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Abstract
We present an all-optical approach to constructing data networks
on chip that combines the following key features: (1) Wavelength-
based routing, where the route followed by a packet depends solely
on the wavelength of its carrier signal, and not on information ei-
ther contained in the packet or traveling along with it. (2) Oblivious
routing, by which the wavelength (and thus the route) employed to
connect a source-destination pair is invariant for that pair, and does
not depend on ongoing transmissions by other nodes, thereby sim-
plifying design and operation. And (3) passive optical wavelength
routers, whose routing pattern is set at design time, which allows
for area and power optimizations not generally available to solu-
tions that use dynamic routing. Compared to prior proposals, our
evaluation shows that our solution is significantly more power effi-
cient at a similar level of performance.

Categories and Subject Descriptors C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures (Multiprocessors);
B.4.3 [Input/Output and Data Communications]: Interconnections
(Subsystems)

General Terms Design, Performance

Keywords On-chip Network, Optical Network, Wavelength-based
Oblivious Routing, Nanophotonics

1. INTRODUCTION
Future large-scale chip multiprocessors (CMPs) will face will face
the challenge of feeding data to on-chip cores at a sufficiently high
rate, both from off- and on-chip sources. Electrical on-chip data
networks are likely to be severely constrained by the limited on-
chip power budget, as well as long multi-hop latencies. CMOS-
compatible silicon photonics is a disruptive technology that can po-
tentially enable higher-bandwidth, lower-latency, and lower-power
interconnect solutions. Recently, significant advances in CMOS
compatibility, size, integration, efficiency, and high-speed opera-
tion of basic nanophotonic devices have been achieved [4–6, 20,
34, 35, 39]. An integrated optical link has been recently demon-
strated [7]. Thermal sensitivity issues are also under study [18].
Driven by such rapid advancements in nanophotonics, ITRS con-
siders on-chip optical interconnects as an alternative to global elec-
trical wires in future process technologies [14].

A high-bandwidth, low-latency on-chip optical network can
significantly benefit applications as well as the operating system:
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It can reduce the overhead of data sharing between parallel threads,
improving parallel efficiency and scalability. And by reducing the
cost of global communication and providing more uniform access
to cores and memory, it can also simplify memory management,
thread scheduling, and resource sharing. As a result, nanophotonics
has recently elicited great interest in the computer architecture
field, in the context of large-scale CMPs. We briefly review some
of the most recent contributions in the subject here:

Kırman et al. [15] employ broadcast-based data communication
on a full optical crossbar. It is a high-bandwidth, low-latency or-
ganization which does not require global arbitration. However, the
O(N2) detector/receiver requirement is likely to be an issue for
high node counts (N ), in terms of sheer component count and the
complexity involved in processing all the messages a node can re-
ceive simultaneously. The authors also show that a fully optical im-
plementation of their design is inviable due to excessive power con-
sumption. In their final solution, the authors rein in this problem by
resorting to a clustered electro-optical organization that reduces the
number of nodes at the optical crossbar. The downside of a clus-
tered electro-optical approach is that its potential may be limited
by the latency and power of the electrical side. Their results show
modest speedups for a number of SPLASH-2 applications with re-
spect to a fully electrical solution.

Similarly, Pan et al. [25] employ optical crossbars in a hierarchi-
cal electro-optical topology. Intra-cluster communication is facili-
tated via an electrical packet-switched network, and inter-cluster
communication is carried on multiple optical crossbars, each con-
necting the routers at the same position of every cluster. The orga-
nization retains all of the routers and a lot of the router-to-router
wiring of a conventional electrical network, limiting the potential
gains that photonics has to offer.

Shacham et al. [26] propose a circuit-switched on-chip photonic
network with reconfigurable broadband optical switches. Trans-
mitting a data packet requires setup and breakdown of an optical
path, and these are carried out on an electrical packet-switched net-
work, where each electrical router configures an optical switch.
This makes it necessary to transmit data packets of hundreds of
bytes on the optical network (well beyond the size of a typical cache
block) to amortize the setup/breakdown cost. Flow control is based
on a combination of dropping blocked packets and adaptive rout-
ing, though the paper does not fully flesh out how forward progress
is guaranteed.

Cianchetti et al. [8] propose another switch-based on-chip pho-
tonic network. It uses source-based routing and reconfigurable opti-
cal switches to route data. Switch setup is performed by converting
the optical control signals that travel along the data to electrical
form, and setting up the switch accordingly. Optical data signals
must remain steady throughout the control setup (i.e., transmit at
the rate dictated by the control network), which may limit effective
bandwidth. Contention at output ports is arbitrated, and “losing”
packets are electrically buffered if sufficient buffering exists, or
outright dropped otherwise. In the face of network-intensive work-



loads, the network may necessitate large buffering at each switch
to reduce packet drop rates and any associated performance loss.
Even then, the paper does not flesh out how forward progress is
guaranteed in the presence of dropped packets.

Unlike the works above, Vantrease et al. [29] propose a fully-
optical solution. It is a high-bandwidth, low-latency optical cross-
bar that uses token-based optical arbitration to serialize data
transmissions to each node. They report significant speedups for
SPLASH-2 applications running on a large CMP configuration rel-
ative to an electrical packet-switched network. Every node has a
separate port to all other nodes’ data channels, requiring O(N2)
modulators/transmitters, even though onlyO(N) of them are active
at a time. The token-based arbitration can limit effective through-
put, especially in light traffic conditions. Also, the large number of
components, especially for high node counts, makes the viability of
this architecture highly dependent on its ability to rein in the power
consumption and signal losses of optical components, which will
be heavily dependent on the maturity and efficiency of the optical
technology employed. Our evaluation revisits this approach and
assesses the impact of the technology employed.

We believe that a careful design can deliver a fundamentally
power-efficient all-optical solution that is reasonably robust to tech-
nology considerations. In this work, we argue for such an approach.
Specifically, our proposed solution combines the following key fea-
tures:

Wavelength-based routing. Within each optical router, the route
followed by a packet depends solely on the wavelength of its
carrier signal, and not on information either contained in the packet
or traveling along with it. This allows us to adopt an all-optical
solution for data transmission, where O-E/E-O conversion support
at each router to figure out routes is unnecessary. Wavelength-based
routing is a popular approach in optical LAN/WAN technology for
this same reason [41].

Oblivious routing. The wavelength (and thus the route) employed
to connect a source-destination pair is invariant for that pair, and
does not depend on ongoing transmissions by other nodes, thereby
simplifying design and operation.

Passive optical routers. Their routing pattern is set at design time,
which allows for area and power optimizations not generally avail-
able to solutions that use dynamic routing. It also means no time
lost in routing/arbitration decisions.

In our design, we construct an all-optical network layer, where
each node has physical connectivity to all other nodes via static
paths. Then, we replicate this network layer to increase bandwidth.
To establish communication, we take a connection-based approach:
a source node first establishes a logical connection with the des-
tination node before transmitting data. A node may have concur-
rent connections to multiple nodes, on both the same and different
network layers. Such a connection-based approach can benefit ap-
plications, by forming logical connections on the network layers
that match the applications’ communication pattern, thus minimiz-
ing global arbitration and streamlining data transfers. It also pro-
vides good isolation between exclusively communicating groups
of nodes. We also propose techniques to hide and/or amortize con-
nection setup overheads.

The flow of the paper is as follows: First, we construct a
wavelength-routed, oblivious, all-optical network for CMPs, and
describe its connection-based operation. Then, we evaluate the la-
tency, cost, power consumption, and performance of the proposed
network in the context of a 64-core, 256-thread shared-memory
CMP design, and compare against other recent proposals for on-
chip optical interconnects.

