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Abstract—Soft-input soft-output (SISO) detection algorithms
form the basis for iterative decoding. The associated computa-
tional complexity often poses significant challenges for practical
receiver implementations, in particular in the context of multiple-
input multiple-output wireless systems. In this paper, we present
a low-complexity SISO sphere decoder which is based on the
single tree search paradigm, proposed originally for soft-output
detection in Studer et al., IEEE J-SAC, 2008. The algorithm
incorporates clipping of the extrinsic log-likelihood ratios in
the tree search, which not only results in significant complexity
savings, but also allows to cover a large performance/complexity
trade-off region by adjusting a single parameter.

I. INTRODUCTION

Soft-input soft-output (SISO) detection in multiple-input
multiple-output (MIMO) systems constitutes the basis for
iterative decoding, which, in general, achieves significantly
better performance than decoding based on hard-output or soft-
output-only detection algorithms. Unfortunately, this perfor-
mance gain comes at the cost of a significant, often prohibitive
(in terms of practical implementation), increase in terms of
computational complexity.

Implementing different algorithms, each optimized for a
maximum allowed detection effort or for a particular system
configuration, would entail considerable circuit complexity. A
practical SISO detector for MIMO systems should therefore
not only exhibit low computational complexity but also cover a
wide range of easily adjustable performance/complexity trade-
offs.

The single tree search (STS) soft-output sphere decoder
(SD) in combination with log-likelihood ratio (LLR) clip-
ping [1] has been demonstrated to be suitable for VLSI
implementation and is efficiently tunable between max-log
optimal soft-output and low-complexity hard-output detection
performance. The STS-SD concept is therefore a promising
basis for efficient SISO detection in MIMO systems.

Contributions: We describe a SISO STS-SD algorithm that
is tunable between max-log optimal SISO and hard-output
maximum a posteriori (MAP) detection performance. To this
end, we extend the soft-output STS-SD algorithm described
in [1] by a max-log optimal a priori information processing
method that significantly reduces the tree-search complexity
compared to, e.g., [2], [3], and avoids the computation of tran-
scendental functions. The basic idea of the proposed approach
is to incorporate clipping of the extrinsic LLRs into the tree
search. This requires that the list administration concept and
the tree pruning criterion proposed for soft-output STS-SD
in [1] be suitably modified. Simulation results show that the
SISO STS-SD with extrinsic LLR clipping attains close to

max-log optimal SISO performance at remarkably low com-
putational complexity and, in addition, offers a significantly
larger performance/complexity trade-off region than the soft-
output STS-SD in [1].

Notation: Matrices are set in boldface capital letters, vectors
in boldface lowercase letters. The superscripts T and H stand
for transpose and conjugate transpose, respectively. We write
Ai,j for the entry in the ith row and jth column of the matrix
A and bi for the ith entry of the vector b = [ b1 b2 · · · bN ]T .
IN denotes the N ×N identity matrix. Slightly abusing com-
mon terminology, we call an N×M matrix A, where N ≥M ,
satisfying AHA = IM , unitary. |O| denotes the cardinality of
the set O. The probability of an event Z is denoted by P[Z ].
x is the binary complement of x ∈ {+1,−1}, i.e., x = −x.

II. SOFT-INPUT SOFT-OUTPUT SPHERE DECODING

Consider a MIMO system with MT transmit and MR ≥MT

receive antennas. The coded bit-stream to be transmitted is
mapped to (a sequence of) MT -dimensional transmit symbol
vectors s ∈ OMT , where O stands for the underlying complex
scalar constellation and |O| = 2Q. Each symbol vector s is
associated with a label vector x containing MT Q binary values
chosen from the set {+1,−1} where the null element (0 in
binary logic) of GF(2) corresponds to +1. The corresponding
bits are denoted by xj,b, where the indices j and b refer to the
bth bit in the binary label of the jth entry of the symbol vector
s = [ s1 s2 · · · sMT

]T . The associated complex baseband
input-output relation is given by

y = Hs + n (1)

where H stands for the MR × MT channel matrix, y

is the MR-dimensional received signal vector, and n is
an i.i.d. circularly symmetric complex Gaussian distributed
MR-dimensional noise vector with variance No per complex
entry.

