Leveraging Approximation to Improve
Resource Efficiency in the Cloud

Neeraj Kulkarni, Feng Qi, Glyfina Fernando
and Christina Delimitrou

Cornell University

Datacenter Underutilization

Twitter (Mesos)!

0.040
0.035||
0.030
E Eo.025)

COO2O
LJ0015
0.010
0.005

0.000

o~

20 40 60
CPU Utilization (%)

! C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management,

ASPLOS 2014.

80

100

Fraction of Time

0.03

0.025

0.02

0.015

0.01

0.005

Google (Borg)?

T L 3-5x >

0O 10 20 30 40 50 60 70 80 90 100
CPU Utilization (%)

2 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 201 3.

A Common Approach
—

.....
.....

1 Co-schedule multiple cloud services on same physical platform

0 Often leads to resource interference, especially when sharing
cores

A Common Cure

Co-schedule one high priority and one/more best-effort apps
Performance is non-critical for best effort jobs

Disadvantage: assume best-effort apps are always low priority

Approximate Computing Apps to the Rescue

Approximate computing apps can absorb a loss of resources as
loss of output quality instead of a loss in performance

Advantage: performance of all co-scheduled applications is high-
priority

Pliant

App1

Enables latency-critical & approximate apps to share resources
(including cores) without penalizing their performance

Tunes degree and type of approximation based on measured
interference

Challenges

|dentify opportunities for approximation

ACCEPT (precision, loop perforation, sync
elision), algorithmic exploration

Lightweight profiling to determine when to
employ approximation

End-to-end latency /throughput & perf counters

Determine what resource(s) to constrain?

Based on measured interference

Determine what type of approximation & to
what extent?

Based on interference and performance impact 7

Pliant
o Server

--
. e
. ‘e
o v,
o .

\

DynamoRIO for switching between precise /approximate versions

Initial implementation, overheads high but not prohibitive
Looking into Petabricks and LLVM 8

Adaptive Approximation

Incremental approximation:

Employ the minimum amount of approximation (quality loss) to
restore the performance of the interactive service

Several versions for each type of approximation, choose online

Interference-aware approximation:

Choose the type of interference that minimizes pressure in the
bottlenecked resource

Example:
High memory interference = prioritize algo tuning

High CPU interference —> prioritize sync elision, loop perforation

Methodology

Latency-critical interactive services: memcached & nginx
Open-loop workload generator & performance monitor

Facebook traffic pattern

Approximate computing apps: PARSEC, SPLASH, Spark MLlib

System: 2 2-socket, 40-core servers, 128GB RAM each

10

Evaluation

g 400+
E 300+
200k —

0 20 40 60 80 100 120
Time (s)

BYAVW

Tlme (s)

[T T —

GM-&-O‘:CEC:M-P—O‘.‘

120

Approxim. Calls in Use

memcached sharing physical cores with PARSEC
Latency f - Degree of approximation?

11

Conclusions

Approximate computing: opportunity to improve cloud efficiency
without loss in performance

Pliant: cloud runtime to co-schedule interactive services with
approximate computing apps
Incremental and interference-aware approximation

Preserves QoS for interactive service with minimal loss in quality for
approximate computing application

Current work:
DynamoRIO = Petabricks/LLVM
Add cloud approximate computing application
Improve interference awareness

Leverage hardware isolation techniques

12

Questions?

Approximate computing: opportunity to improve cloud efficiency
without loss in performance

Pliant: cloud runtime to co-schedule interactive services with
approximate computing apps
Incremental and interference-aware approximation

Preserves QoS for interactive service with minimal loss in quality for
approximate computing application

Current work:
DynamoRIO = Petabricks/LLVM
Add cloud approximate computing application
Improve interference awareness

Leverage hardware isolation techniques

13