2. ARCHITECTURE
2.1 CMP Architecture
The CMP architecture of our study comprises 64 2-issue, in-order,
4-way multithreaded cores with their private L1 i- and d-caches.
Each core is augmented with 4-way SIMD support, providing
16 GFLOP/s peak performance at 4 GHz core frequency, for an
aggregate peak CMP performance of 1 TFLOP/s. Cores are orga-
nized in clusters of four, and cores within each cluster share a L2
cache. The system further employs eight memory controllers, each
providing access to one of eight cache-block-interleaved L3 cache
+ memory banks. Each controller can deliver up to 256 GB/s.1

The shared-memory system maintains coherence across L2
caches and lower-level L3 cache and memory, using a MESI-based
snoopy protocol, and a pipelined split-transaction opto-electrical
command/snoop bus, along the lines of Kırman et al. [15], that
runs at processor frequency. Actual transfer of cache blocks takes
place in the data network, which is the main focus of our study.
In the following sections, we describe the design and operation of
an oblivious, wavelength-routed, all-optical data network that con-
nects the sixteen L2-cache nodes and the eight memory-controller
nodes. Section 4.1 provides more details on the CMP architecture.

2.2 Network Substrate
In wavelength-based routing, the route a packet takes at each point
in the network depends exclusively on the wavelength of its carrier
signal. This is advantageous because it allows us to offer end-
to-end optical data transmission, without having to undertake O-
E/E-O conversions and buffering in order to route a packet based
on its content. Moreover, oblivious routing dictates that a given
source-destination pair always communicates via a predetermined
wavelength, which does not depend on the ongoing transmissions
between other source-destination pairs. It enables us to provide
connectivity using passive optical routers on the network, based
on preset microring resonators that will automatically route each
wavelength on the right path to the destination.

Ideally, one could conduct a multi-dimensional design space ex-
ploration (topology, routing, etc.) to devise a network that simulta-
neously optimizes for cost, complexity, and performance. For sim-
plicity, however, in this paper we pick a reasonable regular physical
topology, and then work out a viable routing scheme that effectively
provides those three characteristics. After some preliminary trials,
we opt for a 24-node, two-dimensional torus. A two-dimensional
torus is attractive because, as we will see later, it yields relatively
simple routers and waveguide layout.

2.2.1 Wavelength assignment for oblivious routing
In oblivious routing, every source-destination pair must have an as-
signed wavelength through which to communicate. A trivial way to
accomplish this is to employ as many wavelengths as the number
of distinct source-destination pairs. This, however, not only is pro-
hibitively expensive (O(N2) wavelengths, where N is the number
of nodes), but also unnecessary. Indeed, Aggarwal et al. [1] prove
that significant wavelength reuse is possible. Specifically, the num-
ber of wavelengths needed to support oblivious routing in a network
with N nodes is (dN

2
e + 2) for N = 4 or N ≥ 6, assuming that

communication is one-to-one.2

1 Preliminary estimations indicated, and later simulations confirmed, that
this provisioning is adequate to support the bandwidth demand of the 64
cores.
2 The authors also assume that each node is connected to a router through a
pair of incoming and outgoing physical channels, in our case waveguides.
However, the authors ignore the complexity of the routers and the connec-
tivity between them. As we discuss later, our problem is more restrictive
than this, since our network is physically constrained and communication
pairs do share a physical medium often.
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Figure 1. Three examples of wavelength reuse, where wk must
be different from wi to ensure interference-free reception. For sim-
plicity, the B → X wavelength assignment is not shown.
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Figure 2. Optimal wavelength assignment found using Aggarwal
et al. [1] for oblivious routing in a 12-node wavelength-routed op-
tical network. The (i, j) element in the matrix gives the wavelength
that must be used when node i needs to transmit data to node j. 8
wavelengths (labeled 0 through 7) are required. Cases I, II, and III
show examples of wavelength reuse.

Wavelength reuse requires a careful assignment. Figure 1 shows
a few simple reuse scenarios. In all three examples, the communi-
cation pattern that we want to support is A → X , B → Y . In
Case I, node A is configured to use wavelength wi when transmit-
ting to either node X or node Y . Thus, B must necessarily use
wk 6= wi when communicating with Y ; otherwise, when A trans-
mits to X and B transmits to Y concurrently, A’s and B’s signal
would interfere at Y . In Case II, A and B are set up to use the
same wavelength wi whenever they communicate with Y . In that
case, A → X , B → Y can only be successful if A uses wk 6= wi

to communicate with X . Finally, Case III shows a case where A
and B are set up to use wavelength wi whenever transmitting to
X and Y , respectively. In this case, A’s wavelength to Y must be
wk 6= wi, or else Y will receive information fromA as a byproduct
of A transmitting to X , which would interfere with B’s.

In our work, we use the algorithm by Aggarwal et al. [1] to
obtain the wavelength assignment for our 24-node system. Figure 2
is an example that shows a solution for a 12-node network using
eight wavelengths (labeled 0 through 7). Element (i,j) in the matrix
contains the wavelength that must be used when node i needs
to communicate to node j. There is notable wavelength reuse: A
source node may use the same wavelength to communicate to
several nodes (Case I); multiple source nodes may use the same
wavelength to communicate to the same node (Case II); and disjoint
source-destination pairs may also use the same wavelength (Case
III). Nevertheless, the wavelength assignment is such that one-to-
one communication between distinct source-destination pairs can
concurrently take place without conflict at any of the receivers.
In our work, we set up communication pairs beforehand using a
connection-based protocol.

2.2.2 Wavelength path layout
Once we derive a wavelength assignment for all source-destination
pairs, we must determine the exact wavelength paths on the torus
network, which comes down to determining the static routing con-
figuration of the wavelength routers. A wavelength sourced from a
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Figure 3. The 6×4 two-dimensional torus adopted in this study.
The swapping of node labels 2-3 and 14-15 was done to help the
genetic algorithm find a viable routing solution. Several routing
paths from the actual solution are shown.

node should only reach the destinations designated by the assign-
ment. The limited number of waveguide segments on the network
makes it challenging to satisfy this routing constraint. In the worst
case, it may not be possible to map the wavelength assignment. We
must search the configuration space and find one which success-
fully routes the wavelengths from all nodes, necessarily without
wavelength collisions within the physical medium between routes
of disjoint source-destination pairs. Notice that, because we are us-
ing fully optical transmission, non-minimal routes are not necessar-
ily a concern, and in fact they are attractive to the extent that they
may enable a successful routing.

A manual search would be prohibitively time-consuming and
error-prone. For this reason, we implement a genetic algorithm
(GA) to find a viable configuration automatically. We solve the
problem one wavelength at a time, observing that solutions for
different wavelengths are independent of each other. Our GA be-
gins with a set of randomly-generated configurations. In each initial
configuration, for each source-destination pair that communicates
through the wavelength, there is a random route originating from
the source and represented with a list of router output ports. We
place an upper limit on the route’s hop count. The GA works its
way toward a solution by applying a multi-objective fitness func-
tion (the lower the better), given by Equation 1. In the formulae,
Boolean operators evaluate as in the C programming language.

Φ = Φ1 + Φ2 (1)

Φ1 =

NodesX
i

 
NodesX

j

Cij 6= Tij

!
+ (Reconvergencei ? 2 : 0)

Φ2 =

RoutesX
k

dist(Destk,Targetk) +

(Hopsk 6= MinHopsk) + (Cyclek ? 2 : 0)

The first component Φ1 provides a global view of the use of the
wavelength under study. C and T stand for current and target con-
nectivity matrix of the configuration, respectively: Cij (Tij) is set
if and only if the wavelength being optimized optically connects
(should connect) i to j, i → j. A disagreement between C and T
means that either connectivity or non-interference may be compro-
mised, and a penalty is assessed in that case. The formula also as-
sesses a penalty if two routes originating at i and going to different
destinations reconverge (that is, they are disjoint at some point but
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Figure 4. Passive wavelength-router implementation. A few alter-
native junction implementations are also shown (I, II, and III). On
the lower left corner is a microring-resonator based filter.

later converge on the same router). This is wasteful because, even if
it may be desirable for i to reuse the same wavelength to reach those
destinations at different points in time, either route alone could be
used to achieve such reuse.

