
Decoupling Datacenter Studies from Access to
Large-Scale Applications:

A Modeling Approach for Storage Workloads

Christina Delimitrou1, Sriram Sankar2, Kushagra Vaid2,

Christos Kozyrakis1

1Stanford University, 2Microsoft

IISWC– November 7th 2011

Model Model Model

Datacenter Workload Studies
Open-source approximation of real

applications
Statistical models of real applications

⁺ Pros: Resembles actual applications
⁺ Pros: Can modify the underlying hardware

⁻ Cons: Not exact match to real DC

applications

⁺ Pros: Trained on real apps – more
representative

⁻ Cons: Hardware and Code dependent
⁻ Cons: Many parameters/dependencies

to model

App App App

Collect measurements

User
Behavior
Model

Actual
apps

Real
HW

Collect traces, make model

Collect measurements

App App App Real apps
on real
data
center

Run on
similar
HW

Model Model Model

Datacenter Workload Studies
Open-source approximation of real

applications
Use statistical models of real applications

⁺ Pros: Resembles actual applications
⁺ Pros: Can modify the underlying hardware

⁻ Cons: Not exact match to real DC

applications

App App App

Collect measurements

User
Behavior
Model

Actual
apps

DC
HW

Collect traces, make model

Collect measurements

App App App Real apps
on real
data
center

Run on
similar
HW

⁺ Pros: Trained on real apps – more
representative

⁻ Cons: Hardware and Code dependent
⁻ Cons: Many parameters/dependencies

to model

4

Outline

 Introduction

 Modeling + Generation Framework

 Validation

 Decoupling Storage and App Semantics

 Use Cases

• SSD Caching

• Defragmentation Benefits

 Future Work

5

Executive Summary

 Goal

 Statistical model for backend tier of DC apps + accurate generation tool

 Motivation

 Replaying applications in many storage configurations is impractical

 DC applications not publicly available

 Storage system: 20-30% of DC Power/TCO

 Prior Work

 Does not capture key workload features (e.g., spatial/temporal locality)

6

Executive Summary

 Methodology

 Trace ten real large-scale Microsoft applications

 Train a statistical model

 Develop tool that generates I/O requests based on the model

 Validate framework (model and tool)

 Use framework for performance/efficiency storage studies

 Results

 Less than 5% deviation between original – synthetic workload

 Detailed application characterization

 Decoupled storage activity from app semantics

 Accurate predictions of storage studies performance benefit

7

Model

 Probabilistic State Diagrams:

 State: Block range on disk(s)

 Transition: Probability of

 changing block ranges

 Stats: rd/wr, rnd/seq, block

 size, inter-arrival time

 (Reference: S.Sankar et al. (IISWC 2009))

4K rd Rnd 3.15ms 11.8%

8

Hierarchical Model

 One or Multiple Levels

 Hierarchical representation

 User defined level of
granularity

9

 IOMeter: most well-known open-source I/O workload generator

 DiskSpd: workload generator maintained by the windows server perf team

 * more in defragmentation use case

Δ of Features IOMeter DiskSpd

Inter-Arrival Times (static or distribution)

Intensity Knob

Spatial Locality

Temporal Locality

Granular Detail of I/O Pattern

Individual File Accesses*

Comparison with Previous Tools

10

 Inter-arrival times ≠ Outstanding I/Os!!

 Inter-arrival times: Property of the workload

 Outstanding I/Os: Property of system queues

 Scaling inter-arrival times of independent requests => more intense workload

 Previous work relies on outstanding I/Os

 DiskSpd: Time distributions (fixed, normal, exponential, Poisson, Gamma)

 Each transition has a thread weight, i.e., a proportion of accesses
corresponding to that transition

 Thread weights are maintained both over short time intervals and across the
workload’s run

Implementation (1/3): Inter-arrival times

11

Levels++ -> Information++ -> Model Complexity++

Propose hierarchical rather than flat model:

 Choose optimal number of states per level

 (minimize inter-state transition probabilities)

 Choose optimal number of levels for each

 app (< 2% change in IOPS)

 Spatial locality within states rather than across states

 Difference in performance between flat and hierarchical model is

 less than 5%

 Reduce model complexity by 99% in transition count

Implementation (2/3): Understanding Hierarchy

12

 Scale inter-arrival times to emulate more intensive workloads

 Evaluation of faster storage systems, e.g., SSD-based systems

 Assumptions:

 Most requests in DC apps come from different users (independent
I/Os), so scaling inter-arrival times is the expected behavior in the
faster system

 The application is not retuned for the faster system (spatial locality,
I/O features remain constant) – may require reconsideration

Implementation 3/3: Intensity Knob

13

1. Production DC Traces to Storage I/O Models

I. Collect traces from production servers of a real DC deployment

II. ETW : Event Tracing for Windows

I. Block offset, Block size, Type of I/O

II. File name, Number of thread

III. …

III. Generate the storage workload model with one or multiple levels (XML

format)

2. Storage I/O Models to Synthetic Storage Workloads

I. Give the state diagram model as an input to DiskSpd to generate the synthetic

I/O load.

