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We propose a systematic and general approach to design-
ing self-optimizing memory schedulers that can target arbi-
trary figures of merit (e.g., performance, throughput, energy,
fairness). Using our framework, we instantiate three mem-
ory schedulers that target three important metrics: perfor-
mance and energy efficiency of parallel workloads, as well
as throughput/fairness of multiprogrammed workloads. Our
experiments show that the resulting hardware significantly
outperforms the state of the art in all cases.

1 INTRODUCTION

Modern high-performance memory subsystems support
a high degree of concurrency. This is primarily accom-
plished by increasing the number of independent channels
and/or increasing the number of independent banks in a
channel [7, 8, 9, 16, 34]. It is critical that the memory con-
troller be able to produce a schedule that can leverage this
potential concurrency, all while abiding by numerous strict
timing constraints imposed by the DRAM.

Traditionally, computer architects have primarily opti-
mized DRAM controllers for performance [8, 14, 24, 25, 28,
34]. This was appropriate, as the gap between the CPU and
memory speed kept growing at the time.

DRAM energy consumption has been given due consider-
ation only relatively recently [10, 15]. In current and upcom-
ing multicore-based servers, DRAM accounts for a signif-
icant fraction of power consumption [21]. Therefore, apart
from performance, power and energy are also becoming first-
order issues while designing memory schedulers for multi-
core systems.

In addition to these issues, DRAM memory bandwidth is
a critical shared resource in a multi-core system, and it is
important to efficiently share the memory bandwidth among
multiple threads running in a multicore environment, so as to
not adversely affect system throughput and fairness.

Several scheduling algorithms have been proposed in the
past to tackle the problems listed above. Most such proposals
are relatively inflexible in two ways: (1) they have a limited
ability to adapt to the environment and to improve automat-
ically with experience; and (2) they each target a particular
objective function.

İpek et al. [17] propose the use of reinforcement learning
(RL) [32] to design high-performance self-optimizing mem-
ory schedulers. Reinforcement learning works by interacting
with the environment and learning automatically with expe-
rience to pick the actions that maximize a desired long-term
objective function. İpek et al. show that, when used to target

performance, this approach can outperform existing ad hoc
designs by a significant margin.

Still, İpek et al.’s methodology has a key limitation: they
do not propose a generalizable way to target an objective
function (performance in their case). Because it is intu-
itive that bus utilization and throughput (and ultimately per-
formance) correlate strongly for memory-intensive applica-
tions, it was natural and entirely appropriate for them to
take a completely ad hoc approach to designing the RL re-
ward function, by trivially rewarding load/store commands
over precharge and activate commands. Unfortunately, this
approach becomes much more difficult in other important
scenarios that target more sophisticated objective functions
(e.g., metrics that combine performance, energy, and/or fair-
ness).

This work builds upon İpek et al.’s RL-based framework.
We propose MORSE, a systematic and general mecha-
nism to designing self-optimizing DRAM schedulers that
can target arbitrary figures of merit. We employ genetic
algorithms to automatically calibrate the relative importance
that the scheduler places on the different DRAM actions for
a given environment and objective function (Section 3.1.2).
We also employ a multi-factor variation of feature selection
that takes into account first-order interactions among sys-
tem attributes, which are used by the scheduler to sense the
system’s state at each point in time (Section 3.1.3). Impor-
tantly, the resulting hardware need not directly observe the
objective function on the field: only during training at de-
sign time (using simulation models) does our framework re-
quire the objective function to be observable. This allows our
framework to target relatively sophisticated figures of merit
that would be generally hard to measure on the field (e.g.,
weighted speedup). Still, the hardware can be made to allow
for on-the-field reconfiguration (Section 4).

Using this general approach, we rebuild İpek et al., and
present quantitative evidence of significantly higher perfor-
mance with respect to their original design (Section 6). We
also use our general mechanism to design DRAM sched-
ulers that can target energy efficiency (Section 7), as well
as throughput/fairness of multiprogrammed workloads (Sec-
tion 8). The designs prove significantly superior to the state
of the art in each case.

2 BACKGROUND
2.1 Power-Aware DRAM Interfaces

A basic DRAM interface has one or more DRAM chan-
nels; each channel consists of one or more memory modules.
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Figure 1. Basic DRAM Interface, with four independent channels
(C), one quad ranked DIMM per channel (R), and eight internal banks
(B) per rank.

Most modern DRAM systems make use of dual in-line mem-
ory modules (DIMM); each DIMM consists of one or more
ranks–a set of DRAM devices that operate in lockstep. Each
DRAM device contains a set of independent memory arrays
called banks. A bank is made up of rows (a.k.a. DRAM
pages), which are simply a set of storage cells that are acted
upon in parallel. Figure 1 shows a DRAM system interface,
with four independent DRAM channels (C). Each channel
has one quad ranked DIMM (R), with eight internal banks
(B) per rank.

Read and Write commands to a bank can only take place
to locations within one row at a time, which must be first
copied into the bank’s row buffer (Activate command). Prior
to accessing a different row, the one currently stored in
the row buffer must be written back to its permanent loca-
tion (Precharge command). Finally, since DRAM is non-
persistent, rows need to be periodically read out and restored
to maintain data integrity (Refresh command). To make mat-
ters more difficult, modern DRAM chips have a large num-
ber of timing constraints that must be obeyed when schedul-
ing commands, which any memory scheduler must work
around.

Current DDR3 SDRAMs have the capability of placing a
rank in low-power mode. It may take as little as one DRAM
cycle to place a DDR3 rank in low-power mode [2], however
additional timing constraints must typically be met, depend-
ing on the DRAM command that is in progress. A rank in
low-power mode must be powered back up before it can ac-
cept commands. Powering up a rank in DDR3 systems can
take anywhere between 4-13 DRAM cycles [2]. Section 5.1
provides more details on the DDR3 DRAM interface that we
model.

2.2 Basics of Reinforcement Learning

A reinforcement learning (RL) agent interacts with a
probabilistic environment for the purpose of maximizing
some notion of a long-term reward [32]. At each point in
time, the agent does not necessarily pursue the action that of-
fers the highest immediate reward; instead, the agent strives
to take the action that provides the best cumulative reward
over time. To learn how to do this, the agent needs to ex-
plore its environment carefully: Early exploitation (i.e., pick-
ing the action that seems most profitable in the long term at
each point in time based on acquired knowledge) may result
in an agent stuck with low-performing policies, while too
much exploration (i.e., trying different actions) may cause

the agent to take a long time to settle on an optimal policy.
Moreover, the agent must never stop exploring completely if
it is to adapt its policy to changes in the environment (e.g.,
program phases).

