems,”IEEE Trans. Communications,
vol. 50, no. 2, pp. 225–234, Feb. 2002.

[22] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,”IEEE Transactions on Information Theory,
vol. 42, no. 2, pp. 429–445, Mar. 1996.

[23] V. Erceget al., TGn channel models, May 2004, IEEE 802.11 document
03/940r4.

Christoph Studer (S’06) was born in Solothurn,
Switzerland on December 25, 1979. He received
the MSc degree in electrical engineering from the
ETH Zurich, Zurich, Switzerland, in 2005, where
he is currently working toward the Dr. sc. techn.
degree.

In 2005, he was a Visiting Researcher with the
Smart Antennas Research Group, Stanford Univer-
sity, Stanford, CA, USA. Since 2006, he has been a
Research Assistant with the Integrated Systems Lab-
oratory (IIS) at ETH Zurich. His research interests

include signal processing for wireless communications and the design of VLSI
circuits and systems.

Mr. Studer was the recipient of an ETH Medal in 2005 for his Master’s
Thesis.

Andreas Burg (S’97–M’05) was born in Munich,
Germany, in 1975. He received the Dipl.-Ing. degree
in 2000 from the ETH Zurich, Zurich, Switzerland,
in 2000. He then joined the Integrated Systems
Laboratory of ETH Zurich, where he received the
Dr. sc. techn. degree in 2006. From 2006 to 2007,
he held positions as postdoctoral researcher jointly at
the Integrated Systems Laboratory and the Commu-
nication Technology Laboratory at ETH Zurich. In
2007 he co-founded Celestrius AG, an ETH-spinoff
in the field of MIMO wireless communication.

In 1998, he worked at Siemens Semiconductors, San Jose, CA. During his
doctoral studies, he was a visiting researcher with Bell Labs Wireless Research
for a total of one year. His research interests include the design of digital VLSI
circuits and systems and signal processing for wireless communications.

In 2000, Mr. Burg received the “Willi Studer Award” and an ETH Medal for
his diploma and his diploma thesis, respectively. Mr. Burg was also awarded
an ETH Medal for his Ph.D. dissertation in 2006.

Helmut Bölcskei (M’98–SM’02) was born in
Mödling, Austria on May 29, 1970, and received
the Dipl.-Ing. and Dr. techn. degrees in electri-
cal engineering/communication theory from Vienna
University of Technology, Vienna, Austria, in 1994
and 1997, respectively. In 1998 he was with Vienna
University of Technology. From 1999 to 2001 he
was a postdoctoral researcher in the Information
Systems Laboratory, Department of Electrical En-
gineering, Stanford University, Stanford, CA. He
was in the founding team of Iospan Wireless Inc.,

a Silicon Valley-based startup company (acquired by Intel Corporation in
2002) specialized in multiple-input multiple-output (MIMO) wireless systems
for high-speed Internet access. From 2001 to 2002 he was an Assistant
Professor of Electrical Engineering at the University of Illinois at Urbana-
Champaign. He has been with ETH Zurich since 2002, where he is Professor
of Communication Theory. He was a visiting researcher at Philips Research
Laboratories Eindhoven, The Netherlands, ENST Paris, France, and the
Heinrich Hertz Institute Berlin, Germany. He is a cofounder of the ETH spin-
off company Celestrius AG, where he serves as Chief Scientist. His research
interests include communication and information theory with special emphasis
on wireless communications, signal processing and quantum information
processing.

He received the 2001 IEEE Signal Processing Society Young Author Best
Paper Award, the 2006 IEEE Communications Society Leonard G. Abraham
Best Paper Award, the ETH “Golden Owl” Teaching Award, and was an Erwin
Schrödinger Fellow (1999-2001) of the Austrian National Science Foundation
(FWF). He was a plenary speaker at several IEEE conferences and served as an
associate editor of theIEEE TRANSACTIONS ONSIGNAL PROCESSING, the
IEEE TRANSACTIONS ONWIRELESSCOMMUNICATIONS and theEURASIP
Journal on Applied Signal Processing. He is currently on the editorial board
of “Foundations and Trends in Networking”, serves as an associate editor for
the IEEE TRANSACTIONS ON INFORMATION THEORY and is TPC co-chair
of the 2008 IEEE International Symposium on Information Theory.


