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Model Model Model 

Datacenter Workload Studies 
Open-source approximation of real 

applications 
Statistical models of real applications 

⁺ Pros: Resembles actual applications 
⁺ Pros: Can modify the underlying hardware 

 
⁻ Cons: Not exact match to real DC 

applications 

⁺ Pros: Trained on real apps – more 
representative 
 

⁻ Cons: Hardware and Code dependent 
⁻ Cons: Many parameters/dependencies 
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Outline 

 Introduction 
 

 Modeling + Generation Framework 
 

 Validation 
 

 Decoupling Storage and App Semantics 
 

 Use Cases 

• SSD Caching 

• Defragmentation Benefits 

 

 Future Work 
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Executive Summary 

 Goal  

 Statistical model for backend tier of DC apps + accurate generation tool 
 

 Motivation 

 Replaying applications in many storage configurations is impractical 

 DC applications not publicly available  

 Storage system: 20-30% of DC Power/TCO  
 

 Prior Work 

 Does not capture key workload features (e.g., spatial/temporal locality) 
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Executive Summary 

 Methodology 

 Trace ten real large-scale Microsoft applications  

 Train a statistical model 

 Develop tool that generates I/O requests based on the model 

 Validate framework (model and tool)  

 Use framework for performance/efficiency storage studies 

 

 Results 

 Less than 5% deviation between original – synthetic workload 

 Detailed application characterization 

 Decoupled storage activity from app semantics 

 Accurate predictions of storage studies performance benefit 
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Model 

 Probabilistic State Diagrams: 

 

 State: Block range on disk(s) 

 

 Transition: Probability of  

 changing block ranges 

 

 Stats: rd/wr, rnd/seq, block  

     size, inter-arrival time 
 

 

 

 

 

 

 (Reference: S.Sankar et al. (IISWC 2009)) 

4K rd Rnd 3.15ms 11.8% 



8 

Hierarchical Model 

 One or Multiple Levels 

 Hierarchical representation 

 User defined level of 
granularity 

 



9 

 IOMeter: most well-known open-source I/O workload generator 

 DiskSpd: workload generator maintained by the windows server perf team  

 

 

 

 

 

 

 

 

 

 

 

 

      * more in defragmentation use case 

Δ of Features IOMeter DiskSpd 

Inter-Arrival Times (static or distribution)   

Intensity Knob   

Spatial Locality   

Temporal Locality   

Granular Detail of I/O Pattern   

Individual File Accesses*   

Comparison with Previous Tools 
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 Inter-arrival times ≠ Outstanding I/Os!!  

 Inter-arrival times: Property of the workload 

 Outstanding I/Os: Property of system queues  

 Scaling inter-arrival times of independent requests => more intense workload 

 

 Previous work relies on outstanding I/Os 

 

 DiskSpd: Time distributions (fixed, normal, exponential, Poisson, Gamma) 

 

 Each transition has a thread weight, i.e., a proportion of accesses 
corresponding to that transition  

 Thread weights are maintained both over short time intervals and across the 
workload’s run 

Implementation (1/3): Inter-arrival times 
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Levels++ -> Information++ -> Model Complexity++ 
 

Propose hierarchical rather than flat model:  

 Choose optimal number of states per level  

     (minimize inter-state transition probabilities) 
 

 Choose optimal number of levels for each  

     app (< 2% change in IOPS) 
 

 Spatial locality within states rather than across states 
 

 Difference in performance between flat and hierarchical model is  

     less than 5% 
 

 Reduce model complexity  by 99% in transition count 

Implementation (2/3): Understanding Hierarchy 
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 Scale inter-arrival times to emulate more intensive workloads 

 

 Evaluation of faster storage systems, e.g., SSD-based systems 

 

 Assumptions:  
 

 Most requests in DC apps come from different users (independent 
I/Os), so scaling inter-arrival times is the expected behavior in the 
faster system  

 

 The application is not retuned for the faster system (spatial locality, 
I/O features remain constant) – may require reconsideration  

Implementation 3/3: Intensity Knob 
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1. Production DC Traces to Storage I/O Models 

I. Collect traces from production servers of a real DC deployment  

II. ETW : Event Tracing for Windows 

I. Block offset, Block size, Type of I/O 

II. File name, Number of thread 

III. …  

III. Generate the storage workload model with one or multiple levels  (XML 

format) 
 

2. Storage I/O Models to Synthetic Storage Workloads  

I. Give the state diagram model as an input to DiskSpd to generate the synthetic 

I/O load.  