A basic RL model consists of: (1) a set of states that suf-
ficiently describes the environment and the problem being
solved; (2) a set of actions that the RL agent can perform;
and (3) a reward function that assigns credit for perform-
ing an action in a state and moving to another state. In the
context of DRAM scheduling, the RL agent is the memory
scheduler, the pending requests and the state of the CPU and
memory subsystem constitute the environment, and the legal
DRAM commands at each point in time are the actions that
the RL agent can perform [17]. The set of states and the re-
ward function need to be determined depending on the long-
term goal that needs to be achieved. At every time step: (1)
the memory scheduler observes the state of the environment;

(2) among the actions available for all the pending requests,1

the memory scheduler chooses the one action that will max-
imize the cumulative reward; and (3) the memory controller
performs that action, which results in a state change.

The agent needs to learn how to assign credit and blame
for the actions it takes. A common way of learning to assign
credit is through a technique called Q-learning. Formally, the
Q-value of a state-action pair (s,a) while executing a policy
π, Qπ(s,a), is the expected cumulative reward resulting from
taking action a in state s and following policy π thereafter.
A Q-learning-based RL agent learns the optimal policy π∗
indirectly, by learning Qπ∗(s,a) for every state-action pair
(s,a) (the Q-value matrix).

States are often represented as tuples of attributes. Be-
cause the size of the state space (in the case of Q-learning, the
size of the Q-value matrix) is exponential in the number of
attributes considered (this is often referred to as the “curse of
dimensionality”), it is essential that the number of attributes
and the resolution of each attribute be contained. This helps
not only in reducing storage and speed requirements in a sil-
icon implementation of the Q-value matrix; it also allows
the RL agent to generalize, i.e., exploit knowledge acquired
through past experience–in the case of Q-learning, approx-
imate the Q-value of a previously unseen state-action pair
(s,a) with the Q-value of state-action pair (s′,a), with s and
s′ sufficiently close in the state space.

3 A GENERAL FRAMEWORK FOR SELF-
OPTIMIZING MEMORY SCHEDULERS

In this section we describe how to generalize İpek et al.’s
original RL-based memory scheduler design [17] to obtain
high-quality schedulers that can target arbitrary objective
functions–not just performance. We first present our design
approach, and then describe a practical implementation.

3.1 Design
We now determine the three main characteristics of our

RL-based design: actions, state attributes, and reward struc-
ture.

1Not all pending requests will have actions available at any point
in time: For example, if a row has not yet been activated, a read to
that row is not an available action. Even among available actions,
only a subset may be evaluated in order to reach a decision every
DRAM cycle.



3.1.1 Available Actions

Concurrently to sensing the environment’s state (Sec-
tion 3.1.3), the scheduler determines whether a valid DRAM
command exists for each pending memory request among:

Activate: Bring the contents of a bank’s DRAM row into the
bank’s row buffer.

Precharge: Write the contents of a bank’s row buffer back
to the corresponding DRAM row. We categorize as a sepa-
rate action the case where there are no active requests for a
particular (open) row, yet the scheduler still may choose to
preemptively precharge; we call this Preemptive Precharge.

Read(Load), Read(Store): Perform a read from a bank’s
row buffer.

Write: Perform a write to a bank’s row buffer.

Rank Power Down (PwDn): Place the corresponding rank
into a low power mode. When a rank is in low power mode,
it cannot be accessed. Current DRAM subsystems already
provide support for such low-power rank modes; in our im-
plementation, we use those of the DDR3 interface [2].

Rank Power Up (PwUp): Bring the corresponding rank
back to normal operation mode.

NoOp: If no legal DRAM command exists for this cycle
(often due to DRAM timing constraints), the scheduler will
do nothing and wait for the next cycle. (But a rank may
remain powered down even if PwUp is a legal command.)

3.1.2 Reward Structure

In order to explore the environment, the scheduler imple-
ments an exploration mechanism known as ε-greedy action
selection: Every DRAM cycle, with a small probability ε, the
scheduler picks a random (legal) action; at all other times, it
picks the (legal) action with the highest Q-value. This guar-
antees that there is a non-zero probability of visiting every
entry in the Q-value matrix.

Each action is associated with an immediate reward. Once
action at is picked and the immediate reward is determined,
the Q-value prediction associated with the state-action pair
(st−1,at−1) that was picked in the previous cycle t−1 can be
updated using SARSA [32] as follows:

Q(st−1,at−1)← (1−α)Q(st−1,at−1)+α[rt + γQ(st ,at)]

where α is the learning rate, empirically determined;2 rt is
the immediate reward collected for the action taken; and 0 ≤
γ < 1 is a discount factor that causes future rewards to be

incorporated in the form of a geometric series.3

In the performance-oriented design of İpek et al. [17], the
immediate reward function is picked solely based on expert

2A high learning rate quickly substitutes past knowledge with
new information, whereas a small learning rate incorporates new
knowledge slowly.

3Intuitively, γ can be interpreted as a knob that controls how
important future rewards are relative to immediate rewards; larger
γ values introduce more foresight at the expense of longer training
times.

intuition. Since the memory throughput (and ultimately ex-
ecution time) of a memory-bound application tends to cor-
relate strongly with the effective data bus utilization, the au-
thors trivially assign an immediate reward of 1 to a read or
write DRAM command, and an immediate reward of 0 to any
other DRAM command. Unfortunately, this approach does
not easily generalize: In a design that seeks to optimize a
more sophisticated function (e.g., Et2 or weighted speedup),
an appropriate immediate reward function is not at all evi-
dent.

Automatic Derivation of Reward Structures

In this paper we propose to follow an automated approach
to solve this problem. Specifically, we devise a genetic al-
gorithm (GA) [23] to explore the search space of possible

reward functions for a given objective function. 4

Genetic algorithms (GAs) [23] are a heuristic search
technique that is based on evolutionary processes. GA starts
by randomly generating a population space of individuals,
where each individual is a candidate solution for the prob-
lem being solved. Typically individuals in the population
set are represented in binary as strings of 0’s and 1’s, but
other encodings are also possible. Evolution is performed
in generations and it starts by evaluating the fitness of the
initial population according to an objective function. (Eval-
uation means simulations of candidate DRAM schedulers in
our case.) Based on the fitness of individuals in the popula-
tion set, the next generation of individuals are determined
stochastically using some form of fitness based selection
technique. These new individuals are then further evolved
using operations like crossover and mutation, which leaves
us with a population for the next generation. This is done
iteratively until a certain number of generations has been
evolved, or when a certain fitness level has been reached,
after which the search is terminated. While many of the in-
dividuals in the initial population might not do anything use-
ful, the evolutionary nature of GAs allow some of them to
evolve into meaningful, high-performing solutions, and shed
the rest in the process.

In our GA, each individual in the population stores re-
wards for each of the eight actions that can be performed
by the scheduler. Initially, these rewards are randomly gen-
erated. We evaluate our initial population by conducting
execution-driven simulations with each individual’s memory
scheduler configuration, using a small subset of our appli-

cation set5 and determining the fitness of each individual.
The fitness-based selection criteria that we use is tourna-
ment selection combined with elitist selection [23, 19]. To
perform crossover, we randomly pick two individuals and
swap the reward values of an action. Mutation is performed
by randomly replacing the reward of an action with another
value. Multiple-point crossover and mutations are performed

4We did try “simpler” search techniques, such as manual trial-
and-error or automatic hill-climbing with random restarts and mo-
mentum, but the end result was significantly inferior. We believe
GA offers a good trade-off between simplicity and effectiveness in
this context.