A. Max-Log LLR Computation as a Tree Search
SISO detection for MIMO systems requires computation of

the LLRs [4], [5]

Lj,b , log

(

P[xj,b = +1|y,H]

P[xj,b = −1|y,H]

)

(2)

for all bits j = 1, 2, . . . , MT , b = 1, 2, . . . , Q, in the label x.
Transforming (2) into a tree-search problem and using the
sphere decoding algorithm allows efficient computation of
the LLRs [6], [3], [1]. To this end, the channel matrix H

is first QR-decomposed according to H = QR, where the



MR × MT matrix Q is unitary and the MT × MT upper-
triangular matrix R has real-valued positive entries on its main
diagonal. Left-multiplying (1) by QH leads to the modified
input-output relation ỹ = Rs + QHn, where ỹ = QHy.
Noting that QHn is also i.i.d. circularly symmetric complex
Gaussian and using the max-log approximation leads to the
intrinsic LLRs [4]

LD
j,b , min

s∈X
(−1)
j,b

{

1

No

∥

∥ỹ −Rs
∥

∥

2
− log P[s]

}

− min
s∈X

(+1)
j,b

{

1

No

‖ỹ −Rs‖2 − log P[s]

}

(3)

where X (−1)
j,b and X (+1)

j,b are the sets of symbol vectors that
have the bit corresponding to the indices j and b equal
to −1 and +1, respectively. In the following, we consider
an iterative MIMO decoder as depicted in Fig. 1. A soft-
input soft-output MIMO detector computes intrinsic LLRs
according to (3) based on the received signal vector y

and on a priori probabilities in the form of the a priori
LLRs LA

j,b , log
(

P[xj,b=+1]
P[xj,b=−1]

)

and delivers the extrinsic LLRs

LE
j,b = LD

j,b − LA
j,b, ∀ j, b, (4)

to a subsequent SISO channel decoder.
For each bit, one of the two minima in (3) corresponds to

λMAP ,
1

No

∥

∥

∥
ỹ −RsMAP

∥

∥

∥

2

− log P
[

sMAP
]

(5)

which is associated with the MAP solution of the MIMO
detection problem

sMAP = arg min
s∈OMT

{

1

No

∥

∥ỹ −Rs
∥

∥

2
− log P[s]

}

. (6)

The other minimum in (3) can be computed as

λMAP
j,b , min

s∈X

(

xMAP
j,b

)

j,b

{

1

No

∥

∥ỹ −Rs
∥

∥

2
− log P[s]

}

(7)

where the (bit-wise) counter-hypothesis xMAP
j,b to the MAP

hypothesis denotes the binary complement of the bth bit in
the label of the jth entry of sMAP. With the definitions (5)
and (7), the intrinsic max-log LLRs in (3) can be written in
compact form as

LD
j,b =

{

λMAP
j,b − λMAP , xMAP

j,b = +1

λMAP − λMAP
j,b , xMAP

j,b = −1.
(8)

We can therefore conclude that efficient max-log optimal
soft-input soft-output MIMO detection reduces to efficiently
identifying sMAP, λMAP, and λMAP

j,b (∀j, b).
We next define the partial symbol vectors (PSVs)

s(j) = [ sj sj+1 · · · sMT
]T and note that they can be ar-

ranged in a tree that has its root just above level j = MT and
leaves, on level j = 1, which correspond to symbol vectors s.
The binary-valued label vector associated with s(j) will be
denoted by x(j). The distances

d(s) =
1

No

∥

∥ỹ −Rs
∥

∥

2
− log P[s]

Fig. 1. Iterative MIMO decoder [4]. The SISO STS-SD (corresponding to
the dashed box) directly computes extrinsic log-likelihood ratios.

in (5) and (7) can be computed recursively if the individual
symbols sj (j = 1, 2, . . . , MT ) are statistically independent,
i.e., if P[s] =

∏MT

j=1 P[sj ]. In this case, we have

d(s) =

MT
∑

j=1

(

1

No

∣

∣

∣

∣

ỹj −

MT
∑

i=j

Rj,isi

∣

∣

∣

∣

2

− log P[sj ]

