
ACCURATE MODELING & GENERATION
OF STORAGE I/O FOR DC WORKLOADS

Christina Delimitrou1, Sriram Sankar2, Kushagra Vaid2,

Christos Kozyrakis1

1Stanford University, 2Microsoft

EXERT– March 06th 2011

Model Model Model

Datacenter Workload Studies
Open-source approximation of real

applications
Statistical models of real applications

⁺ Pros: Resembles specific real applications
⁺ Pros: Can modify the underlying hardware
⁻ Cons: Requires user behavior models to

test
⁻ Cons: Not exact match to real DC

applications

⁺ Pros: Models of real large scale
application – closer resemblance

⁺ Pros: Enables “real” app studies
⁻ Cons: Hardware and Code dependent
⁻ Cons: Many parameters/dependencies

to model

App App App

Collect measurements

User
Behavior
Model

Realistic
apps

DC
HW

Collect traces, make model

Collect measurements

App App App Real apps
on real
data
center

Run on
similar
HW

Model Model Model

Datacenter Workload Studies
Open-source approximation of real

applications
Use statistical models of real applications

⁺ Pros: Resembles specific real applications
⁺ Pros: Can modify the underlying hardware
⁻ Cons: Requires user behavior models to

test
⁻ Cons: Not exact match to real DC

applications

⁺ Pros: Models of real large scale
application – closer resemblance

⁺ Pros: Enables “real” app studies
⁻ Cons: Hardware and Code dependent
⁻ Cons: Many parameters/dependencies

to model

App App App

Collect measurements

User
Behavior
Model

Realistic
apps

DC
HW

Collect traces, make model

Collect measurements

App App App Real apps
on real
data
center

Run on
similar
HW

4

OUTLINE

 Introduction/Goals

 Comparison with previous tools

• IOMeter vs. DiskSpd

 Implementation

 Validation

 Tool Applicability

• SSD caching

• Defragmentation Benefits

 Future Work

5

INTRODUCTION

 GOAL: Develop a statistical model for I/O accesses (3rd tier) of datacenter

applications and a tool that recreates them with high fidelity

 Replaying the original application in all storage configurations is impractical
(time and cost)

 DC applications are not publicly available

 Storage System accounts for 20-30% of Power/TCO of the system

 Methodology
 Trace real data center workloads

 Six large scale Microsoft applications

 Design the storage model

 Develop a tool that generates I/O requests based on the model

 Validate model and tool (not recreating the app’s functionality)

 Use the tool to evaluate storage systems for performance and efficiency

6

MODEL

 Probabilistic State Diagrams

 State: Block range on disk(s)

 Transition: Probability of

 changing block range

 Stats: rd/wr, rnd/seq, block size,

 inter-arrival time

 Single or Multiple Levels

 Hierarchical representation

 User defined level of granularity

(Reference: S.Sankar et al. (IISWC 2009))

4K rd Rnd 3.15ms 11.8%

7

HIERARCHICAL MODEL

8

COMPARISON WITH PREVIOUS TOOLS (IOMETER)

 IOMeter is the most well-known open-source I/O workload generator

 DiskSpd is a workload generator maintained by the windows server perf team

* more in defragmentation application

Features IOMeter DiskSpd

Inter-Arrival Times (static or distribution)  

Intensity Knob  

Spatial Locality  

Temporal Locality  

Granular Detail of I/O Pattern  

Individual File Accesses*  

9

IMPLEMENTATION
 1/4: Inter-arrival Times:

 Default version: Outstanding I/Os

 Inter-arrival Times ≠ Outstanding I/Os!!
 Inter-arrival Times: Property of the Workload

 Outstanding I/Os: Property of System Queues

 Scaling inter-arrival times of independent requests => more intense workload

 Scaling queue length of the system ≠ more intense workload

 Current version: Static & Time Distributions (normal, exponential, Poisson,
Gamma)

 2/4: Multiple Threads and Thread Weights
 Default version: Multiple threads with the same I/O characteristics

 Each transition in the model has different I/O features

 Current version: Multiple threads with individual I/O characteristics

 Thread Weight: Proportion of accesses corresponding to a thread (= transition)

10

IMPLEMENTATION
 3/4: Understanding Hierarchy

 Increase levels -> More detailed information

 Choose an optimal number of levels for each app

 In depth rather than “flat” representation

 Spatial Locality within states rather

than across states

 Difference in performance between “flat” and

“hierarchical” model is less than 5%.