The second component Φ2 looks at individual routes (cells that
are set in T ). It rewards routes that are closer from successfully
connecting an intended source-destination pair and have a hop
count that is closer to the node distance.3 It also penalizes routes
that form cycles (i.e., they go through the same router twice), which
are obviously useless. The GA terminates when it finds a solution
for which Φ = 0.

We initially ran our GA using XY labeling for the nodes of
the underlying torus, but the GA was not able to find a viable
solution for two of the wavelengths. Fortunately, we found that
a few simple label swaps by hand (nodes 2 and 3, and nodes 14
and 15) were sufficient to make the GA produce complete, viable
solutions. Among complete solutions from multiple GA runs that
also minimize the number of hop counts, we picked the one which
resulted in lower optical power and smaller propagation distances.
(While we could have incorporated those features into the GA’s
fitness function, we were sufficiently satisfied with the solutions at
hand that we did not pursue that for this paper.) Figure 3 shows the
labeling of the nodes, as well as a few routes contained in the final
configuration. For space reasons, we omit a full listing of all the
routes.

Once the routes are determined, each router is customized at
design time to satisfy these. We discuss router design next.

2.2.3 Wavelength-router design
We construct passive wavelength routers as depicted in Figure 4.
Routing a wavelength from an input to an output port is accom-
plished via careful placement of a passive microring resonant to
the wavelength at the appropriate input-output waveguide junction.
In a junction, there are as many microrings as the number of wave-
lengths that are routed from the input to the output port.

A microring-resonator-based filter [16, 27, 37, 38] is reviewed
in the lower left corner of Figure 4. It is an optical component
whose geometry (e.g. radius, separation with the neighbor waveg-
uides) determines the resonance wavelength(s) and coupling ratio
of the filter. Light from the input port passes by the microring and
keeps on going if its wavelength does not match any of the res-
onance wavelengths of the microring (off-resonance). If it does
match a resonance wavelength of the microring (on-resonance),
the light couples into the microring and then into a different out-
put waveguide. (Depending on the coupling ratio, a fraction of the
light may continue traveling on the original waveguide.)

3 We factor in hop count minimization with the expectation of reducing the
optical power expended along the path (primarily by the routers).
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Figure 5. Simplified diagram of interfaces for transmitting and
receiving data at end nodes. In the figure, node A is transmitting
information to node B over wavelength λi.

Notice that the routers may be completely different from one
another, as needed to implement all the routes found by the GA.
The resulting router designs are rather compact, with 2.06 micror-
ings per junction on average (8 maximum). This is encouraging in
terms of potential area and power savings.

2.2.4 Transmitter/receiver interface
Recall that, in the wavelength-assignment formulation described,
nodes may not be transmitting/receiving to/from more than one
node at any point in time. Consequently, we restrict each node
to have a single input and a single output port from/to the net-
work. On a transmission, the source must select and modulate on
the node’s assigned wavelength for the intended destination. Like-
wise, the destination must select and detect the same wavelength.4

To accomplish this, we implement wavelength filters at both ends
using an array of active microrings, with a microring per wave-
length (Figure 5). We assume that separate waveguides supply
each wavelength to nodes; this allows us to optimize for power.
At the source filter, when there is no transmission, the microrings
are off-resonance by default (no power supplied). Therefore, wave-
lengths pass by the rings and are not injected into the network. On
a transmission, only one of the rings is supplied power to shift on-
resonance, allowing the corresponding wavelength to couple into
the input waveguide. At the destination filter, on the other hand,
the microrings are on-resonance by default (no power supplied).
Therefore, when there is no transmission, wavelengths couple into
the rings and are not extracted from the network. On a transmis-
sion, only one of the rings is supplied power to shift off-resonance,
allowing the corresponding wavelength to pass to the detector at the
destination. Simple decoders can be used to drive the microrings.
With this organization, tuning can be very fast. Notice also that tun-
ing need only change when a source/destination node must move to
another wavelength, in order to participate in a data exchange with
a different node. Finally, we use a modulator and detector that can
work with whatever wavelength is offered by the preceding filter.

2.2.5 Multiple network layers
The single network layer discussed so far enables one transmission
at optical modulation rate from each node at a time. A cost-effective
way to augment the network’s bandwidth is to embed multiple vir-
tual networks in the same set of waveguides, using spare wave-
lengths which may be available depending on the maturity of the
technology. One possibility is to employ the technique proposed by
Small et al. [27], which essentially places several wavelengths in
the resonance band of a microring resonator. In that case, it is pos-
sible to route multiple bits of a message in parallel with little extra
hardware: At each node, multiple modulators/detectors must tap

4 This will require a protocol to have source and destination nodes tune to
their assigned wavelength prior to transmitting data. We explain one such
protocol in the next section.
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separately on each of these wavelengths in order to inject/extract
the bits of information; however at the routers and filters the only
change comes from broadening the resonance band of their micror-
ings, in order to correctly route such wavelength bundles.

Another way to achieve higher network bandwidth is simply to
replicate the network. Notice that all such network layers must be
laid out in a manner that minimizes waveguide crossings, which
are a significant source of optical power losses. In our design, we
lay out the network layers in a circular and concentric fashion
(Figure 6), however each layer still conforms to a torus topology
(Figure 7).

Multiple physical network layers can be used to transfer more
bits of the same message, or alternatively, more messages. A node
provides enough optical power from each wavelength to feed the
maximum number of network layers that can transmit concurrently
on that wavelength. This input light power is distributed to network
layers based on demand by the active filters. In case multiple
physical network layers transfer more bits of the same message,
these layers share a source-side filter in a node. After the filter
selects the appropriate wavelength based on the target destination,
common to all of these layers, the light at the filter output is split
among the individual layers for modulation.

Unless otherwise stated, in the network operation below, we
assume layers are used to transmit different messages.

3. NETWORK OPERATION
In our design, a source-destination pair must tune to the assigned
wavelength before the actual transmission takes place; and only one
source node may transmit to a particular destination node at a time
on each layer–which essentially requires arbitration for a receiver.
In this section, we describe a distributed protocol that not only
ensures that these constraints are satisfied for data transmissions,
but also keeps connections alive for as long as possible, so that
source nodes can transmit later on without incurring additional
setup delays.

A source-destination pair may have at most one open connec-
tion at any given point in time (i.e., the multiple network layers
cannot be used to open multiple connections simultaneously for the
same pair.) During the lifetime of such a connection, the destination
node’s receiver remains tuned to the assigned wavelength; how-
ever, the source node’s transmitter may time-multiplex over differ-
ent connections, by selecting the right wavelength at each point in
time. (Of course, the node can also establish different connections
on different network layers.) A connection lasts until it is closed
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Figure 7. Circular layout of a torus network layer. The numbering
is matched with the node/router numbering in Figure 3. For clarity,
we draw the two unidirectional links between two routers as a
bidirectional link.

by the destination node–for example, when it needs to engage in
communication with another node on that layer.

The connection protocol is supported by a few dedicated opti-
cal network layers via point-to-point transactions between nodes.
The protocol uses time slotting to ensure that all potential source-
destination pairs have a chance periodically to exchange protocol
messages.5

In the following sections, we describe the connection protocol,
network layer selection policy, the operation of the protocol net-
work layers, and finally the hardware support at the network inter-
faces.

3.1 Connection Protocol
For simplicity, we first describe the connection protocol assuming
a single network layer between nodes.