)

which can be evaluated recursively as d(s) = d1, with the
partial distances (PDs)

dj = dj+1 + |ej |, j = MT , MT − 1, . . . , 1,

the initialization dMT +1 = 0, and the distance incre-
ments (DIs)

|ej | =
1

No

∣

∣

∣

∣

∣

ỹj −

MT
∑

i=j

Rj,isi

∣

∣

∣

∣

∣

2

− log P[sj ] . (9)

Note that the DIs are non-negative since − logP[sj ] ≥ 0.
The dependence of the PDs dj on the symbol vector s is
only through the PSV s(j). Thus, the MAP detection problem
and the computation of the intrinsic max-log LLRs have
been transformed into tree-search problems: PSVs and PDs
are associated with nodes, branches correspond to DIs. For
brevity, we shall often say “the node s(j)” to refer to the
node corresponding to the PSV s(j). We shall furthermore
use d

(

s(j)
)

and d
(

x(j)
)

interchangeably to denote dj . Each
path from the root node down to a leaf node corresponds
to a symbol vector s ∈ OMT . The solution of (5) and (7)
corresponds to the leaf associated with the smallest metric

in OMT and X
(

xMAP
j,b

)

j,b , respectively. The SISO STS-SD uses
elements of the Schnorr-Euchner SD with radius reduction [7],
[8], briefly summarized as follows: The search in the weighted
tree is constrained to nodes which lie within a radius r

around ỹ and tree traversal is performed depth-first, visiting
the children of a given node in ascending order of their PDs.
A node s(j) with PD dj can be pruned (along with the entire
subtree originating from this node) whenever the pruning
criterion dj ≥ r2 is met. In order to avoid the problem of
choosing a suitable starting radius, we initialize the algorithm
with r = ∞ and perform the update r2 ← d(s) whenever a
valid leaf node s has been reached. The complexity measure
employed in the remainder of the paper corresponds to the
number of nodes visited by the decoder including the leaves,
but excluding the root.

B. Tree Search for Statistically Independent Bits
Consider the case where all Q bits corresponding to a

symbol sj are statistically independent and the MIMO detector



obtains a priori LLRs LA
j,b (∀j, b) from an external device, e.g.,

a SISO channel decoder as depicted in Fig. 1. We then have [9]

P[sj ] =

Q
∏

b=1

exp
(

1
2

(

1 + xj,b

)

LA
j,b

)

1 + exp
(

LA
j,b

) . (10)

The contribution of the a priori LLRs to the DIs in (9) can be
obtained from (10) as

− log P[sj ] = −

Q
∑

b=1

1

2
xj,bL

A
j,b + K̃j (11)

where the constants

K̃j =

Q
∑

b=1

(

1

2

∣

∣LA
j,b

∣

∣+ log
(

1 + exp
(

− |LA
j,b|
)

)

)

(12)

are independent of the binary-valued variables xj,b and
K̃j > 0 for j = 1, 2, . . . , MT . Because of − logP[sj ] ≥ 0, we
can trivially infer from (11) that −

∑Q
b=1

1
2xj,bL

A
j,b + K̃j ≥ 0.

From (8) it follows that constant terms (i.e., terms that are
independent of the variables xj,b and hence of s) in (5) and (7)
cancel out in the computation of the intrinsic LLRs and can
therefore be neglected. A straightforward method to avoid the
hardware-inefficient task of computing transcendental func-
tions in (12) is to set K̃j = 0 in the computation of (11). This
can, however, lead to branch metrics that are not necessarily
non-negative, which would inhibit pruning of the search tree.
On the other hand, modifying the DIs in (9) by setting

|ej |,
1

No

∣

∣

∣

∣

∣

ỹj −

MT
∑

i=j

Rj,isi

∣

∣

∣

∣

∣

2

−

Q
∑

b=1

1

2
xj,bL

A
j,b + Kj (13)

with Kj =
∑Q

b=1
1
2

∣

∣LA
j,b

∣

∣ also avoids computing trans-
cendental functions while guaranteeing that, since
−xj,bL

A
j,b +

∣

∣LA
j,b

∣

∣ ≥ 0 (∀j, b), the so obtained branch
metrics are non-negative. Furthermore, as K̃j ≥ Kj , using
the modified DIs leads to tighter, but, thanks to (8), still max-
log optimal tree pruning, thereby (often significantly) reducing
the complexity compared to that obtained through (9).