II. Use synthetic workloads for performance, power, cost-optimization studies.

Methodology

14

 Workloads – Original Traces:
• Messenger, Display Ads, User Content (Windows Live Storage) (SQL-based)

• Email, Search and Exchange (online services)

• D-Process (distributed computing)

• TPCC, TPCE (OLTP workloads)

• TPCH (DSS workload)

 Trace Collection and Validation Experiments:
 Server Provisioned for SQL-based applications:

 8 cores, 2.26GHz
 Total storage: 2.3TB HDD

 SSD Caching and IOMeter vs. DiskSpd Comparison:
 Server with SSD caches:

 12 cores, 2.27GHz
 Total storage: 3.1TB HDD + 4x8GB SSD

Experimental Infrastructure

15

 Compare statistics from original app to statistics from generated load

 Models developed using 24h traces and multiple levels

 Synthetic workloads ran on appropriate disk drives (log I/O to Log drive, SQL
queries to H: drive)

 Table: I/O Features – Performance Metrics Comparison for Messenger

Metrics Original Workload Synthetic Workload Variation

Rd:Wr Ratio 1.8:1 1.8:1 0%

Random % 83.67% 82.51% -1.38%

Block Size Distr. 8K(87%) 64K (7.4%) 8K (88%) 64K (7.8%) 0.33%

Thread Weights T1(19%) T2(11.6%) T1(19%) T2(11.68%) 0%-0.05%

Avg. Inter-arrival Time 4.63ms 4.78ms 3.1%

Throughput (IOPS) 255.14 263.27 3.1%

Mean Latency 8.09ms 8.48ms 4.8%

Validation

16

 Compare statistics from original app to statistics from generated load

 Models developed using 24h traces and multiple levels

 Synthetic workloads ran on appropriate disk drives (log I/O to Log drive, SQL
queries to H: drive)

Less than 5% difference in throughput

Validation

0

50

100

150

200

250

300

350

400

450

500

Messenger Search Email User
Content

D-Process Display
Ads

TPCC TPCE TPCH Exchange

IO
P

S

Synthetic Workload

Original Trace Synthetic Trace

1
 le

ve
l

1
 le

ve
l

2
 le

ve
ls

3
 le

ve
ls

1
 le

ve
l

3
 le

ve
ls

2
 le

ve
ls

2
 le

ve
ls

2
 le

ve
ls

1
 le

ve
l

:1
0
0

:1
0
0

:1
0
0

17

 Optimal number of levels: First level after which less than 2% difference in
IOPS.

0

100

200

300

400

500

600

700

Messenger Search Email User
Content

D-Process Display Ads TPCC TPCE TPCH Exchange

IO
P

S

Synthetic Workload

1 level 2 levels 3 levels 4 levels 5 levels

:1
0
0

:1
0
0

:1
0
0

Choosing the Optimal Number of Levels

18

 Verify the accuracy in storage activity fluctuation

Less than 5% difference in throughput in most intervals and on average

Validation

0

50

100

150

200

250

300

350

400

450

500

Th
ro

u
gh

p
u

t
(I

O
P

S)

Time

Original Workload Synthetic Workload

19

 Use the model to categorize and characterize storage activity per thread

 Filter I/O requests per thread and categorize based on:

 Functionality (Data/Log thread)

 Intensity (frequent/infrequent requests)

 Activity fluctuation (constant/high request rate fluctuation)

 Per Thread Characterization for Messenger

Decoupling Storage Activity from App Semantics

Thread Type Functionality Intensity Fluctuation Weight

Total Data + Log High High 1.00

Data #0 Data High High 0.42

Data #1 Data High Low 0.27

Data #2 Data Low High 0.13

Data #3 Data Low Low 0.18

Log #4 Log High Low 5E-3

Log #5 Log Low High 4E-4

20

 Reassemble the workload from the thread types:

 Recreate correct mix of threads (types + ratios) -> same storage activity as original
application without requiring knowledge on application semantics

 Decouples storage studies from application semantics

0

50

100

150

200

250

300

350

400

450

500

x 8

x 13

x 33

x 45

x 17

x 20

Data #0

Data #1

Data #2

Data #3

Log #4

Log #5

Decoupling Storage Activity from App Semantics

21

 Comparison of performance metrics in identical simple tests (no spatial
locality)

 Less than 3.4% difference in throughput in all cases

Test Configuration IOMeter (IOPS) DiskSpd (IOPS)