5The applications that we use for training are fft, mg, and radix
(Section 5.2). We picked these because they are the fastest to sim-
ulate among the parallel applications that we evaluate. By using a
small subset, picked not based on behavior but simply on execu-
tion time, we speed up training and at the same time minimize the
chance of overfitting the final solution to our application set.



in our experiments, which means that reward values can be
swapped or replaced multiple times within a given individ-
ual. Once we have the population set for the next generation,
it is evaluated against the fitness criteria, and this iterative
evolutionary search process continues until we reach 50 gen-
erations, at the end of which we are left with a set of rewards,
one per possible action, which together constitute our reward
function.

In theory, it should be possible to periodically re-calibrate
the reward values as the application goes through different
execution phases. These rewards would need to be re-learned
on the fly by the hardware. We are currently investigating
this aspect, but in this paper we confine our solution to static
rewards learned offline, which still yields good results and
simplifies the design of the scheduler (as we will see, the
reward structure is just a small table).

3.1.3 State Attributes

Every memory cycle, the scheduler senses the environ-
ment’s state via a set of attributes. During the design of
the scheduler, it is important to pick the right kind of state
attributes that will adequately represent the system environ-
ment. There are many candidate attributes that can be used
to describe the state of the system. However, to obtain an
implementation with reasonable delay and silicon area, it is
critical to use a good selection mechanism that picks the right
(small) set of state attributes.

Multi-factor Feature Selection

A quick and relatively simple way to accomplish this is
to use a linear feature selection process [17]. The designer
picks a set of N candidate attributes based on expert intu-
ition. The first step involves simulating N schedulers, each
of which uses only one of the N candidate attributes to de-
termine the state of the memory system. Among these N at-
tributes, the designer picks the attribute t1 that optimizes an
objective function (e.g., performance). Then, the designer
repeats the selection process with N − 1 schedulers, each
one considering t1 and one of the remaining N−1 attributes.
After i � N iterations, the process concludes, and the i at-
tributes picked determine the state representation.

This linear procedure ignores potentially important inter-
actions between attributes (e.g., attribute tx alone yields the
highest-performing scheduler during iteration 1, but com-
bination < ty, tz > may be superior than < tx, tk > for any
1 ≤ k �= x ≤ N), which we experimentally observed are im-
portant in our context. In this paper we propose a multi-
factor approach that takes into account first-order attribute

interactions.6 At the end of the first iteration, we pick the
top two attributes, and explore the resulting two branches
concurrently; at the end of the second iteration, we again
pick the top two attributes from each of the two branches,
and proceed down four branches; etc. The obvious downside
of this approach is that the number of simulations is much
higher: for N = 50 and i = 6, our methodology yields on
the order of 8,600 simulations, using the same three training
applications per design point. Fortunately, feature selection

6Our mechanism trivially generalizes to higher orders, however
we experimented with second-order interactions as well and found
no differences in the final state representation.

is a one-time effort made at design time.7 The resulting at-
tributes are, in principle, inextricably linked to the objective
function targeted in the simulations. In Section 4, however,
we will show that a carefully-trained design can successfully
tackle variations of an objective function, by simply repro-
gramming the reward structure.

Finally, the astute reader will notice that there is a “cir-
cular dependence” between automatic feature selection and
automatic reward structure derivation: both search a space
of completely specified memory scheduler designs. What
we do in our paper is to impose a basic ad hoc reward struc-
ture during feature selection (Read = Write = 1, rest = 0), but
still use the appropriate objective function when evaluating
candidate state attributes, and then use the resulting state at-
tributes in the computation of the true reward structure. One
could conceive iterating over these two steps to potentially
refine the outcome, however for simplicity we do not explore
this in this work.

3.2 Implementation
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Figure 2. Snapshot of the dual five-stage pipeline used in this study
to pick the DRAM command with the highest Q-value, among up to 24
eligible actions (four waves of six actions) which can be evaluated every
DRAM cycle.

The basic structure of our implementation is necessarily
similar to the one described by İpek et al. [17]. In general,
only a fraction of the (maximum) 64 outstanding memory

7For each design, we were able to complete all 8,600 simula-
tions in one day.



requests will have an associated ready DRAM command at
each point in time (i.e., one that can be issued to process a
memory request without violating timing constraints). We
empirically determine that evaluating 24 ready DRAM com-
mands per DRAM cycle is sufficient to deliver performance
that is very close to peak.

For a DRAM scheduler pipeline clocked at 4.27 GHz

(same as the CPU, since the memory scheduler sits on chip)8,
controlling a DDR3-1066 system, the Q-value estimation
pipeline can be clocked eight times every DRAM cycle.
Thus, we use two five-stage command pipes, each capable
of considering three ready DRAM commands every proces-
sor cycle, for a total of up to 24 ready DRAM commands
(four waves of six commands) every DRAM cycle. If there
are more memory requests with ready DRAM commands
on the queue, the scheduler simply takes the ready DRAM
command with the highest Q-value found by the end of the
DRAM cycle. (Alternatively, more commands can be con-
sidered per cycle if the more pipes are added.) Figure 2
shows the five-stage pipeline structure that is used to calcu-
late the Q-values of the proposed scheduler.

In the first stage of the pipeline, the scheduler retrieves
six ready DRAM requests (three per command pipe), and it
generates the corresponding state-action pairs. (Information
about state attributes is actually sensed during the previous
DRAM cycle.) In the second pipeline stage, the indices for
the Q-value tables are generated and are use to read the Q-
values out of the CMAC arrays. The Q-value tables follow a
CMAC organization [31]: each Q-value is in fact the result of
indexing multiple relatively small tables, each index shifted
by an amount predetermined randomly at design time, then
adding the result from all such tables together. This struc-
ture provides a good balance between resolution and gener-
alization [17]. In our design, we carefully account for the
delay and power incurred by this structure, which essentially
amounts to 32 SRAM tables, each with 256 two-byte (fixed-
point) entries, three read ports and one write port, and where
the updates to the Q-values are done using fixed point arith-
metic. The index for the CMACs are generated by concate-
nating the higher order bits of the state attributes. This con-
catenated value is then XOR-ed with a constant, depending
on the corresponding action that was chosen. Finally, the
XOR-ed value is passed through a hash function (to reduce
storage requirements) to get the index into the Q-value ta-
bles. The next two stages are used to add up the 32 Q-values
of the three different commands analyzed per command pipe,
which have been read out from the CMAC arrays. In the fifth
and final stage of the pipeline, the maximum Q-value seen so
far is compared against the six new Q-values and updated as
needed.

4 RECONFIGURABILITY
We have described our general framework as a design-

time mechanism to build self-optimizing memory sched-
ulers. In this section, we briefly outline how one can in fact
implement a self-optimizing scheduler that can accommo-
date multiple objective functions, and target each as desired
on the field (post-silicon), either at boot time or even dynam-
ically by the operating system.