A source node issues a connection request to a destination
node if it finds it is disconnected to that node on a data transfer
attempt. In the simplest case, the destination directly acknowledges
the connection request if its receiver is disconnected as well. If,
on the other hand, the receiver is involved in a connection, the
destination node first needs to break that connection, and wait for
any scheduled transmissions by the previous owner to complete
(signaled via a break acknowledgement message) before sending
the connection acknowledgement to the new connection requester.
Once the connection requester receives an acknowledgement to the
connection request, it can start sending data at any time, without
consideration of other nodes. The previous owner, on the other
hand, would need to establish a new connection before any future
data transmission to the same destination node.

The full protocol is slightly more involved, due to issues that
arise from the non-atomic nature of the connection setup process.
Below we briefly discuss these issues.

Connection request races: Multiple connection requests can
compete for a receiver in a node. This destination node serves as
the serialization point for all such requests: upon accepting the
first request, it will not accept further requests until the first one

5 Whereas the overhead of time slotting (as an alternative to connection-
based communication) would be prohibitively high to manage data trans-
mission itself, the small size of the connection protocol messages, and the
relative infrequency of these transactions, makes it possible to use it here.
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Figure 8. Protocol state diagrams for Tx-side (left) and Rx-side (right). A slash (/) separates a protocol message and the action taken in
response. BS and LA stand for available transmitter buffer space and lookahead, respectively. An asterisk (*) next to a message indicates
that the connection layer information is included in the message. The information in parentheses (()) specifies the destination of the message.
Protocol extensions for proactive break and connection-lookahead support are encapsulated in brackets ([]) and use dashed transition lines.
Notice that, in the Tx-side diagram, statements in brackets are for lookahead initiated connections / connection requests.

is resolved from the node’s point of view. Requests that find the
receiver busy connecting are nacked and retried later.6

Forward progress: In order to avoid receiver ownership to
ping-pong between nodes without actually being used, a connec-
tion owner delays its break acknowledgement until the connection
is used at least once. Because the connection is established in re-
sponse to a data transmission attempt, it is guaranteed that the con-
nection will be used at least once.

Scheduled transmissions: At the time a connection owner re-
ceives a break request, it may have scheduled data packets on this
connection in the transmitter’s buffer. The break acknowledgement
is piggybacked on the last of these packets. The connection is
closed from the point of view of the owner. If there are no scheduled
transmissions, and if the connection has been used at least once,
the break request is directly acknowledged on the protocol network
layers; if the connection has not been used, the break acknowledge-
ment will be piggybacked on the first data packet to be scheduled
on this connection. As a result, a break acknowledgement for a con-
nection always reaches the destination after all packets scheduled
on this connection.

Reply-request races: A connection acknowledgement and a
subsequent break request for the same connection, could potentially
overlap in the network. The protocol network layer’s interface guar-
antees that the reply is delivered before the request (Section 3.3).
This simplifies the protocol.

Similarly, a break acknowledgement and a subsequent connec-
tion request for the same source-destination pair can overlap in
time. Although ordered delivery of the reply and the subsequent
request to the same node is guaranteed on the protocol network
layers, recall that a break acknowledgement can be delivered over
a data network layer, possibly after the connection request. Fortu-
nately, this does not constitute a problem, because the connection
request will find the receiver busy connecting and it will be nacked.

Figure 8 summarizes all protocol actions in two state diagrams–
one for the transmitter side and one for the receiver side. The dia-
gram also shows protocol extensions to support a few performance
optimizations that we describe later.

3.2 Network Layer Selection
The main challenge with multiple network layers is to decide on
which layer to establish a new connection.

6 There are different techniques to avoid starvation for nacked requests [9].

On a connection request to a node, the node applies a selection
policy to choose a network layer on which to establish the con-
nection. This may result in evicting an existing connection to the
receiver from another transmitter. This is conceptually similar to
victim selection in a cache replacement policy. The selection pol-
icy that we implement in this work is LRU; we tried others (round-
robin, random, etc.) and found their performance to be at most as
good as LRU’s. Once a layer is selected, the connection protocol
is executed for this layer. The layer information needs to be com-
municated in the relevant protocol transactions, which we already
include in the state diagram in Figure 8.

A data transmission necessarily takes place on the layer with
an established connection to the destination node. A node keeps
track of connection status to each destination separately. The status
information include the layer id.

Notice that, in the case of unordered delivery of break acknowl-
edgement and a subsequent connection request from the same
source to the same destination, a different layer may be selected
for the new connection, even as the previous connection is still in
the process of being disconnected on its corresponding layer. Since
the older connection has already been severed from the source’s
point of view, this corner case is harmless.

3.3 Protocol Network Layers
A node transmits protocol messages on a few dedicated network
layers, as described in Section 2.2. A deterministic and periodic
schedule dictates to which destinations a node can transmit connec-
tion protocol messages at each time slot and on each network layer.
Thus, a node can send message to a particular node every N/M
time slots on a specific layer, where N is the number of nodes,
and M is the number of protocol network layers. Node schedules
are shifted from one another to ensure that only one node attempts
to transmit to a particular node at each point in time. A time slot
should be long enough for a protocol message to reach its desti-
nation node, in order to guarantee in-order delivery of messages
across time slots (which is not guaranteed by the network topol-
ogy). It should also accommodate the tuning delays.

A node processes incoming protocol messages in a non-blocking
and pipelined fashion.7 It places outgoing protocol messages in an
output buffer per layer with an entry for each possible destination.
Messages wait here for their time slots. Note that, there may be

7 Multiple cycles in a time slot allow for more relaxed port throughput
requirements in order to process the incoming messages in a slot.



Connection-
Status Table 

Data transmission request/
Lookahead request

N0
:

Receiver- 
Status Table 

Repl. info
L0
:

PL0 PL3

Node 
(L2 cache or memory controller)

Output data queues

Outgoing data path

Tx Buffer

DataTagDest

λ Tx

Network Layer(i) Network Layer(i)
Incoming data path

λ SrcRx

Input data queues

Protocol Network Layers

Used LA nacksLayerState State Owner
: :

BrAck
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multiple protocol messages waiting for a time slot. However, be-
cause of the way the protocol and its network layers work, there
can be no two messages of the same type (connection request,
connection ack/nack, break request, and break ack) for the same
destination node. Therefore, an entry has separate fields for the
four protocol-message types. Protocol-message arbitration ensures
that reply-request races (Section 3.1) for the same destination are
properly ordered. Because very little information needs to be stored
in each entry, the overall storage overhead is small.

3.4 Hardware Interface
Figure 9 depicts a node’s interface to the optical network. A con-
nection status table tracks the outgoing connections to each node,
while a receiver status table holds connection information for the
receiver on each network layer.

A data transmission attempt first checks the connection status
for the destination. If a connection exists, the data is placed into
the transmitter buffer. (If the transmitter buffer is full, the data
transmission is retried later.) On the other hand, if the connection
is not ready or does not exist, the transmission attempt is delayed
until the connection is established.

Newly generated protocol messages are scheduled for transmis-
sion on a protocol network layer. They wait for a proper time slot
in the layer’s outgoing buffer (Section 3.3).

Protocol messages received from the protocol network layers
are processed using either connection or receiver status table de-
pending on whether the message is directed to an outgoing or in-
coming connection.8

On an actual data transmission from the FIFO transmitter buffer
on a network layer9, the transmitter first tunes to the wavelength for
the destination, according to a wavelength mapping table, and then
transmits the data. Note that the node may have multiple connec-
tions on this layer that use the same wavelength (similarly to Case
I in Figure 2). In this case, a data transmission will reach all re-
ceivers for these connections. A receiver, therefore, must check the
intended destination of the data packet before delivering it to the
node. We implement nonblocking message delivery, by providing
enough buffering to accomplish bandwidth “impedance matching.”
Additionally, note that the command/snoop phase for a memory re-
quest preceding any data transmission guarantees there is available
buffering at the receiving node. For other implementations where
buffer space at destination is not guaranteed, or the delivery rate
does not match the receive rate, credit-based flow-control support
can be easily added by leveraging the protocol network layers to
communicate the credits.