4K Int. Time 10ms Rd Seq 97.99 101.33

16K Int. Time 1ms Rd Seq 949.34 933.69

64K Int. Time 10ms Wr Seq 96.59 95.41

64K Int. Time 10ms Rd Rnd 86.99 84.32

Comparison with IOMeter 1/2

22

 Comparison on spatial-locality sensitive tests

 No speedup with increasing number of SSDs (e.g., Messenger)

 Inconsistent speedup as SSD capacity increases (e.g., User Content)

0.92

0.96

1

1.04

1.08

1.12

1.16

DiskSpd IOMeter

Sp
e

e
d

u
p

Tool

Messenger
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.9

0.95

1

1.05

1.1

1.15

1.2

DiskSpd IOMeter

Sp
e

e
d

u
p

Tool

User Content
No SSD 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

Comparison with IOMeter 2/2

23

1. SSD Caching
 Add up to 4x8GB SSD caches, run the synthetic workloads

 On average 31% speedup

2. Defragmentation Benefits
 Rearrange blocks on disk to improve sequential characteristics

 On average 24% speedup, 11% improved power consumption

The modeling framework made these studies easy to evaluate
without access to application code or full application deployment

Applicability – Storage System Studies

24

 Evaluate progressive SSD caching using the models

 Take advantage of spatial and temporal locality (frequently accessed blocks in SSDs)

 Significant benefits - Search: High I/O aggregation

 No benefits - Email: No I/O aggregation

SSD Caching

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Messenger Search Email User Content D-Process Display Ads TPCC TPCE TPCH Exchange

Sp
e

e
d

u
p

Synthetic Workload

Baseline - No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

25

 Disks favor Sequential accesses, BUT, in most applications:

Random > 80% - Sequential < 20%

 Quantify the benefit of defragmentation using the models by rearranging blocks/files
without actually performing defragmentation

 Evaluate different defragmentation policies (e.g., partial, dynamic)

Defragmentation

0

10

20

30

40

50

60

Messenger Email Search User ContentD-ProcessDisplay Ads TPCC TPCE TPCH Exchange

S
e
q
u
e
n
ti
a
l
I/

O
S
 (

%
)

Before Defragmentation After Defragmentation

26

o Highest benefits:

o TPCC/TPCE which benefit from accessing consecutive database entries

o D-Process and Email which have the highest Write/Read ratios

Defragmentation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Messenger Email Search User
Content

D-Process Display Ads TPCC TPCE TPCH Exchange

Sp
e

e
d

u
p

Synthetic Workload

27

Most beneficial storage optimization depends on the application and system of interest

SSD Caching vs. Defragmentation

1.118
1.18

1.083 1.105

1.21

1.096

1.48

1.78 1.79

1.28

1.13 1.18

1.08 1.1

1.21

1.096

1.48

1.32

1.19

1.087

Messenger Email Search User Content D-Process Display Ads TPCC TPCE TPCH Exchange

SSD Caching Defragmentation

28

 Simplify the study of DC applications

 Modeling and Generation Framework:

 An accurate hierarchical statistical model that captures the fluctuation of I/O
activity (including spatial + temporal locality) of real DC applications

 A tool that recreates I/O loads with high fidelity (I/O features, performance
metrics)

 This infrastructure can be used to make accurate predictions for storage
studies that would require access to real app code or full app deployment

 SSD caching

 Defragmentation

 Full application models + full system studies (future work)

Conclusions

Thank you

Contact:

cdel@stanford.edu

srsankar@microsoft.com

Questions??

30

 Disks favor Sequential accesses, BUT, in most applications:

Random > 80% - Sequential < 20%

 Quantify the benefit of defragmentation using the models by rearranging blocks/files
without actually performing defragmentation

 Evaluate different defragmentation policies (e.g., partial, dynamic)

Workload Rd Wr
Before Defrag After Defrag

Random Seq Random Seq

Messenger 62.8% 34.8% 83.67% 15.35% 63.17% 35.74%

Email 52.8% 45.2% 84.45% 13.74% 61.64% 33.74%

Search 49.8% 45.14% 87.71% 8.46% 70.87% 24.46%

User Content 58.31% 39.39% 93.09% 5.48% 73.21% 24.99%

D-Process 30.11% 68.76% 73.23% 26.77% 45.36% 54.41%

Display Ads 96.45% 2.45% 93.50% 4.25% 78.50% 19.23%

TPCC 68.8% 31.2% 97.2% 2.8% 71.1% 29.9%

TPCE 91.3% 8.7% 91.9% 8.2% 77.7% 22.4%

TPCH 96.7% 3.3% 65.5% 35.5% 52.8% 47.2%

Exchange 32.0% 68.1% 83.2% 16.8% 68.1% 31.9%

Defragmentation