 4/4: Intensity Knob
 Scale the inter-arrival times to emulate more intense workloads

 Evaluation of faster storage systems, e.g. SSD-based

 Assumptions:

 Most requests in DC apps come from different users -> independent I/Os

 The application is not retuned in the faster system (spatial locality, I/O features remain
constant)

11

METHODOLOGY

1. Production DC Traces to Storage I/O Models

I. Collect traces from production servers (for various apps)

II. ETW : Event Tracing for Windows

I. Block offset, Block size, Type of I/O

II. File name, Number of thread

III. …

III. Generate the state diagram model with one or multiple levels (XML format)

 The model is trained on real DC traces

2. Storage I/O Models to Synthetic Storage Workloads

I. Give the state diagram model as an input to DiskSpd to generate the

synthetic I/O load.

II. Use the synthetic workloads for performance, power, cost-optimization

studies.

12

EXPERIMENTAL INFRASTRUCTURE

 Workloads – Original Traces:
• Messenger (SQL-based)
• Display Ads (SQL-based)
• WLS (Windows Live Storage) (SQL-based)
• Email (online service)
• Search (online service)
• D-Process (distributed computing)

 Traces Collection and Validation Experiments:
 Server Provisioned for SQL-based applications:

 8 cores, 2.26GHz
 5 physical volumes – 10 disk partitions total storage: 2.3TB HDD
 Synthetic workloads ran on corresponding disk drives (log I/O to Log drive, SQL queries

to H: drive)

 SSD Caching and IOMeter vs. DiskSpd Comparison:
 Server with SSD caches:

 12 cores, 2.27GHz
 4 physical volumes – 8 disk partitions total storage: 3.1TB HDD + 4x8GB SSD

13

VALIDATION
 Collect 24h long production traces from original DC apps

 Create one/multiple level state diagram models

 Run the synthetic workloads created based on the models

 Compare original – synthetic traces (I/O features + performance metrics)

 Table: I/O Features – Performance Metrics Comparison for Messenger

Metrics Original Workload Synthetic Workload Variation

Rd:Wr Ratio 1.8:1 1.8:1 0%

% of Random I/Os 83.67% 82.51% -1.38%

Block Size Distr. 8K(87%) 64K (7.4%) 8K (88%) 64K (7.8%) 0.33%

Thread Weights T1(19%) T2(11.6%) T1(19%) T2(11.68%) 0%-0.05%

Avg. Inter-arrival Time 4.63ms 4.78ms 3.1%

Throughput (IOPS) 255.14 263.27 3.1%

Mean Latency 8.09ms 8.48ms 4.8%

14

VALIDATION
 Collect 24h long production traces from original DC apps

 Create one/multiple level state diagram models

 Run the synthetic workloads created based on the models

 Compare original – synthetic traces (I/O features + performance metrics)

Less than 5% difference in throughput

0

50

100

150

200

250

300

350

400

450

500

Messenger Display Ads Live Storage Email Search D-Process

IO
p

s

Synthetic Trace

Original trace Synthetic Trace

1 level 3 levels

1 level

2 levels

1 level

3 levels

15

CHOOSING THE OPTIMAL NUMBER OF LEVELS

 Optimal Number of Levels: First level after which less than 2% difference in IOPS.

0

100

200

300

400

500

600

700

Messenger Display Ads Live Storage Email Search D-Process

IO
P

S

Synthetic Trace

1 Level 2 Levels 3 Levels 4 Levels 5 Levels

16

VALIDATION – ACTIVITY FLUCTUATION
 Inter-arrival Times averaged over small periods of time

 Captures the fluctuation (peaks, troughs) of storage activity

0

50

100

150

200

250

300

350

400

450

500

1
2

:0
0

a
m

1
:0

0
a

m

2
:0

0
a

m

3
:0

0
a

m

4
:0

0
a

m

5
:0

0
a

m

6
:0

0
a

m

7
:0

0
a

m

8
:0

0
a

m

9
:0

0
a

m

1
0

:0
0

a
m

1
1

:0
0

a
m

1
2

:0
0

p
m

1
:0

0
p

m

2
:0

0
p

m

3
:0

0
p

m

4
:0

0
p

m

5
:0

0
p

m

6
:0

0
p

m

7
:0

0
p

m

8
:0

0
p

m

9
:0

0
p

m

1
0

:0
0

p
m

1
1

:0
0

p
m

1
2

:0
0

a
m

T
h

r
o

u
g

h
p

u
t

(I
O

P
S

)