Note that in [10, Eq. 9], the prior term (11) was approxi-
mated as

− logP[sj ] ≈

Q
∑

b=1

1

2

(

− xj,bL
A
j,b +

∣

∣LA
j,b

∣

∣

)

for
∣

∣LA
j,b

∣

∣ > 2 (b = 1, 2, . . . , Q) which corresponds exactly to
what was done here to arrive at (13). It is important, though,
to realize that using the modified DIs (13) does not lead to
an approximation of (8), as the neglected log(·) term in (12)
does not affect (8).

III. EXTRINSIC LLR COMPUTATION IN A SINGLE
TREE SEARCH

Computing the intrinsic max-log LLRs in (8) requires to
determine λMAP and the metrics λMAP

j,b associated with the
counter-hypotheses. For given j and b the metric λMAP

j,b is
obtained by traversing only those parts of the search tree that

have leaves in X
(

xMAP
j,b

)

j,b . The quantities λMAP and λMAP
j,b

can be computed using the SD based on the repeated tree
search (RTS) approach described in [6]. The RTS strategy
results, however, in redundant computations as (often signif-
icant) parts of the search tree are revisited during the RTS
steps required to determine λMAP

j,b (∀j, b). Following the STS
paradigm described for soft-output sphere decoding in [1], [3],
we note that efficient computation of LD

j,b (∀j, b) requires that
every node in the tree is visited at most once. This can be
achieved by searching for the MAP solution and computing
the metrics λMAP

j,b (∀j, b) concurrently and ensuring that the
subtree emanating from a given node in the tree is pruned
if it can not lead to an update of either λMAP or at least
one of the λMAP

j,b . Besides extending the ideas in [1] to take
into account a priori information, the main idea underlying the
SISO STS-SD presented in this paper is to directly compute
the extrinsic LLRs LE

j,b through a tree search, rather than
computing LD

j,b first and then evaluating (4).
Due to the large dynamic range of LLRs, fixed-point hard-

ware implementations need to constrain the magnitude of the
LLR value. Evidently, clipping of the LLR magnitude leads
to a degradation in terms of decoder performance. It has been
noted in [1], [11] that incorporating LLR clipping into the
tree search is very effective in terms of reducing complexity
of max-log based soft-output sphere decoding. In addition, as
demonstrated in [1], LLR clipping, when built into the tree
search also allows to tune the detection algorithm in terms of
performance versus complexity by adjusting the LLR clipping
level. In the SISO case, we are ultimately interested in the
extrinsic LLRs LE

j,b and clipping should therefore ensure that
∣

∣LE
j,b

∣

∣ ≤ Lmax. It is hence sensible to ask whether clipping of
the extrinsic LLRs can be built directly into the tree search.
The answer is in the affirmative and the corresponding solution
is described below.

To prepare the ground for the formulation of the SISO STS-
SD, we write the extrinsic LLRs as

LE
j,b =

{

ΛMAP
j,b − λMAP , xMAP

j,b = +1

λMAP − ΛMAP
j,b , xMAP

j,b = −1
(14)

where the quantities

ΛMAP
j,b =

{

λMAP
j,b − LA

j,b , xMAP
j,b = +1

λMAP
j,b + LA

j,b , xMAP
j,b = −1

(15)

will be referred to as the extrinsic metrics. For the following
developments it will be convenient to define a function f(·)
that transforms an intrinsic metric λ with associated a priori
LLR LA and binary label x to an extrinsic metric Λ according
to

Λ = f
(

λ, LA, x
)

=

{

λ− LA , x = +1
λ + LA , x = −1.

(16)

With this notation, we can rewrite (15) more compactly as
ΛMAP

j,b = f
(

λMAP
j,b , LA

j,b, x
MAP
j,b

)

. The inverse function of (16)
transforms an extrinsic metric Λ to an intrinsic metric λ and
is defined as

λ = f−1
(

Λ, LA, x
)

=

{

Λ + LA , x = +1
Λ− LA , x = −1.