8The clock frequency of IBM’s server class Power7 CPU is 4.25
GHz at 45 nm (we target 32 nm in our calculations), with four pro-
cessor cores and all memory controllers simultaneously on.

Actions – The actions available to the self-optimizing sched-
uler are simply the possible DRAM commands, irrespective
of the objective function. Therefore, no hardware changes
are required to map actions to commands for a different con-
figuration.

Rewards – There are as many rewards as there are actions
in the RL agent. These rewards can be stored easily using
a table inside the RL agent. There are two approaches to
storing rewards for multiple configurations: (a) A single ta-
ble that can be programmed as needed (e.g., by the operating
system) to store the values relevant to the desired objective
function. (b) The memory scheduler can store a small num-
ber of pre-programmed tables, and use the appropriate one as
needed. A combination of both is also possible (i.e., multiple
programmable tables).

State Attributes – Although selecting state attributes is an
offline process, the resulting state attributes must be sensed
by adding the appropriate hardware (e.g., a counter, a read
port, etc.). However small this may be, as the number of
metrics of interest increase (e.g., to support more than one
possible objective function), so will the aggregate hardware
overhead. In general, the solution will be a compromise in
the number of observable state attributes, driven by potential
gains vs. area and complexity.

Fortunately, the CMAC structure that stores the Q-values
(the main storage overhead) is itself attribute-agnostic–the
differentiation across objective function resides in what at-
tributes are actually sensed, but the indexing into the CMAC
is identical regardless of the attribute [17]. Thus, we can eas-
ily add multiplexers to steer the right set of attributes to the
CMAC depending on the target objective function.

5 EXPERIMENTAL METHODOLOGY
5.1 Architecture Model

The baseline processor model integrates eight cores and
supports a DDR3-1066 memory subsystem with four inde-
pendent, address-interleaved memory channels. Our mem-
ory subsystem model (DIMM structure, timing, and power)
follows the Micron DDR3 DRAM specification [2, 3, 4],
including refresh. The micro-architectural features of the
baseline processor are shown in Table 1; the parameters of
the L2 cache, the memory system, and the DDR3 SDRAM
power model are shown in Tables 2 and 3. We implement
our model by extending the SESC simulation environment
appropriately [27].

We compute the energy overhead of the self-optimizing
scheduler designs as follows, assuming a 32 nm process ex-
cept where noted.

Dynamic power – Q-value computation: Computing a Q-
value consists of three basic steps: (a) generating the ar-
ray indices, (b) reading the Q-values, and (c) adding the Q-
values and determining the maximum Q-value. To generate
the array indices, we first read the six selected state attributes
and concatenate the higher order bits. This is then XOR-ed
with a random number and passed through a hash function.
Reading the state attributes and indexing into a hash func-
tion can be approximated as a dynamic SRAM read each
and consumes 1.4 pJ per read (from CACTI 6.5 [1]). The
XOR function takes 0.23 pJ (an XOR function is conserva-
tively approximated to consume the same power as an adder
implemented in an older 70 nm technology [18]). We use



CACTI to estimate the energy expended in reading out the Q
values from the SRAM arrays. Each SRAM read consumes
0.78 pJ, and the total dynamic SRAM energy for reading out
the Q values from the 32 matrices per command is 24.96 pJ.
We estimate the power consumed by the adders that sum up
the 32 Q-values to be 1.0 mW each [18], and accordingly cal-
culate the energy consumed by the 16 adders used in each RL
pipeline to be 3.75 pJ (adding the 32 Q-values takes up two
pipeline cycles). We conservatively assume that the com-
parator consumes the same power as the adder. Since a max-
imum of 24 commands can be analyzed every DRAM cycle,
a maximum of 24 final Q-values need to be compared each
cycle, and the energy estimated to do so is 3 pJ. The total RL
pipeline energy consumed is then 32 pJ.

Dynamic power – Q-value update: To update the Q-values
using the SARSA update rule we use three multipliers and
three adders. The energy consumed to perform this operation
is 2.1 pJ [18]. Finally the Q-values need to be written back
into the SRAM arrays (32 per command, 64 in all). This
consumes 49 pJ as estimated from CACTI.

Leakage: Using CACTI, we also estimate the total leakage
power per CMAC matrix to be 0.36 mW, and consequently
the leakage energy to be 5.4 pJ per DRAM cycle.

Overall, we find the energy overhead of the self-
optimizing schedulers to be negligible (the equivalent of
about 2% of the energy consumed by the DRAM on aver-
age). Nevertheless, the energy and Et2 results reported in
sections 6.1, 7.1, and 8 do include this overhead. Moreover,
in our results we effectively assess zero energy overhead for
the competing FR-FCFS and Pwr-FR-FCFS schemes.

5.2 Applications

We evaluate our proposed MORSE scheduler on a wide
variety of parallel and multi-programmed workloads from
the server and desktop computing domains. We simulate
nine memory-intensive parallel applications, running eight
threads each, to completion. Our parallel workloads consti-
tute a good mix of scalable scientific programs from differ-
ent benchmark suites, as shown in Table 4. For our multi-
programmed workloads, we use 14 four-application bundles
from the SPEC 2000 and NAS benchmark suites, which con-
stitute a healthy mix of CPU-, cache-, and memory-sensitive
applications. Table 5 describes the bundles. In each case,
we fast-forward each application for half a billion instruc-
tions, and then execute the bundle concurrently until all ap-
plications in the bundle have committed at least half a billion
more instructions.

6 CASE I: PERFORMANCE
In this section we use our general framework to design

a performance-oriented self-optimizing memory scheduler,
and provide quantitative evidence of its superiority with re-
spect to İpek et al.’s original design [17].

İpek et al.’s scheduler uses a simple ad hoc reward struc-
ture, which assigns a reward of 1 for reads and writes (imme-
diately “productive” actions), and 0 otherwise. To allow the
controller to use the most appropriate set of state attributes
for our experimental setup (different from theirs), we re-run
their proposed linear feature selection [17], using their six
winning attributes, plus another 44 relevant ones that we
come up with. By using their original attributes as part of

Table 1. Core Parameters.

Technology 32 nm
Frequency 4.27 GHz

Number of cores 8
Fetch/issue/commit width 4/4/4

Int/FP/Ld/St/Br Units 2/2/2/2/2
Int/FP Multipliers 1/1

Int/FP issue queue size 32/32 entries
ROB (reorder buffer) entries 96

Int/FP registers 96 / 96
Ld/St queue entries 24/24
Max. unresolved br. 24
Br. mispred. penalty 9 cycles min.

