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Datacenter Underutilization

1 C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, 
ASPLOS 2014. 

2 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013. 
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 Co-schedule multiple cloud services on same physical platform

 Often leads to resource interference, especially when sharing 

cores

A Common Approach

App1 App2
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 Co-schedule one high priority and one/more best-effort apps

 Performance is non-critical for best effort jobs

 Disadvantage: assume best-effort apps are always low priority

A Common Cure

App1 App2
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 Approximate computing apps can absorb a loss of resources as 

loss of output quality instead of a loss in performance

 Advantage: performance of all co-scheduled applications is high-

priority

Approximate Computing Apps to the Rescue

App1 App2
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 Enables latency-critical & approximate apps to share resources 

(including cores) without penalizing their performance

 Tunes degree and type of approximation based on measured 

interference

Pliant

App1 App2

Pliant runtime
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1. Identify opportunities for approximation

 ACCEPT (precision, loop perforation, sync 

elision), algorithmic exploration

2. Lightweight profiling to determine when to 

employ approximation

 End-to-end latency/throughput & perf counters

3. Determine what resource(s) to constrain? 

 Based on measured interference

4. Determine what type of approximation & to 

what extent? 

 Based on interference and performance impact

Challenges

App1 App2

Pliant runtime
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DynamoRIO for switching between precise/approximate versions

 Initial implementation, overheads high but not prohibitive

 Looking into Petabricks and LLVM

Pliant

App1 App2

Pliant runtime
Client

Performance monitor

Workload generator

Interference

monitor

Server
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 Incremental approximation: 

 Employ the minimum amount of approximation (quality loss) to 

restore the performance of the interactive service

 Several versions for each type of approximation, choose online

 Interference-aware approximation: 

 Choose the type of interference that minimizes pressure in the 

bottlenecked resource

 Example: 

 High memory interference  prioritize algo tuning

 High CPU interference  prioritize sync elision, loop perforation

Adaptive Approximation
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 Latency-critical interactive services: memcached & nginx

 Open-loop workload generator & performance monitor

 Facebook traffic pattern

 Approximate computing apps: PARSEC, SPLASH, Spark MLlib

 System: 2 2-socket, 40-core servers, 128GB RAM each

Methodology
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Evaluation

 memcached sharing physical cores with PARSEC

 Latency      Degree of approximation 
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 Approximate computing: opportunity to improve cloud efficiency 

without loss in performance

 Pliant: cloud runtime to co-schedule interactive services with 

approximate computing apps

 Incremental and interference-aware approximation

 Preserves QoS for interactive service with minimal loss in quality for 

approximate computing application

 Current work: 

 DynamoRIO Petabricks/LLVM

 Add cloud approximate computing application

 Improve interference awareness

 Leverage hardware isolation techniques

Conclusions
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 Approximate computing: opportunity to improve cloud efficiency 

without loss in performance

 Pliant: cloud runtime to co-schedule interactive services with 

approximate computing apps

 Incremental and interference-aware approximation

 Preserves QoS for interactive service with minimal loss in quality for 

approximate computing application
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 Add cloud approximate computing application

 Improve interference awareness
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Questions? 