II. Use synthetic workloads for performance, power, cost-optimization studies.  

Methodology 
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 Workloads – Original Traces: 
• Messenger, Display Ads, User Content (Windows Live Storage) (SQL-based) 

• Email, Search and Exchange (online services)  

• D-Process (distributed computing) 

• TPCC, TPCE (OLTP workloads) 

• TPCH (DSS workload) 
 

 Trace Collection and Validation Experiments:  
 Server Provisioned for SQL-based applications:  

 8 cores, 2.26GHz 
 Total storage: 2.3TB HDD 
 

 SSD Caching and IOMeter vs. DiskSpd Comparison: 
 Server with SSD caches: 

 12 cores, 2.27GHz 
 Total storage: 3.1TB HDD + 4x8GB SSD 

Experimental Infrastructure  
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 Compare statistics from original app to statistics from generated load 

 Models developed using 24h traces and multiple levels 

 Synthetic workloads ran on appropriate disk drives (log I/O to Log drive, SQL 
queries to H: drive)  

 

 

 

 

 

 

 

 

 
 Table:     I/O Features – Performance Metrics Comparison for Messenger 

Metrics Original Workload Synthetic Workload Variation 

Rd:Wr Ratio 1.8:1 1.8:1 0% 

Random %  83.67% 82.51% -1.38% 

Block Size Distr.  8K(87%) 64K (7.4%) 8K (88%) 64K (7.8%) 0.33% 

Thread Weights T1(19%) T2(11.6%) T1(19%) T2(11.68%) 0%-0.05% 

Avg. Inter-arrival Time 4.63ms 4.78ms 3.1% 

Throughput (IOPS) 255.14 263.27 3.1% 

Mean Latency 8.09ms 8.48ms 4.8% 

Validation 



16 

 Compare statistics from original app to statistics from generated load 

 Models developed using 24h traces and multiple levels 

 Synthetic workloads ran on appropriate disk drives (log I/O to Log drive, SQL 
queries to H: drive)  
 

 

 

 

 

 

 

 

 

 

 

 

Less than 5% difference in throughput 

Validation 
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 Optimal number of levels: First level after which less than 2% difference in 
IOPS.  
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 Verify the accuracy in storage activity fluctuation 

 

 

 

 

 

 

 

 

 

 

 

 

Less than 5% difference in throughput in most intervals and on average 
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 Use the model to categorize and characterize storage activity per thread  

 Filter I/O requests per thread and categorize based on:  

 Functionality (Data/Log thread) 

 Intensity (frequent/infrequent requests) 

 Activity fluctuation (constant/high request rate fluctuation) 

                Per Thread Characterization for Messenger 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decoupling Storage Activity from App Semantics 

Thread Type Functionality Intensity Fluctuation Weight 

Total Data + Log High High 1.00 

Data #0 Data High High 0.42 

Data #1 Data High Low 0.27 

Data #2 Data Low High 0.13 

Data #3 Data Low Low 0.18 

Log #4 Log High Low 5E-3 

Log #5 Log Low High 4E-4 
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 Reassemble the workload from the thread types:  

 

 

 

 

 

 

 

 

 

 

 

 

 Recreate correct mix of threads (types + ratios) -> same storage activity as original 
application without requiring knowledge on application semantics  

 Decouples storage studies from application semantics 
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 Comparison of performance metrics in identical simple tests (no spatial 
locality) 