Br. predictor Alpha 21264 (tournament)
RAS entries 32

BTB size 512 entries, direct-mapped
iL1/dL1 size 32 kB

iL1/dL1 block size 32 B/32 B
iL1/dL1 round-trip latency 2/3 cycles (uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 16/16

iL1/dL1 associativity direct-mapped/4-way
Memory Disambiguation Perfect

Coherence protocol MESI
Consistency model Release consistency

RL discount rate parameter γ 0.95
RL learning rate parameter α 0.1

the set, we make sure the resulting scheduler is at least as
good as the original one. In our experiments, we call this
configuration Ipek.

MORSE-P is our performance-oriented self-optimizing
scheduler. It is derived using our proposed automatic reward
derivation and multi-factor feature selection procedures, us-
ing performance as the objective function and the same 50
candidate state attributes.

The state attributes selected via multi-factor feature se-
lection for MORSE-P are: (1) Number of reads (load/store
misses) in the transaction queue. (2) Number of writes in the
transaction queue. (3) Number of reads for the current rank
under consideration. (4) If the memory request is related to a
load miss, the order of the load relative to the other loads in
the transaction queue for the corresponding core. (5) Num-
ber of writes in the transaction queue that reference rows that
are open. (6) Number of commands for the rank under con-
sideration when it is powered down.

Attributes (1) and (2) help the scheduler determine how
to balance reads and writes in the transaction queue ; (3)
prioritizes among reads from different ranks ; (4) is used to
prioritize among load misses from the same core ; (5) helps
the RL scheduler issue writes in bursts so as to better manage
write-to-read delays ; and finally (6) determines if it is time
to power up ranks if there are memory requests waiting to
access the rank.

The rewards obtained from the GA-based automatic re-
ward derivation process are: Activate = 1.59, Precharge =
-1.47, Preemptive Precharge = -1.47, Read(Load) = 2.00,
Read(Store) = 1.59, Write = 0.88, PwDn = -0.27, PwUp =

0.30, NoOp = 0.58.9 The resulting values are very interest-
ing. On the one hand, in many cases their magnitude rela-
tive to each other makes intuitive sense: For example, reads
and writes have a high positive reward. Precharge is nega-
tive while Activate is positive, which hints at the importance
of exploiting row buffer locality. PwDn is negative, as the

9We arbitrarily set up the reward structure to use higher (lower)
values as positive (negative) rewards, which is typical in machine
learning texts.



Table 2. Parameters of the shared L2 and DRAM.

Shared L2 Cache Subsystem
Shared L2 Cache 4 MB, 64 B block, 8-way
L2 MSHR entries 64

L2 round-trip latency 32 cycles (uncontended)
Write buffer 64 entries

Micro DDR3-1066 DRAM [2]
Transaction Queue 64 entries

Peak Data Rate 6.4 GB/s
DRAM bus frequency 533 MHz (DDR)
Number of Channels 4

DIMM Configuration Quad rank
Number of Banks 8 per rank

Row Buffer Size 1 KB
Address Mapping Page Interleaving

Row Policy Open Page
Burst Length 8

tRCD 7 DRAM cycles
tCL 7 DRAM cycles

tWL 6 DRAM cycles
tCCD 4 DRAM cycles
tWTR 4 DRAM cycles

tWR 8 DRAM cycles
tRTP 4 DRAM cycles

tRP 7 DRAM cycles
tRRD 4 DRAM cycles

tRTRS 2 DRAM cycles
tRAS 20 DRAM cycles

tRC 27 DRAM cycles
Refresh Cycle 8,192 refresh commands every 64 ms

tRFC 59 DRAM cycles

Table 3. Parameters of the Micron DDR3-1066 DRAM power management
features [2, 4, 3].

IDD0 90 mA
IDD3PF 55 mA
IDD3PS 55 mA
IDD2PF 35 mA
IDD2PS 12 mA
IDD2N 70 mA
IDD3N 80 mA
IDD4R 200 mA

IDD4W 255 mA
tFAW 20 DRAM cycles

tACTPDEN 1 DRAM cycles
tPREPDEN 1 DRAM cycles

tRDPDEN 12 DRAM cycles
tWRPDEN 18 DRAM cycles

tXP 4 DRAM cycles
tXPDLL 13 DRAM cycles

Vdd 1.8V

Table 4. Simulated parallel applications and their input sets.

Data Mining [26]
scalparc Decision Tree 125k pts., 32 attributes

NAS OpenMP [6]
mg Multigrid Solver Class A
cg Conjugate Gradient Class A

SPEC OpenMP [5]
swim-omp Shallow water model MinneSpec-Large

equake-omp Earthquake model MinneSpec-Large
art-omp Self-organizing Map MinneSpec-Large

Splash-2 [33]
ocean Ocean movements 514×514 ocean

fft Fast Fourier transform 1M points
radix Integer radix sort 2M integers

Table 5. Multiprogrammed Configurations evaluated. C, P, and M stand for
Cache-, Processor-, and Memory-sensitive, respectively [6, 13].

Art Mcf Ep Vpr (TFEV) M M M C
Mg Sp Mesa Vpr (GPMV) M P P C

Mg Cg Apsi Crafty (GCAY) M M P C
Apsi Art Mg Swim (ATGS) P M M M

Mg Cg Mesa Mgrid (GCMD) M M P M
Art Is Vpr Parser (TIVR) M M C C
Mg Cg Vpr Swim (GCVS) M M C M

Cg Mesa Is Crafty (CMIY) M P M C
Twolf Cg Mesa Is (OCMI) C M P M

Cg Lu Sp Art (CLPT) M P P M
Art Is Vpr Wupwise (TIVW) M M C C

Cg Vpr Wupwise Mesa (CVWM) M C C P
Twolf Cg Mesa Parser (OCMR) C M P C

Lu Cg Mesa Is (LCMI) P M P M

penalty to bring up a rank once it has been powered down is
4-13 cycles.

On the other hand, other aspects of this reward assignment
are not so obvious. For example, the specific ratios among
the reward values for the different actions are non-intuitive.
It is intriguing that, despite the fact that the objective func-
tion is straight performance, a PwDn-PwUp action sequence
yields a slightly positive aggregate reward (-0.27+0.3), even
though powering up a dormant rank incurs a penalty of 4-13
cycles. Note also that NoOp (which competes with PwUp
when a rank is powered down) is assigned a definitely posi-
tive reward, even though keeping a rank powered down does
not directly benefit performance. We will revisit this later.

6.1 Evaluation
Figure 3 shows performance data for all the configura-

tions studied. The proposed MORSE-P scheduler has a
speedup of 15.5% (18.4% excluding the three applications
used during training) and 7% (8.6%) with respect to FR-
FCFS and Ipek, respectively. It would seem that the addi-
tional sophistication in picking state attributes and immedi-
ate reward values does pay off. We now try to understand
how MORSE-P achieves its superiority.