8 Note that, for correct operation, a break-request processing must see the
simultaneous connection use from the node.
9 If a set of network layers is used to transmit bits of the same message in
parallel, these layers can share the same transmitter buffer.

3.5 Optimizations
Here we discuss a number of possible optimizations, and any pro-
tocol or hardware changes when required.

3.5.1 Lookahead connection requests
In the basic protocol, a node requests a connection only on an
actual data transmission attempt. It is possible for a node to act
earlier for establishing a connection in anticipation of a future data
transmission. The hope is to hide connection establishment latency.
There are several circumstances when we apply this feature:

– A memory controller issues a lookahead request when it sends a
read request to the L3 cache and memory, so it can relay the data
promptly to the requesting node once it returns.

– A cache with E or M state in a snoopy MESI-based coherence
protocol issues a lookahead request concurrently to sending its
snoop response, in preparation for the data transmission that will
follow shortly.

– On a cache line eviction, a lookahead request is issued in parallel
to sending the write-back request through the command/snoop bus
(this assumes that the cache knows the memory bank’s location in
the network).

Figure 8 shows the protocol changes on the transmitter’s side
needed to support this feature; the protocol in the receiver’s side
is unchanged. Note that, because it is not guaranteed that a con-
nection established through lookahead is going to be ever used, the
protocol directly breaks such a connection on a break request if no
transmissions are pending. Also, we drop a lookahead request after
being negative acknowledged for a certain number of times.

3.5.2 Connection-aware cache coherence
In the context of the coherence protocol, upon a read/read with
write intent request by a node for a cache line in Shared state at
one or more remote nodes, a subset of the sharers may already have
an established connection with the data requester node (necessarily
on different network layers). We propose that one of these sharers
leverages the existing connection and provides the data. Such sharer
nodes should include the fact that they have an open connection in
their snoop response, so that the coherence controller may consider
them as preferred suppliers.

3.5.3 Proactive connection break requests
In the basic protocol, a node breaks a connection only in response
to connection requests by other nodes (Section 3.1). We extend the
protocol so that a node can proactively initiate the break of one of
its incoming connections. The hope is to hide the latency of the
break handshake on a subsequent connection establishment. On a
connection request that replaces a proactively broken connection,
the node need not resend a break request; it simply waits for the
break acknowledgement from the previous receiver owner. Figure 8
shows the protocol changes on the receiver’s side needed to support
this feature; the transmitter’s side does not change.

In our implementation, after a node processes a connection re-
quest, possibly selecting an existing connection to evict, it oppor-
tunistically applies the LRU policy to select an additional layer
whose used connection, if any, will be broken proactively. Depend-
ing on the particular network configuration, some nodes may not
trigger proactive break at all. We describe this case in our experi-
mental setup.

4. EVALUATION
This section analyzes the power and performance of the proposed
network, in the context of a 64-core 256-threaded CMP targeted



Processor Core
Frequency 4 GHz
Issue 2, in order
Int ALUs/Branch units 2
Ld/St units 1
Mul/Div units 1
FP ALU/MUL units 4-way SIMD
FP Div units 1
Write-buffer entries 16
Store forward delay 2 cycles
Branch min. cycles 5
Branch predictor, 13-bit GHR, 2,048 10-bit BHRs
(Hybrid of GAg + SAg) 8,192-entry chooser
BTB/RAS entries 2,048/32
IL1/ DL1 size, associativity 32 KB, 4-way
IL1/ DL1 access latency 2 cycles
IL1/ DL1 block size 64 B
DL1 writeback policy Write-through
DL1 MSHR entries 16

Memory Subsystem
L2 cache L3 cache

Caches 16 1
Cache size 2 MB 64 MB
Cache banks 8 8
Cache associativity 16 way 16 way
Cache access latencies 9 cycles 45 cycles
Cache writeback policy Write-back Write-back
Cache block size 64 B 64 B
MSHR entries 64 128
Coherence protocol MESI
Address-network snoops per cycle 8
Address-network snoop-request latency 8
Address-network snoop-response latency 6
L3/Memory controllers 8
L3/Memory controllers’ bandwidth 8×256 GB/s
Memory latency 100 cycles

Table 1. Summary of the modeled system. In the table, GHR, PHT, BTB, MSHR, and RAS stand for global history register, pattern history
table, branch target buffer, miss status holding register, and return address stack, respectively. Cycle counts are in processor cycles. Bus
latencies are contention-less latencies.

for 32 nm technology node, compared against alternative designs
proposed in the literature.

4.1 Experimental Setup
This section provides more details on the evaluated CMP archi-
tecture, whose overall organization we highlighted in Section 2.1.
We conduct our evaluation using a cycle-accurate execution-driven
simulator based on SESC [23]. Latencies and occupancies of all
structures are modeled in detail. Table 1 summarizes core and
memory-system parameters.10 We use CACTI 5.3 [28] to obtain
cache latencies. We assume a 450 mm2 die area, which is in line
with server-oriented CPUs.

Following common practice for SPLASH-2 applications, we
use a reduced L2 cache size of 256 KB to compensate for the
applications’ small working sets [32]. Still, we use the latency of a
full-size 2 MB cache.

The banked L3 cache is on a separate 3D layer; a 3D intercon-
nect provides 256 GB/s bandwidth from each bank. 2 TB/s of off-
chip memory bandwidth (256 GB/s per memory bank) is provided
through optical channels. (Optical access to memory arrays reduces
the memory latency as well [3, 29].)

We evaluate several configurations of the proposed network.
We also compare them against two optical networks modeled after
previously proposed architectures [15, 29].

The aggregate network bandwidth in all configurations is set
to 6 TB/s (each node can receive 64 bytes every cycle [29]), to
serve as an equalizing parameter to make meaningful power and
performance comparisons. For all configurations, we assume sup-
port for up to 64 wavelengths [29], 10.45 ps/mm light propaga-
tion delay [15], and 32 Gbit/s optical data rate [6, 19, 20, 39]. The
same opto-electrical command/snoop bus is used in all configura-
tions [15], which is excluded from the power figures in order to
isolate the contribution of the data network, which is the subject of
our study.

Oblivious, wavelength-routed network (Oblivious): This is our
proposal. We evaluate three different configurations based on how
they use the multiple network layers. All configurations require 16
data and 4 protocol network layers, and a total of 56 wavelengths.

10 In our simulation infrastructure, 4-way SIMD processing is emulated
by issuing up to 4 consecutive independent floating-point add/sub/mult
instructions with ready operands in one cycle. Any intervening instruction
in the code not of one of these types terminates the SIMD bundle.

Oblivious Data Networks
Data network layers 16x1 8x2 4x4
Virtual layers per network layer 4 4 4
Network bandwidth (TB/s) 6 6 6
First-word transmit cyclesa 4 2 1
Network latencyb / Delivery 1-3 cycles / 1 cycle
Conn. break replacement policy LRU
Transmitter buffer entries 4
Protocol network layers 4
Time-slot duration 4 cycles
Arbitration cycle (in a time slot) 4th cycle

a Includes E-O delays for first-word bits
b Includes 4 FO4 + light propagation + O-E delays

Table 2. Evaluated configurations of the proposed network.

In Oblivious-16, each message is transmitted over a single network
layer, whereas in Oblivious-8 (Oblivious-4), each message is trans-
mitted over two (four) layers. Table 2 summarizes the main param-
eters. The average (max) path length is 31.5 mm (67.5 mm). In all
configurations, we match the receive bandwidth in a node through
four 128-bit delivery ports, each serving a subset of the data net-
work layers. Unless otherwise stated, all optimizations described
in Section 3.5 are employed.