 

 

 

 

 

 

 

 

                 Less than 3.4% difference in throughput in all cases  

Test Configuration IOMeter (IOPS) DiskSpd (IOPS) 

4K Int. Time 10ms Rd Seq 97.99 101.33 

16K Int. Time 1ms Rd Seq  949.34 933.69 

64K Int. Time 10ms Wr Seq  96.59 95.41 

64K Int. Time 10ms Rd Rnd  86.99 84.32 

Comparison with IOMeter 1/2 
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 Comparison on spatial-locality sensitive tests 

 

 

 

 

 

 

 

 

 

 

 No speedup with increasing number of SSDs (e.g., Messenger) 

 Inconsistent speedup as SSD capacity increases (e.g., User Content) 
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1. SSD Caching 
 Add up to 4x8GB SSD caches, run the synthetic workloads 

 On average 31% speedup 
 

2. Defragmentation Benefits 
 Rearrange blocks on disk to improve sequential characteristics 

 On average 24% speedup, 11% improved power consumption 
 

 

 

The modeling framework made these studies easy to evaluate 
without access to application code or full application deployment  

Applicability – Storage System Studies 
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 Evaluate progressive SSD caching using the models  

 Take advantage of spatial and temporal locality (frequently accessed blocks in SSDs) 

 Significant benefits - Search: High I/O aggregation 

 No benefits - Email: No I/O aggregation 

SSD Caching 
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 Disks favor Sequential accesses, BUT, in most applications:  

Random > 80% - Sequential < 20% 

 Quantify the benefit of defragmentation using the models by rearranging blocks/files 
without actually performing defragmentation 

 Evaluate different defragmentation policies (e.g., partial, dynamic) 

Defragmentation 
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o Highest benefits:  

o TPCC/TPCE which benefit from accessing consecutive database entries 

o D-Process and Email which have the highest Write/Read ratios 

Defragmentation 
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Most beneficial storage optimization depends on the application and system of interest 

SSD Caching vs. Defragmentation 
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 Simplify the study of DC applications  

 

 Modeling and Generation Framework: 

 An accurate hierarchical statistical model that captures the fluctuation of I/O 
activity (including spatial + temporal locality) of real DC applications 

 A tool that recreates I/O loads with high fidelity (I/O features, performance 
metrics) 

 

 This infrastructure can be used to make accurate predictions for storage 
studies that would require access to real app code or full app deployment 

 SSD caching 

 Defragmentation 
 

 Full application models + full system studies (future work) 

 

Conclusions 



 

 

Thank you 
 

Contact:  

cdel@stanford.edu  

srsankar@microsoft.com 

 

 

Questions??  
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 Disks favor Sequential accesses, BUT, in most applications:  

Random > 80% - Sequential < 20% 

 Quantify the benefit of defragmentation using the models by rearranging blocks/files 
without actually performing defragmentation 

 Evaluate different defragmentation policies (e.g., partial, dynamic) 

Workload Rd Wr 
Before Defrag After Defrag 

Random Seq Random Seq 

Messenger 62.8% 34.8% 83.67% 15.35% 63.17% 35.74% 

Email 52.8% 45.2% 84.45% 13.74% 61.64% 33.74% 

Search 49.8% 45.14% 87.71% 8.46% 70.87% 24.46% 

User Content 58.31% 39.39% 93.09% 5.48% 73.21% 24.99% 

D-Process 30.11% 68.76% 73.23% 26.77% 45.36% 54.41% 

Display Ads 96.45% 2.45% 93.50% 4.25% 78.50% 19.23% 

TPCC 68.8% 31.2% 97.2% 2.8% 71.1% 29.9% 

TPCE 91.3% 8.7% 91.9% 8.2% 77.7% 22.4% 

TPCH 96.7% 3.3% 65.5% 35.5% 52.8% 47.2% 

Exchange 32.0% 68.1% 83.2% 16.8% 68.1% 31.9% 

Defragmentation 