Figure 4 breaks down the expectation of page status for
a newly arrived command: Open-Hit if the page is already
open in the corresponding bank; Open-Miss if there’s an
open page which is not the right one (which will impose
a Precharge-Activate sequence to get the right page); and
Closed if there’s no open page at that bank–i.e., the scheduler
has preemptively precharged a page, probably in an attempt
to save time the next time a page needs to be activated. Ev-
idently, FR-FCFS, which is an open-page algorithm, simply
does not expect to find a closed page in steady state. On
the other hand, the self-optimizing configurations Ipek and
MORSE-P do precharge pages proactively if they predict a
long-term benefit. The plot shows that MORSE-P is in fact
superior to FR-FCFS and Ipek, in that the expectation of
Open-Hit is highest almost universally. This increased hit
rate correlates well with bottom-line performance in many
applications.

Interestingly, the expectation of finding a bank closed in
Ipek is significantly higher than in MORSE-P. It turns out
that this is in part a potentially undesirable side effect of
İpek et al.’s imposition that a NoOp be allowable only if no
legal commands (in particular, Precharge) exist, which was
put in place to speed up convergence [17]. This means that
Ipek is hardwired to closing pages (instead of doing nothing)
when there are no other options available, regardless of the
long-term benefit of doing so. In the case of MORSE-P, the
scheduler learns by itself that it may “bypass” this restriction,
by judiciously exploiting the PwDn/PwUp actions available
in the DDR3 interface (i.e., it can force NoOp to be a legal
choice indirectly by powering down a rank, effectively mak-
ing Precharge to any bank within that rank ineligible until
the rank is powered back up). As indicated before, the re-
ward values obtained by our GA-based procedure hint at the
potential benefit of this subterfuge, as it assigns a slightly
positive aggregate reward to PwDn+PwUp, and a definitely
positive reward to NoOp.

Thus, it is conceivable that Ipek might also learn to do
the same if PwDn/PwUp actions are made available, poten-
tially closing the performance gap with MORSE-P. This is
precisely what the Ipek+PwDn/Up configuration in the plots
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Figure 4. Breakdown of expected page status at the time a new memory request for that page arrives for FR-FCFS, Ipek, Ipek+PwDn/Up
and MORSE-P.

tries to answer. In that configuration, PwDn/PwUp are avail-
able actions with an immediate reward of 0 (consistent with
the ad hoc reward function employed), and linear feature se-
lection is re-run. Figures 3 and 4 show the performance and
expected page status for the Ipek+PwDn/Up configuration.
As we can see, the expectation of finding a bank closed drops
dramatically to levels similar to those in MORSE-P. When
looking at overall performance, however, not much is gained
on average, and a significant gap remains, which means that
appropriate state attribute and reward values are, in fact, the
primary contributors to performance in MORSE-P vs. Ipek.

Looking at individual applications, however, we see a
couple of outliers. In cg, both Ipek+PwDn/Up and MORSE-
P derive noticeable benefit from having PwDn/PwUp avail-
able, even if MORSE-P still edges out Ipek+PwDn/Up sig-
nificantly (Figure 3). cg strongly favors an open page pol-
icy, as evidenced by the large expectation of a page hit for
FR-FCFS (which is open-page). Ipek destroys such poten-
tial by being forced by design to close pages prematurely
over doing nothing (Figure 4). On the other hand, swim sel-
dom hits on open pages for FR-FCFS, and actually performs
best with Ipek, where the NoOp restriction is unavoidable
and it results in a high number of preemptive precharges.
Relaxing this constraint actually hurts Ipek+PwDn/Up and
MORSE-P virtually equally with respect to Ipek, although
they still outperform full-open-page FR-FCFS significantly.
In other words, while these configurations do learn to pre-
emptively close pages and derive speedups as a result, in
the case of swim they fall short of the level of aggression
with which they could apply it, as (accidentally) evidenced

by Ipek. (Note that swim is not part of our training set. While
the obvious temptation is to include it, this would amount to
overfitting.)

7 CASE II: ENERGY EFFICIENCY
In this section, we use our general framework to design

a self-optimizing memory controller that will strive to op-
timize for energy-delay-squared (Et2)–a metric that com-
bines performance and energy consumption. Our evalua-
tion provides quantitative evidence that the resulting con-
troller is significantly superior to a power-aware exten-
sion of FR-FCFS that includes Hur and Lin’s Queue-Aware
Power-Down mechanism [15], which we refer to as Pwr-FR-
FCFS.10

In this section, MORSE-E is our energy-efficient self-
optimizing scheduler, which is naturally derived using our
proposed automatic reward derivation and multi-factor fea-
ture selection procedures, using Et2 as the objective function
and the same 50 candidate state attributes used in Section 6.

The state attributes selected via multi-factor feature selec-
tion for MORSE-E are:

(1) Number of ranks that are idle and powered up. (2) Num-
ber of rows that are open with no pending commands for a
given rank. (3) Number of commands that will be negatively
affected if a Precharge is issued for the corresponding open

10We also experimented with Hur and Lin’s AHB [14] and found
the results to be very similar.



row (i.e., they would subsequently miss on the page being
precharged). (4) Number of writes in the transaction queue.
(5) Number of reads for the current rank under consideration.
(6) If the memory request is related to a load miss, the order
of the load relative to the other loads in the transaction queue
for the corresponding core.

Attributes 1 and 2 address power, while the rest are geared
primarily towards performance. This is good news, as en-
ergy efficiency targets both these metrics. Specifically, those
two attributes help the scheduler determine when it is time
to power down ranks. Attribute 3 helps maintain row-buffer
locality, by determining the number of commands that get
affected by a precharge. Attribute 4 helps keep a balance be-
tween reads and writes in the transaction queue. Attribute
5 prioritizes among reads from different ranks. Lastly, At-
tribute 6 is used to prioritize among load misses from the
same core.

The rewards obtained from the GA-based automatic re-
ward derivation process are: Activate = -0.21, Precharge
= -3.52, Premptive Precharge = -2.06, Read(Load) = 3.71,
Read(Store) = 0.86, Write = 1.38, PwDn = -2.06, PwUp = -
3.10, NoOp = -1.78. As before, reads and writes always have
higher positive reward (better performance) than the other
actions. This time, PwUp carries a negative reward–even
more so that PwDn. This makes sense, as once the sched-
uler has decided to power down a rank, it should be because
it intends to keep it that way for a while and save energy.
Still, as in the case of the straight-performance scheduler, a
Precharge is more negative than a PwDn-PwUp sequence,
which helps preserve row-buffer locality.

7.1 Evaluation
7.1.1 Energy-Delay Squared
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Figure 5. Energy-delay squared Et2 (lower is better) for the energy-
aware configurations considered in this study, normalized to that of FR-
FCFS. The three applications used during training are marked with an
asterisk; mean-testonly excludes them.

Figure 5 compares the configurations considered in this
study in terms of Et2, normalized to that of FR-FCFS (which
is not energy-aware). Our proposed MORSE-E DRAM
scheduler reduces Et2 by 42% (43% excluding the three
applications used during training) when comapred to FR-
FCFS, and by 26% (30%) when compared to Pwr-FR-FCFS.
MORSE-E outperforms Pwr-FR-FCFS by 18% or more for
all applications except radix (11.0%) and equake (2.0%) .