We employ a LRU replacement policy for connection breaks.
Notice, however, that in Oblivious-16 a memory node can simul-
taneously accommodate connections from all sixteen cache nodes
on non-conflicting layers. This effectively eliminates the need for
proactive breaks at memory nodes. Also, a cache node can si-
multaneously accommodate connections from all eight memory
controllers on non-conflicting layers (though those still may con-
flict with connections from other cache nodes). Consequently, in
Oblivious-16, we use a static node-to-layer mapping in memory
and cache nodes, to promote an even distribution of cache-to-
memory and memory-to-cache connections across network layers
at both sender and receiver sides. This results in good load balanc-
ing and minimal number of connection setups.

Optical crossbar with broadcasting (Xbar-Bcast): This optical
network is modeled after the data network of Kırman et al. [15].
Its optical fabric essentially implements a full crossbar on a set
of waveguides that loop around all nodes. Each source node has



SPLASH-2 Problem size SPLASH-2 Problem size
Barnes 64k particles Radix 1,024 radix,
Cholesky tk29.O 4M integers
FFT 256k points Raytrace balls4
LU 1,024×1,024 matrix Water-NSq 4,096 molecules
Ocean 514×514 ocean Water-Sp 4,096 molecules

Table 3. Applications simulated and problem sizes.

exclusive set of wavelengths on which it broadcasts data packets.
All other nodes tap into the data, but only the true destination pro-
cesses it. As a result, the network operation does not require global
arbitration. However, this comes at the expense of O(N) number of
receivers per node. To mitigate the resulting cost, the authors sug-
gest a hierarchical opto-electrical organization where the optical
fabric serves several (electrical) switches at the top level, and each
switch serves multiple nodes at the lower level. We perform a de-
sign space exploration to determine the organization that provides
the best power-performance trade-off for our target bandwidth of
6 TB/s. The resulting configuration has 6 switches on the bus, each
capable of transmitting 4 messages using 2 wavelengths per mes-
sage in a waveguide, and a flit size of 64 bytes. A total of 48 wave-
lengths are used.

Optical crossbar with arbitration (Xbar-Arb): This network is
modeled after the data network of Vantrease et al. [29]. It imple-
ments a crossbar as well, however this time each node has an ex-
clusive set of waveguides to receive data that loop around all other
nodes. The network operation requires arbitration for transmitting
to a node which is accomplished through token-based all-optical ar-
bitration. The network has O(N) transmitters per node. The target
bandwidth is reached with a flit size of 64 bytes, using 64 wave-
lengths in one data waveguide. We estimate a 5-cycle latency for a
token to circulate around the nodes for our layout and optical pa-
rameters. We also assume nodes request one token at a time.

We would like to point out that, because our target system is
implemented in an earlier technology node than the one assumed
in [29], our results do not necessarily represent the behavior of the
system at the scale proposed in that work.

4.2 Applications
We resort to the SPLASH-2 applications [32] compiled into MIPS
binaries with -O3 optimization level, and use the data input sets
provided in Table 3. For the 256-threaded executions, we tried
to scale the default data sizes (suggested for up to 64 threads)
to account for the four time increase in thread count. We fast-
forward the initialization regions (at which point we start modeling
timing and collecting statistics) and run them to completion. Our
simulation infrastructure currently does not support 256-threaded
executions of Volrend and Radiosity. FMM is also excluded due to
its long execution time–in any case, it is not sensitive to network
performance [15, 29].

4.3 Power Evaluation
We estimate the maximum on-chip electrical and optical power
consumption of Xbar-Bcast, Xbar-Arb, and Oblivious networks.
Based on the optical power requirements, we also estimate the
power of the off-chip laser required in each configuration. We first
describe our methodology and then discuss the results, provided in
Table 7.

4.3.1 On-chip electrical power estimation
We break down the on-chip electrical power consumption into four
categories. In all cases, we assume maximum electrical activity
(α = 1).

Switches/(De)multiplexers: Xbar-Bcast employs electrical routers,
whereas the all-optical configurations only use (de)multiplexers at
the network interfaces. Table 4 lists the count, type, and size of
these components. We account for the data buffers at network in-
terfaces along these structures. We use Orion 1.0 [31] to estimate
their maximum power consumption.

Electrical Switches/(De)multiplexers
Xbar-Bcast 6 4x5 routers, 512b, 4-entry input, 1-entry output buffers

6 21x4 routers, 512b, 4-entry input, 1-entry output buffers
Xbar-Arb 24 1x23 demux, 512b, 1-entry output buffers

24 1x1 mux, 512b, 2-entry input buffer
Oblivious-16 24 1x16 demux, 512b, 4-entry output buffers

96 4x1 mux, 128b, 2-entry input buffers
Oblivious-8 24 1x8 demux, 512b, 4-entry output buffers

96 2x1 mux, 128b, 2-entry input buffers
Oblivious-4 24 1x4 demux, 512b, 4-entry output buffers

96 1x1 mux, 128b, 2-entry input buffers

Table 4. Electrical switches/(de)multiplexers in the evaluated net-
works.

Wiring: Xbar-Bcast consumes additional wiring power at the links
that connect nodes and routers. We estimate wiring power assum-
ing 280 nm global-wire pitch [22] and ITRS device-performance
and interconnect projections [14] for power-performance optimized
repeatered global wires using the methodology in Ho et al. [13].
Leakage power per repeater is assumed to be 1 µW [15].

Transmitters/Receivers: Following the methodology in [12, 24]
and assuming a conservative 100 fF capacitance for driver plus
modulator, as well as a 2.4 fF photodetector capacitance (as re-
ported in [6]), we estimate 40.5 µW/Gb/s and 147 µW/Gb/s
power at 32 nm technology node for a single transmitter and re-
ceiver, respectively. This corresponds to 1.3 mW transmitter power
and 4.7 mW receiver power at 32 Gb/s optical data rate. Compo-
nent counts are provided in Table 5. Power estimations consider
busy components only. Notice that Xbar-Bcast and Xbar-Arb have
a large number of receivers or transmitters. Oblivious networks, on
the other hand, have just enough components to satisfy the target
bandwidth, with a few extra ones in the protocol network layers.

Txs Rxs Microrings
(Busy) (Busy) Switching (Busy) Passive

Xbar-Bcast (1,536) (7,680) (1,536) mod. 7,728
Xbar-Arb 35,328 (1,536) 35,328 (1,536) mod. 1,536

(1,536) 1,152 (600) filter
Oblivious-16 (1,920) (1,920) (1,920) mod. 18,879

11,504 (960) filter
Oblivious-8 (1,920) (1,920) (1,920) mod. 18,879

8,816 (768) filter
Oblivious-4 (1,920) (1,920) (1,920) mod. 18,879

7,472 (672) filter

Table 5. Component counts in the evaluated networks. Counts
not in parentheses are total component counts, while counts in
parentheses show the maximum number of simultaneously active
(busy) components. When both counts coincide, only one figure in
parenthesis is provided. In the table, mod. is short for modulators.

Microrings: Active microrings also consume power. Using the
methodology in [17], we estimate dynamic modulation energy to be
82 fJ/bit, assuming Von = 2 V, Vpp = 4 V, Ion = 50 µA [20, 36],
and modulator capacitance of 10 fF [17]. In steady active state,
a microring consumes 100 µW power (in line with [27]). Ac-
cordingly, we estimate busy ring-resonator-based modulators’ and
active microring filters’ power consumption using the component



Modulator insertion loss / pass loss (dB) 0.1 / 0.01 [10, 38]
Detector insertion loss (dB) 0.1 [3]
Active ring drop / through / pass losses (dB) 1 / 0.1 / 0.01 [4, 10, 38]
Passive ring drop / through / pass losses (dB) 0.5 / 0.01 / 0.01 [10, 34]
Waveguide propagation loss (dB/mm) 0.1 [5]
90◦ Waveguide bend loss, 2µm radius (dB) 0.02 [30]
90◦ Waveguide bend loss, >6.5µm radius (dB) 0.005 [33]
90◦ Waveguide intersection loss (dB) 0.12 [35]
Waveguide split excess loss / merge loss (dB) 0.04 [21]
Layer-to-layer coupling loss (dB) 1 [11]
Fiber-to-waveguide loss (dB) 0.5 [16]
Laser efficiency (%) 30 [2]
Detector sensitivity (µW) 10 [6, 24, 40]

Table 6. Loss values used for unit components/events, compiled
from recent literature.

counts provided in Table 5.11 Passive microrings do not consume
electrical power.