(17)



We emphasize that the tree search algorithm described be-
low produces the extrinsic LLRs LE

j,b (∀j, b) in (14) rather than
the intrinsic ones in (8). Consequently, careful modification of
the list administration steps, the pruning criterion, and the LLR
clipping rules of the soft-output algorithm described in [1] is
needed.

A. List Administration
The main idea of the STS paradigm is to search the subtree

originating from a given node only if the result can lead to
an update of either λMAP or of at least one of the ΛMAP

j,b .
To this end, the decoder needs to maintain a list containing
the label of the current MAP hypothesis xMAP, the corre-
sponding metric λMAP, and all QMT extrinsic metrics ΛMAP

j,b .
The algorithm is initialized with λMAP = ΛMAP

j,b =∞ (∀ j, b).
Whenever a leaf with corresponding label x has been reached,
the decoder distinguishes between two cases:

i) MAP Hypothesis Update: If d(x) < λMAP, a new MAP
hypothesis has been found. First, all extrinsic metrics ΛMAP

j,b

for which xj,b = xMAP
j,b are updated according to

ΛMAP
j,b ← f

(

λMAP, LA
j,b, x

MAP
j,b

)

followed by the updates λMAP ← d(x) and xMAP ← x.
In other words, for each bit in the MAP hypothesis that is
changed in the update process, the metric associated with the
former MAP hypothesis becomes the extrinsic metric of the
new counter-hypothesis.

ii) Extrinsic Metric Update: If d(x) > λMAP, only
extrinsic metrics corresponding to counter-hypotheses might
be updated. For each j = 1, 2, . . . , MT , b = 1, 2, . . . , Q

with xj,b = xMAP
j,b and f

(

d(x), LA
j,b, x

MAP
j,b

)

< ΛMAP
j,b , the

SISO STS-SD performs the update

ΛMAP
j,b ← f

(

d(x), LA
j,b, x

MAP
j,b

)

. (18)

B. Extrinsic LLR Clipping
In order to ensure that the extrinsic LLRs delivered by the

algorithm indeed satisfy
∣

∣LE
j,b

∣

∣ ≤ Lmax (∀j, b), the following
update rule

ΛMAP
j,b ← min

{

ΛMAP
j,b , λMAP + Lmax

}

, ∀j, b (19)

has to be applied after carrying out the steps in Case i) of
the list administration procedure described in Section III-A.
We emphasize that for Lmax = ∞ the decoder attains max-
log optimal SISO performance, whereas for Lmax = 0, the
hard-output MAP solution (6) is found.

C. The Pruning Criterion
Consider the node s(j) on level j corresponding to the label

bits xi,b (i = j, j + 1, . . . , MT , b = 1, 2, . . . , Q). Assume that
the subtree originating from this node and corresponding to
the label bits xi,b (i = 1, 2, . . . , j − 1, b = 1, 2, . . . , Q) has not
been expanded yet. The criterion for pruning the node s(j)

along with its subtree is compiled from two sets defined as
follows:

1) The bits in the partial label x(j) corresponding to the
node s(j) are compared with the corresponding bits in the

label of the current MAP hypothesis. All extrinsic met-
rics ΛMAP

j,b with xj,b = xMAP
j,b found in this comparison

may be affected when searching the subtree originating
from s(j). As the metric d

(

x(j)
)

is an intrinsic metric, the
extrinsic metrics ΛMAP

j,b need to be mapped to intrinsic
metrics according to (17). The resulting set of intrinsic
metrics, which may be affected by an update, is given by

A1

(

x(j)
)

=
{

f−1
(

ΛMAP
i,b , LA

i,b, x
MAP
i,b

) ∣

∣

∣

(

i ≥ j, ∀b
)

∧
(

xi,b = xMAP
i,b

)}

.

2) The extrinsic metrics ΛMAP
i,b for i = 1, 2, . . . , j − 1,

b = 1, 2, . . . , Q corresponding to the counter-hypotheses
in the subtree of s(j) may be affected as well. Corre-
spondingly, we define

A2

(

x(j)
)

=
{

f−1
(

ΛMAP
i,b , LA

i,b, x
MAP
i,b

) ∣

∣

∣
i < j, ∀b

}

.