Time

Messenger Throughput

Original Trace

Synthetic Trace

17

COMPARISON WITH IOMETER 1/2

 Comparison of Performance Metrics in Identical Simple Tests

 Less than 3.4% difference in throughput in all cases

Test Configuration IOMeter (IOPS) DiskSpd (IOPS)

4K Int. Time 10ms Rd Seq 97.99 101.33

16K Int. Time 1ms Rd Seq 949.34 933.69

64K Int. Time 10ms Wr Seq 96.59 95.41

64K Int. Time 10ms Rd Rnd 86.99 84.32

18

COMPARISON WITH IOMETER 2/2

 Comparison on Spatial-Locality Sensitive Tests

 No speedup with increasing number of SSDs (e.g. Messenger)

 Inconsistent speedup as SSD capacity increases (e.g. Live Storage)

0.92

0.96

1

1.04

1.08

1.12

1.16

DiskSpd IOMeter

S
p

e
e
d

u
p

Tool

Messenger
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.9

0.95

1

1.05

1.1

1.15

1.2

DiskSpd IOMeter

S
p

e
e
d

u
p

Tool

Live Storage
No SSD 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

19

APPLICABILITY – STORAGE SYSTEM STUDIES

1. SSD caching
 Add up to 4x8GB SSD caches, run the synthetic workloads

 Average 18% speedup

2. Defragmentation Benefits
 Rearrange blocks on disk to improve sequential characteristics

 Average 14% speedup, 11% improved power consumption

Using the model/tool made these studies easy to evaluate
without access to app code or full app deployment

20

SSD CACHING
 Evaluate progressive SSD caching using the models

 Take advantage of spatial and temporal locality (frequently accessed states cached
in SSDs)

 Open-loop approach: The workload is not retuned when switching to SSDs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Messenger Search Email Live Storage D-Process Display Ads

S
p

e
e

d
u

p

Synthetic Workload

Storage Speedup for SSD caching

Baseline - No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

21

MOTIVATION FOR DEFRAGMENTATION

 Disks favor Sequential accesses, BUT, in most applications:

• Random > 80% - Sequential < 20%

 Quantify the benefits of defragmentation using the models by rearranging
blocks/files without actually performing defragmentation

 Evaluate different defragmentation policies (partial, optimal time for
defragmentation)

Workload Rd Wr
Before Defrag After Defrag

Random Seq Random Seq

Messenger 62.8% 34.8% 83.67% 15.35% 63.17% 35.74%

Email 52.8% 45.2% 84.45% 13.74% 61.64% 33.74%

Search 49.8% 45.14% 87.71% 8.46% 70.87% 24.46%

Live Storage 58.31% 39.39% 93.09% 5.48% 73.21% 24.99%

D-Process 30.11% 68.76% 73.23% 26.77% 45.36% 54.41%

Display Ads 96.45% 2.45% 93.50% 4.25% 78.50% 19.23%

22

MOTIVATION FOR DEFRAGMENTATION

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Messenger Email Search D-Process Live Storage Display Ads

S
p

e
e

d
u

p

Synthetic Workload

Baseline Defragmented

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Messenger Email Search D-Process Live Storage Display Ads

P
o

w
e

r
 S

a
v

in
g

s

Synthetic Workload

Baseline Defragmented

o D-Process and Email experience the highest benefit: 18-20% speedup and 14-20%
in power consumption (highest Write/Read ratios)

23

CONCLUSIONS

 Studying DC applications is hard…

 Modeling and Generation Framework:

 An accurate hierarchical statistical model that captures the fluctuation of I/O
activity (including spatial + temporal locality) of real DC applications

 A tool that recreates I/O loads with high fidelity (I/O features, performance
metrics)

 This infrastructure can be used to make accurate predictions for storage
studies that would require access to real app code or full app deployment

 SSD caching

 Defragmentation Benefits

 Many more (ongoing work)…

24

FUTURE WORK

 Full application models
Capture all tiers (trace requests – in-depth approach)

Capture CPU, Memory, Network, I/O behavior (in-breadth approach)

Correlations between system parts

 System Studies
 Application Consolidation

 VM Migration

 Power Management Techniques

 Server Provisioning Studies

 …

25

QUESTIONS??

Thank you