4.3.2 On-chip optical power estimation
Emitted light power from the light source must be large enough
to ensure that sufficient optical power reaches detectors at the end
of the light paths. Along the way, a light beam encounters various
structures such as splitters, merges, bends, crosses, couplers, off-
and on-resonance passive or active microrings, modulators, detec-
tors, etc. (e.g. see the light beam in Figure 4). In practice, all such
interactions, including the propagation in waveguides, incur losses
in the optical power.

We perform a detailed power analysis for each evaluated optical
system. We compile and use state-of-the-art or projected compo-
nent efficiencies from recent literature on the most common high-
index-contrast silicon-on-insulator (SOI) photonic technology. We
list corresponding unit losses, in dB, in Table 6.

In our light-path model, emitted light is first coupled on chip
and then demultiplexed into two sets of power waveguides that are
each routed to half of the nodes (Figure 6) on a separate optical
layer, avoiding crossings between power and data waveguides.

For each node, we cap the number of data messages that can
be transmitted simultaneously on all layers for a particular wave-
length. We cap it at the number of possible destinations on that
wavelength for that node. Thus, we need only provide enough opti-
cal power to transmit as much data using that wavelength (plus any
power needed to transmit connection protocol messages using that
wavelength).

We provide the network model with the lengths and bend,
merge, cross counts for all waveguide segments throughout. We
carefully estimate the count and type (splitting, fully coupling, or
passing) of the microrings in every junction at routers by process-
ing the full routing pattern of the network (Section 2).

A protocol network layer uses only a subset of the available
wavelengths and light paths based on the time-slot schedule (Sec-
tion 3.3). We estimate the optical power of a protocol network layer
excluding the components for the unused wavelengths and light
paths.

Starting from the end detectors and walking the light path in
reverse direction to that of light propagation, we find the system
loss for a particular wavelength up until the off-chip light source.
We estimate the corresponding optical power using this loss value
and the optical power required at a detector (Table 6). Then, we
sum the optical powers for all wavelengths.

We apply similar methodology to the other networks.

11 A protocol network layer uses only a subset of the wavelengths and
light paths, based on the time-slot schedule (Section 3.3). We exclude the
components for the unused light paths.

4.3.3 Laser power estimation
Laser sources, which provide light to the on-chip optical network,
consume electrical power to generate the required optical power.
Among light-source alternatives, we assume off-chip laser(s). We
assume 30% efficiency for a laser [2] when converting electrical
power to optical.

4.3.4 Discussion

On-chip Electrical Power (W) On-chip Optical Laser
Switch Wiring Txs/Rxs µRings Power (W) Power (W)

Xbar-Bcast 39.24 60.40 38.12 4.01 0.91 3.04
Xbar-Arb 14.37 - 9.22 4.07 90.44 301.45
Oblivious-16 14.26 - 11.52 5.11 6.13 20.45
Oblivious-8 8.05 - 11.52 5.09 7.81 26.03
Oblivious-4 5.01 - 11.52 5.08 8.71 29.04

Table 7. On-chip power consumption breakdown for all evaluated
networks. We assume maximum activity factor (α = 1) for the
electrical components. The off-chip laser source’s required power
is also shown.

Table 7 shows that the proposed network is the only one among
the evaluated configurations that can support very high bandwidth
with reasonable electrical and optical power consumption. While
Xbar-Bcast’s electrical components consume a lot of power, Xbar-
Arb is very power-hungry on the optical front.

Xbar-Bcast’s power is larger than the one reported in [15].
The reason is the very different bandwidth support of the two
configurations–our model has higher network operation frequency
and optical data rate, wider flit width, and larger number of wave-
lengths.

Through a sensitivity study, we identified that Xbar-Arb’s power
consumption is most sensitive to waveguide propagation and off-
resonance active microring and modulator losses, followed by on-
resonance active microring and modulator losses. The reason is
twofold: First, in both data and arbitration parts, the critical paths
circulate around nodes twice, once for power distribution and once
on actual data or arbitration waveguide. Second, there are many
active microrings on the data and arbitration waveguides. If we
use two power distribution branches for the data waveguides as
in Oblivious networks (Figure 6) instead of looping as described
in [29], the optical power for Xbar-Arb drops to 46.50 W from
90.44 W, and the laser power drops to 155 W. Even then, the optical
power remains high.

The losses that we use are aimed at the most commonly used
SOI-based strip waveguides, which allow for very sharp bends
and therefore compact designs. The lowest propagation losses for
these waveguides are in the 0.1-0.2 dB/mm range [5]. Alternatively,
ridge waveguides have much smaller propagation losses around
0.02 dB/mm. However, they have large pitches, and they also suffer
from significantly higher bending losses [5]. (Bending losses can be
curbed by using a large 200−600 µm bending radius, but this may
make implementation significantly more challenging, especially
when trying to construct compact microrings.) Nevertheless, if
we optimistically assume their more aggressive propagation loss
across the board, and ignore all the negative aspects of such a
technology, the optical power of Xbar-Arb could potentially drop to
3.93 W with the original power distribution, and to 3.27 W with the
two power distribution branches that we propose for Xbar-Arb. (In
that optimistic scenario, the proposed network’s optical power also
drops significantly, to 1.77 W, 2.25 W, and 2.5 W for Oblivious-16,
-8, and -4, respectively.)

We conclude that our proposal Oblivious is by far the most
power-efficient configuration of all the ones evaluated. It is able
to deliver 6 TB/s of aggregate on-chip network bandwidth while
exhibiting moderate on-chip power consumption and requiring a
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Figure 10. Performance of the optical networks relative to Xbar-
Arb. In all cases, aggregate network bandwidth is 6 TB/s.
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Figure 11. Average latency breakdown of a memory operation in
the address network and each of the evaluated data networks. Labels
A, B, 4, 8, and 16 correspond to Xbar-Arb, Xbar-Bcast, Oblivious-
4,-8, and -16 configurations.

relatively thrifty laser source. We also observe that XBar-Arb is the
configuration whose power consumption is most sensitive to as-
sumptions about optical devices. In the next section, we look at how
this bandwidth translates to performance in each configuration.

4.4 Performance Evaluation
Figure 10 compares the performance of Oblivious to those of Xbar-
Arb and Xbar-Bcast. Speedups are relative to Xbar-Arb. Recall that
all configurations have the same 6 TB/s aggregate bandwidth. The
results show that, on average, all networks are capable of exploiting
their aggregate bandwidth to a similar extent. This means that
Oblivious configurations offer the best power-performance trade-
off among the ones studied, as they yield significant power savings
(Section 4.3). Among the Oblivious configurations, Oblivious-4’s
performance takes a modest hit sometimes. As we discuss later,
this is due mainly to the fact that nodes in such a configuration
cannot keep sufficiently many open connections, resulting in larger
connection overheads.

Figure 11 shows the average number of cycles a memory oper-
ation spends in each data network. For reference, we also provide
the average latencies for phases on the command/snoop bus. From
left to right, the bars for each application correspond to the Xbar-
Arb, Xbar-Bcast, and Oblivious-4,-8,-16. We observe very low data
transfer latencies on all networks, except in the cases of Ocean and
Radix. This means that all configurations are adequately equipped
in terms of bandwidth, resulting in small levels of congestion. In
the cases of Radix and Ocean, the increased latencies are a con-
sequence of bursty requests and high contention for the same ad-
dresses across threads of the applications, which taxes mainly the
address network.