In summary, the intrinsic metrics which may be affected
during the search in the subtree emanating from node s(j)

are given by A
(

x(j)
)

= {al} = A1

(

x(j)
)

∪ A2

(

x(j)
)

. The
node s(j) along with its subtree is pruned if the corresponding
PD d

(

x(j)
)

satisfies the pruning criterion

d
(

x(j)
)

> max
al∈A

(

x
(j)
)

al.

This pruning criterion ensures that a given node and the entire
subtree originating from that node are explored only if this
could lead to an update of either λMAP or of at least one of
the extrinsic metrics ΛMAP

j,b . Note that λMAP does not appear
in the set A

(

x(j)
)

as the update criteria given in Section III-A
ensure that λMAP is always smaller than or equal to all
intrinsic metrics associated with the counter-hypotheses.

IV. SIMULATION RESULTS

Fig. 2 shows performance/complexity trade-off curves1 for
the SISO STS-SD described in Sections II and III. The
numbers next to the SISO STS-SD trade-off curves correspond
to normalized LLR clipping levels given by LmaxNo. The
average (over channel, noise, and data realizations) complexity
corresponds to the cumulative tree-search complexity associ-
ated with SISO detection over I iterations, where one iteration
is defined as using the MIMO detector (and the subsequent
channel decoder) once. The curve associated with I = 1
hence corresponds to the soft-output STS-SD described in [1].
Increasing the number of iterations allows to reduce the SNR
operating point (defined as the minimum SNR required to
achieve a frame error rate of 1%) at the cost of increased com-
plexity. We can see that performance improves significantly
with increasing number of iterations. Note, however, that for
a fixed SNR operating point, the minimum complexity is not

1All simulation results are for a convolutionally encoded (rate 1/2, genera-
tor polynomials [133o 171o], and constraint length 7) MIMO-OFDM system
with MT = MR = 4, 16-QAM symbol constellation with Gray labeling,
64 OFDM tones, a TGn type C channel model [12], and are based on
a max-log BCJR channel decoder. One frame consists of 1024 randomly
interleaved (across space and frequency) bits corresponding to one (spatial)
OFDM symbol. The SNR is per receive antenna.
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Fig. 2. Performance/complexity trade-off of the SISO STS-SD with sorted
QR decomposition (SQRD) as described in [13]. The numbers next to the
curves correspond to normalized LLR clipping levels and I denotes the
number of iterations over the MIMO detector (and the channel decoder).

necessarily achieved by maximizing the number of iterations I

as the trade-off region is parametrized by the LLR clipping
level and the number of iterations I .

Fig. 3 compares the performance/complexity trade-off
achieved by the list sphere decoder (LSD) [4] to that obtained
through the SISO STS-SD. For the LSD we take the com-
plexity to equal the number of nodes visited when building the
initial candidate list. The (often significant) computational bur-
den incurred by the list administration of the LSD is neglected
here. We can draw the following conclusions from Fig. 3:

i) The SISO STS-SD outperforms the LSD for all SNR
values.

ii) The LSD requires relatively large list sizes and hence a
large amount of memory to approach max-log optimum
SISO performance. The underlying reason is that the
LSD obtains extrinsic LLRs from a list that has been
computed around the maximum-likelihood solution, i.e.,
in the absence of a priori information. In contrast, the
SISO STS-SD requires memory mainly for the extrinsic
metrics. The extrinsic LLRs are obtained through a search
that is concentrated around the MAP solution. Therefore,
the SISO STS-SD tends to require (often significantly)
less memory than the LSD.

Besides the LSD, various other SISO detection algorithms
for MIMO systems have been developed, see e.g., [5], [10],
[14], [15]. For [5], [14] issues indicating potentially prohibitive
computational complexity include the requirement for multiple
matrix inversions at symbol-vector rate. In contrast, the QR de-
composition required for sphere decoding has to be computed
only once per frame. The computational complexity of the
list-sequential (LISS) algorithm in [10], [15] seems difficult
to relate to the complexity measure employed in this paper.
However, due to the need for sorting of candidate vectors in
a list and the structural similarity of the LISS and the LSD
algorithms, we expect their computational complexity behavior
to be comparable as well.
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