
Christina Delimitrou

Cornell University

WAX – April 9th 2017

SAIL (Systems, Architecture and Infrastructure Lab)

IMPROVING RESOURCE EFFICIENCY

IN CLOUD COMPUTING

Neeraj Kulkarni, Feng Qi, Glyfina Fernando

and Christina Delimitrou

Cornell University

Leveraging Approximation to Improve

Resource Efficiency in the Cloud

2

Datacenter Underutilization

1 C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management,
ASPLOS 2014.

2 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013.

Twitter (Mesos)1

4-5x

Google (Borg)2

3-5x

0 10 20 30 40 50 60 70 80 90 100

CPU Utilization (%)

3

 Co-schedule multiple cloud services on same physical platform

 Often leads to resource interference, especially when sharing

cores

A Common Approach

App1 App2

4

 Co-schedule one high priority and one/more best-effort apps

 Performance is non-critical for best effort jobs

 Disadvantage: assume best-effort apps are always low priority

A Common Cure

App1 App2

5

 Approximate computing apps can absorb a loss of resources as

loss of output quality instead of a loss in performance

 Advantage: performance of all co-scheduled applications is high-

priority

Approximate Computing Apps to the Rescue

App1 App2

6

 Enables latency-critical & approximate apps to share resources

(including cores) without penalizing their performance

 Tunes degree and type of approximation based on measured

interference

Pliant

App1 App2

Pliant runtime

7

1. Identify opportunities for approximation

 ACCEPT (precision, loop perforation, sync

elision), algorithmic exploration

2. Lightweight profiling to determine when to

employ approximation

 End-to-end latency/throughput & perf counters

3. Determine what resource(s) to constrain?

 Based on measured interference

4. Determine what type of approximation & to

what extent?

 Based on interference and performance impact

Challenges

App1 App2

Pliant runtime

8

DynamoRIO for switching between precise/approximate versions

 Initial implementation, overheads high but not prohibitive

 Looking into Petabricks and LLVM

Pliant

App1 App2

Pliant runtime
Client

Performance monitor

Workload generator

Interference

monitor

Server

9

 Incremental approximation:

 Employ the minimum amount of approximation (quality loss) to

restore the performance of the interactive service

 Several versions for each type of approximation, choose online

 Interference-aware approximation:

 Choose the type of interference that minimizes pressure in the

bottlenecked resource

 Example:

 High memory interference prioritize algo tuning

 High CPU interference prioritize sync elision, loop perforation

Adaptive Approximation

10

 Latency-critical interactive services: memcached & nginx

 Open-loop workload generator & performance monitor

 Facebook traffic pattern

 Approximate computing apps: PARSEC, SPLASH, Spark MLlib

 System: 2 2-socket, 40-core servers, 128GB RAM each

Methodology

11

Evaluation

 memcached sharing physical cores with PARSEC

 Latency Degree of approximation

12

 Approximate computing: opportunity to improve cloud efficiency

without loss in performance

 Pliant: cloud runtime to co-schedule interactive services with

approximate computing apps

 Incremental and interference-aware approximation

 Preserves QoS for interactive service with minimal loss in quality for

approximate computing application

 Current work:

 DynamoRIO Petabricks/LLVM

 Add cloud approximate computing application

 Improve interference awareness

 Leverage hardware isolation techniques

Conclusions

13

 Approximate computing: opportunity to improve cloud efficiency

without loss in performance

 Pliant: cloud runtime to co-schedule interactive services with

approximate computing apps

 Incremental and interference-aware approximation

 Preserves QoS for interactive service with minimal loss in quality for

approximate computing application

 Current work:

 DynamoRIO Petabricks/LLVM

 Add cloud approximate computing application

 Improve interference awareness

 Leverage hardware isolation techniques

Questions?