7.1.2 Performance
Figure 6 shows performance data for all the configura-

tions studied. The proposed MORSE-E scheduler has a
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Figure 6. Performance (higher is better) of the energy-aware config-
urations considered in this study, normalized to that of FR-FCFS. The
three applications used during training are marked with an asterisk;
mean-testonly excludes them.

speedup of 9.7% (11%) and 10% (11%) with respect to FR-
FCFS and Pwr-FR-FCFS respectively. This is very good
news: The proposed scheme not only beats Pwr-FR-FCFS
handsomely in energy efficiency, it does so while actually
delivering a performance gain.

7.1.3 Energy
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Figure 7. Energy (lower is better) consumed by the energy-aware
configurations considered in this study, normalized to that of FR-FCFS.
The three applications used during training are marked with an aster-
isk; mean-testonly excludes them.

Figure 7 shows the energy consumed in executing the var-
ious applications. Naturally, the energy-oblivious configu-
ration (FR-FCFS) has the highest energy consumption. Our
proposed MORSE-E scheduler yields energy savings of 20%
(30% excluding the training apps) and 11% (12%) on aver-
age over FR-FCFS and Pwr-FR-FCFS, respectively.

7.2 Analysis
7.2.1 Number of Active Ranks

Figure 8 shows the DRAM transaction queue occupancy
and active ranks, averaged over intervals of 5,000 DRAM
cycles, for the NAS-OpenMP application mg (this behavior
is representative of most of the applications studied) using
Pwr-FR-FCFS. From the plot, we can see that, throughout
the entire execution cycle of the application, there are rel-
atively few instances where the DRAM queue occupancy
exceeds the number of active ranks in the memory system.
This is consistent with our expectation for high-end servers,
where peak demand must be served efficiently to ultimately
deliver good performance. Thus, it is extremely important
to have an efficient power management scheme that puts idle
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Figure 8. DRAM transaction queue occupancy and average number
of active ranks per channel, averaged over 5,000-DRAM-cycle intervals,
for the mg application in Pwr-FR-FCFS. (The behavior is representa-
tive of the other applications.)

devices into low-power states and activates them at the right
time to avoid significant losses in performance. Figure 9,
which plots the average number of active ranks per channel,
shows how MORSE-E is able to reduce the average number
of active DRAM devices significantly over Pwr-FR-FCFS.
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7.2.2 Impact of the Selected Attributes on Energy Ef-
ficiency
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Figure 10. Number of cycles DRAM ranks stay powered up when
no outstanding command exists in the DRAM transaction queue for
the corresponding rank for the MORSE-E configuration, normalized
to Pwr-FR-FCFS.

The energy-aware feature selection process in MORSE-E
picked attributes that hinted at situations that help improve
DRAM background power consumption. In this section, we
provide insights into the benefits of picking those attributes,
and how they help improve energy efficiency. Figure 10
shows the number of DRAM cycles a rank remains powered
up when no outstanding command is present in the trans-
action queue for MORSE-E and Pwr-FR-FCFS. Recall that
one of the states picked by the feature selection process eval-
uates the ranks that are idle and powered up (Attribute 1).
MORSE-E is able to proactively determine when a rank can
be placed in low power mode without hurting pending re-
quests. As a result, ranks stay in this mode for longer on
average, resulting in greater energy efficiency.
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Figure 11. Number of cycles DRAM ranks stay powered down for
the MORSE-E configuration, normalized to Pwr-FR-FCFS.

Figure 11 shows the number of DRAM cycles a rank re-
mains powered down in MORSE-E and in Pwr-FR-FCFS
normalized to that of Pwr-FR-FCFS. Powering up a rank
from low power mode takes 4-13 cycles, and hence, if done
prematurely, will lead to increase in energy consumption,
while if done later, will lead to a loss in performance. The
MORSE-E scheduler is able to learn this fine balance based
on the state information and the reward function.

7.3 Effect on Multiprogrammed Workloads

We now assess the robustness of this scheduler by evalu-
ating it in a scenario different from the one used in the design
phase, namely multiprogrammed workloads.
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Figure 12. Energy-delay squared Et2 (lower is better) for the
MORSE-E configuration, normalized to that of Pwr-FR-FCFS.

Figures 12, 13, and 14 shows Et2, energy, and perfor-
mance of MORSE-E relative to that of Pwr-FR-FCFS in
each case. (To compute performance and Et2, we measure
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Figure 13. Energy consumption (lower is better) for the MORSE-E
configuration, normalized to that of Pwr-FR-FCFS.
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Figure 14. Performance (higher is better) for the MORSE-E config-
uration, normalized to that of Pwr-FR-FCFS.

the time needed in each case to execute at least half a bil-
lion instructions in each of the workloads after warm-up.)
The results are very reassuring: Even though MORSE-E
has been trained on a very small number of parallel appli-
cations and no multiprogrammed workloads whatsoever, our
methodology has been able to produce a memory scheduler
that is relatively robust in this different context. Specifically,
MORSE-E improves Et2 by 22% on average over Pwr-FR-
FCFS, which results from simultaneously saving 8% energy
on average and delivering a 8.3% average speedup. Only two
workloads experience an Et2 degradation (below 15% in any
case), most likely stemming from the fact that MORSE-E is
not specifically designed for multiprogrammed workloads.

8 CASE III: THROUGHPUT/FAIRNESS

In this section, we describe a self-optimizing scheduler
design that targets system throughput/fairness for multipro-
grammed workloads. We use weighted speedup as the objec-
tive function. It is the sum of the ratio, for each application,
of the IPC obtained in the multiprogrammed scenario over
the IPC that the application would enjoy if it were to run
alone in the same system [29]. We also conducted experi-
ments using harmonic speedups [22], but obtained virtually
identical results.

MORSE-WS is a configuration for which feature selec-
tion and GA-based rewards derivation have been conducted,
using weighted speedup as the objective function. The two
workloads used for training are GPMV and GCAY (Sec-
tion 5.2). A key detail to notice is that, while weighted
speedup would be complex to observe directly on the field,
in our framework it is easy to target at design time through

simulations. Once features and rewards have been tuned for
that metric, they will “embed” it behaviorally on the field,
without ever needing to actually measure it.

We also report the performance of plain MORSE-P, and
MORSE-E, which represent cases where no post-silicon
changes are possible. Finally, we also evaluate a state-of-the-
art scheduler form the literature that also targets weighted
speedup (PAR-BS) [25].

Figure 15 shows the weighted speedups obtained for
all configurations, relative to FR-FCFS. For our architec-
ture organization and applications (different from those
of PAR-BS’s original paper [25]), PAR-BS offers negli-
gible benefit over FR-FCFS. MORSE-WS, on the other
hand, significantly outperforms PAR-BS. We also notice that
MORSE-P matches MORSE-WS’s performance, whereas
MORSE-E does not. This is maybe not too surprising:
Although neither MORSE-P not MORSE-E were designed
to target weighted speedup of multiprogrammed workloads,
MORSE-P’s objective is more closely aligned with MORSE-
WS’s. MORSE-E’s result, on the other hand, is probably
representative of a scenario where the fundamental differ-
ences between train (-E) and test (-WS) objective functions
are more significant, and in that case the bottom line suf-
fers. Still, given the fact that MORSE-P was trained using
very different workloads (parallel applications), the results
are further testament to MORSE’s robustness.