4.5 Performance Analysis
We conduct additional experiments to gain more insight into the
operation of the proposed design.

The plots in Figure 12 break down the true data transmission
requests (i.e. excluding lookaheads) by a node based on initially

Oblivious-8 Oblivious-16
Appl. Setup Lifetime (K) Uses Setup Lifetime (K) Uses
Barnes 38/39 3.2/1.7 3/2 35/50 51/45 25/37
Cholesky 52/45 3.5/2.9 3/3 36/53 112/131 47/73
FFT 50/50 0.8/1.1 2/6 36/48 128/198 130/742
LU 39/38 145/16 6/3 35/43 16127/8449 398/616
Ocean 61/51 1.5/0.9 3/7 39/60 74/41 61/196
Radix 78/48 0.3/1.6 3/10 35/47 384/1450 844/7455
Raytrace 42/39 4.0/0.5 22/2 35/42 77/14 247/18
Water-NSq 47/40 4.0/4.7 7/12 34/42 581/222 420/315
Water-Sp 39/42 2.7/5.4 4/9 35/50 339/655 166/771

Table 8. Average connection statistics, provided separately for L2
caches and memory controllers (L2 cache/Mem Cntr). Connection
setup cycles and lifetimes are in processor cycles.

encountered connection state. We show separate plots for memory
controllers and L2 caches because of their different characteristics.
The three bars for each application show the results for Oblivious-
4,-8,-16 from left to right. A request is classified as Hit if the con-
nection exists and there is free space in the transmitter buffer, Full-
BuffHit if the connection exists but there is no buffer space, Miss if
the connection is unowned, after which connection establishment
is initiated, and lastly HalfMiss if the connection is currently being
established.

Figure 13 has a similar setup as Figure 12. The two plots show
the breakdown of connection-lookahead requests by a node. Ig-
nored encounters valid connection or one currently being estab-
lished; OnTime is successful in setting up a connection before the
first use; Late establishes a connection but not on time for the first
use; Useless establishes a connection that is broken before being
used, or is processed later than the true data transmission attempt;
and Dropped is dropped due to two unsuccessful attempts (Sec-
tion 3.1).

Recall that Oblivious-16 can accommodate all memory-to-
cache connections on non-conflicting layers simultaneously (Sec-
tion 4.1). These connections may still conflict with cache-to-cache
connections, but those represent a minority (less than 35%) at re-
ceiving nodes, except in Raytrace, Barnes, and Cholesky. As a
result, memory nodes have very high connection hit rates (Fig-
ure 12, left) and almost all lookaheads are ignored (Figure 13, left).
Oblivious-8 cannot accommodate as many connections, however
the number of simultaneous connections and the effectiveness of
lookaheads (Figure 13, left) help the configuration overcome this
handicap successfully. Indeed, L3 cache and memory latencies are
large enough to hide connection setup delays via lookaheads. The
contributions of these two components, however, differ across ap-
plications. For example, applications with small amount of cache-
to-cache transfers, such as FFT, Ocean, Radix, and Water-*, have
high hit rates because a cache node can keep the connections from
memory nodes on its eight layers open for a longer time. Finally,
Oblivious-4 can support relatively few connections at any one time,
resulting in more conflicts and in turn reduced connection hit rates
at memory nodes. Although lookaheads remain effective, in some
applications the impact of the shortage of simultaneous connec-
tions is severe enough to impact performance with respect to the
other two configurations.

Turning to the L2 cache-side results, we observe slightly dif-
ferent behavior. Oblivious-16 simultaneously accommodates all
cache-to-memory connections on non-conflicting layers without
other conflicts (Section 4.1). Notice that there are no memory-to-
memory data transfers. As a result, Oblivious-16 can accommo-
date most of the required connections from a L2 cache at the same
time, resulting in nearly perfect hit rates (Figure 12, right) and
ignored lookaheads (Figure 13, right). Recall that cache-to-cache
connections are typically a minority, and although they can conflict
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Figure 12. Average breakdown of data-transmission requests by a memory controller (left) and by a L2 cache (right). The three bars for each
application show the results for Oblivious-4,-8,-16, respectively.
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Figure 13. Average breakdown of connection-lookahead requests by a memory controller (left) and by a L2 cache (right). The three bars for
each application show the results for Oblivious-4,-8,-16, respectively.

Appl. Oblivious-4 Oblivious-8 Oblivious-16
Barnes 55.9 81.3 95.9
Cholesky 67.9 86.4 97.6
FFT 60.5 81.0 99.2
LU 72.9 91.9 99.7
Ocean 65.2 85.1 97.3
Radix 50.9 77.4 98.6
Raytrace 68.3 96.9 99.6
Water-NSq 55.0 90.1 99.4
Water-Sp 45.4 68.6 97.6

Table 9. Fraction (%) of all data supplies by sharer caches with
existing connection in Oblivious-4, -8, and -16.

with memory-to-cache connections at receiver caches, they can be
generally accommodated on one of the layers. Our optimizations
further help increase connection utilization of cache-to-cache con-
nections (these will be analyzed next). For cache nodes, there is a
dramatic reduction in hits for Oblivious-8 and -4 due to increased
amount of connection conflicts. Most of the missing requests are
half misses because the preceding lookahead requests are late (Fig-
ure 13, right). Snoop response and L2 cache read latencies are not
long enough to hide the connection setup delay on lookaheads.

Next, we provide connection-related statistics in Table 8 for
Oblivious-8 and -16. We show average connection setup latency,
connection lifetime (in thousands of cycles), and number of times
that a connection is used. The two numbers in each entry corre-
spond to connections established by L2 cache and memory con-
troller, respectively.

In Oblivious-8, for example, it takes ∼47 cycles on average to
establish a connection. A protocol message alone takes ∼18 cy-
cles on the time-slotted protocol network. These correspond to 2.6
messages per connection establishment on average, thanks to the
effectiveness of proactive breaks. Without proactive breaks, typi-
cally a connection setup requires 4 messages (Section 3). Connec-
tion lifetimes and connection uses are very high in Oblivious-16,
as expected, due to the large connection capacity it can accommo-
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Figure 14. Study on effectiveness of connection-aware sharer-
supplied data (CASS), proactive break (BP), and connection looka-
head (LA) optimizations in Oblivious-8.

date. For Oblivious-8, connections are broken and set up more fre-
quently, resulting in reduced lifetimes and uses.

Next we extract the fraction (%) of all data supplies by sharer
caches with an already existing connection in Table 9. The re-
sults clearly show that the connection-aware sharer-supplied data
optimization significantly increases connection utilization and im-
proves connection hit rates. Even in Oblivious-4, a sharer with an
existing connection can be frequently found.

Finally, we run Oblivious-8 without any optimization, and all
combinations where only two of the optimizations are included.
Performance improvements in Figure 14 are relative to the config-
uration with no optimization. As a reference, we also provide the
original results with all optimizations. The results show that com-
bining all three optimizations is needed to extract maximum per-
formance from the architecture, and that within the combinations
attempted, those with CASS impact performance the most.

5. CONCLUSIONS
In this paper, we have proposed an all-optical approach to con-
structing data networks on chip that combines wavelength-based
oblivious routing, passive optical routers, and connection-based op-
eration. Our evaluation shows that a careful design based on these
features yields a solution that is competitive with prior proposals
from the performance standpoint, while consuming significantly



less power. The resulting mechanism can provide very high on-chip
bandwidth at modest on-chip power consumption and off-chip laser
power, and is reasonably robust to optical technology assumptions.
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