9 RELATED WORK

Hur and Lin [15] propose a simple queue-aware power-
down policy for exploiting low-power modes of modern
DRAMs. In addition, they also propose the use of a power-
aware memory scheduler that encodes several scheduling
goals in finite state machines (FSM), and chooses among
the FSMs using a probabilistic arbiter. The FSMs encode
the ratio of reads and writes serviced in the past, groups
same rank commands together and groups commands that
optimizes for expected latency. However, one drawback of
their power-aware memory scheduler is that it does not con-
sider row precharges, row activations, rank power up and
rank power down as separate, individual DRAM commands
and hence does not address different trade-offs involved in
DRAM scheduling.

Lebeck et al. [20] explore the interaction of page place-
ment policies with the power management techniques used
in DRAM systems. Their preliminary experiments using of-
fline profiling of memory accesses show that there is poten-
tial in employing page placement policies by an informed
operating system to complement the hardware power man-
agement strategies.

Fan et al. [11] investigate memory controller policies for
manipulating DRAM power states in cache-based systems.
They develop an analytical model that approximates the idle
time of memory devices, so that they can be powered down
and powered up accordingly. However, their model does not
sufficiently capture changes to workload demands, and does
not learn the long-term performance impact of a scheduling
decision, both of which are major benefits of our energy-
efficient scheduler.

In other related work, Fan et al. [12] show that there is
a positive synergistic effect between DVS and power-aware
memories that can transition into low power states, which
offers potential for energy savings. Sudan et al. [30] make
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Figure 15. Weighted speedup (higher is better), normalized to that of FR-FCFS. The two workloads used during training for MORSE-WS
are marked with an asterisk; mean-testonly excludes them.

an interesting observation that a large number of memory
accesses mechanisms to heavily accessed OS pages are to a
small chunk of contiguous cache blocks. Thus co-locating
these chunks from different pages will improve row buffer
locality, and energy consumption.

10 CONCLUSIONS
We have proposed the use of genetic algorithms as a

general way to systematically derive reward functions for
RL-based DRAM schedulers. We have shown that this
mechanism is not only capable of targeting arbitrary ob-
jective functions, it yields higher-performing schedulers
than previously-proposed self-optimizing solutions that em-
ployed an ad hoc reward structure. In the process, we
have also proposed a multi-factor feature selection procedure
for designing self-optimizing schedulers that takes into ac-
count first-order interactions among RL state attributes. We
use this general mechanism to present three memory sched-
uler designs that target performance, energy efficiency, and
throughput/fairness, respectively. Our results significantly
outperform the state of the art in the literature in each case.
We also show evidence that our designs are robust across
workload classes and objective functions when train and test
objective functions are similar enough in nature (e.g., both
performance-oriented metrics).

ACKNOWLEDGMENTS
We thank the anonymous reviewers for useful feedback.

This work was supported in part by NSF awards CNS-
0720773 and CAREER CCF-0545995, an Intel contract, and
gifts by IBM, Intel, and Microsoft.

References
[1] Cacti 6.5. http://quid.hpl.hp.com:9081/cacti/.
[2] 2gb ddr3 sdram component data sheet: Mt41j512m4, March 2006.

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_
SDRAM.pdf.

[3] Technical note tn-41-01: Calculating memory system power for ddr3, June 2006.
http://download.micron.com/pdf/technotes/ddr3/TN4101pdf.

[4] Ddr3 sdram rdimm features, March 2009. http://download.micron.com/
pdf/datasheets/modules/ddr3/js-z-s72c1g_72.pdf.

[5] V. Aslot and R. Eigenmann. Quantitative performance analysis of the SPEC
OMPM2001 benchmarks. Scientific Programming, 11(2):105–124, 2003.

[6] D. H. Bailey et al. NAS parallel benchmarks. Technical report, NASA Ames
Research Center, March 1994. Tech. Rep. RNR-94-007.

[7] V. Cuppu and B. Jacob. Concurrency, latency, or system overhead: Which has
the largest impact on uniprocessor dram-system performance? In ISCA, 2001.

[8] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of
contemporary dram architectures. In ISCA, 1999.

[9] K. Diefendorff. Sony’s emotionally charged chip: Killer floating-point ’emotion
engine’ to power playstation 2000. Microprocessor Report, 13(5):1–11, 1999.

[10] M. Eiblmaier, R. Mao, and X. Wang. Power management for main memory with
access latency control. In FeBID, 2009.

[11] X. Fan, C. Ellis, and A. R. Lebeck. Memory controller policies for dram power
management. In ISPLED, 2001.

[12] X. Fan, C. Ellis, and A. R. Lebeck. The synergy between power-aware memory
systems and processor voltage scaling. In PACS, 2003.

[13] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new mil-
lennium. IEEE Computer, 33(7):28–35, July 2000.

[14] I. Hur and C. Lin. Adaptive history-based memory schedulers. In MICRO-37,
2004.

[15] I. Hur and C. Lin. A comprehensive approach to dram power management. In
HPCA, 2008.

[16] Intel Corporation. First the Tick, Now the Tock: Next-Generation In-
tel Microarchitecture (Nehalem). http://www.intel.com/technology/
architecture-silicon/next-gen/whitepaper.pdf.

[17] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing memory
controllers: A reinforcement learning approach. In ISCA, 2008.

[18] F. Kashfi and S. M. Fakhraie. Implementation of a high speed low-power 32 bit
adder in 70nm technology. In ISCAS, 2006.

[19] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

[20] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. In
ASPLOS-IX, 2000.

[21] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller.
Energy management for commercial servers. Computer, 36(12):39–48, 2003.

[22] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in
smt processors. In ISPASS, 2001.

[23] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

[24] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip
multiprocessors. In MICRO-40, 2007.

[25] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared dram systems. In ISCA-35, 2008.

[26] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik, and J. Parhi. NU-
MineBench 2.0. Technical report, Northwestern University, August 2005. Tech.
Rep. CUCIS-2005-08-01.

[27] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[28] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access
scheduling. In ISCA-27, 2000.

[29] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous mul-
tithreading processor. In ASPLOS, 2000.

[30] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and
A. Davis. Micro-pages: Increasing dram efficiency with locality-aware data
placement. In ASPLOS, 2010.

[31] R. Sutton. Generalization in reinforcement learning. successful examples using
sparse coarse coding. In Neural Information Processing Systems Conference,
1996.

[32] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge, MA,
1998.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 pro-
grams: Characterization and methodological considerations. In ISCA-22, 1995.

[34] Z. Zhu and Z. Zhang. A performance comparison of dram memory system opti-
mizations for smt processors. In HPCA-11, 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




