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FPGAs in Data Centers 

 Increasing interest in use of FPGAs as application 
accelerators in data centers  
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Key advantage: Performance/Watt 



Problem: Large Design Spaces 

 Design spaces grow exponentially with the number of 
parameters 

 Even relatively small designs can have very large spaces 

 Parameters can change runtime by orders of magnitude 

 Parameters typically aren’t independent 

 Manual exploration is tedious, may result in suboptimal designs 
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Algorithm: Dot Product of Vectors A and B 

Small and simple, but slow! 
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Important Parameters: Tile Sizes 

 Increases length of DRAM accesses   Runtime 

 Increases exploited spatial locality       Runtime  

 Increases local memory sizes     Area 
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Important Parameters: Pipelining 
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Algorithm: Dot Product of Vectors A and B 

 Overlaps memory and compute    Runtime 

 Increases local memory sizes     Area 

 Adds synchronization logic      Area 
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Important Parameters: Parallelization 
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 Improves element throughput    Runtime 

 Duplicates compute resources    Area 
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Language/Tool Requirements 
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VHDL 
Verilog 

LegUp Vivado HLS 
OpenCL SDK 

Aladdin 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

DHDL 
 

 
 

 
 

 
 

 
 

 
 

 
 

Targets FPGAs 
 
Enables pipelining at arbitrary loop 
levels 
 

Exposes design parameters to the 
compiler 
 
Evaluates designs prior to synthesis 

 
Explores design space automatically  

 
Generates synthesizable code 
 



Delite Hardware Definition Language 
 Includes a variety parameterized templates 

 Parallel patterns with implicit parallelization factors 

 Pipeline constructs for pipelining at arbitrary levels 

 Explicit size parameters for loop step size and buffer sizes 

 All parameters are exposed to compiler 

 Compiler includes latency and area models for quick 
design evaluation 

 Compiler automatically explores design space  

 Generates synthesizable MaxJ HGL after exploration 
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Dot Product DHDL Diagram 
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Dot Product in DHDL 
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val output  = Reg[Float] 

val vectorA = OffChipMem[Float](N) 

val vectorB = OffChipMem[Float](N) 

 

Reduce(N by B)(output){ i => 

   val tileA = Scratchpad[Float](B) 

   val tileB = Scratchpad[Float](B) 

   val acc   = Reg[Float] 

   tileA load vectorA(i :: i+B) 

   tileB load vectorB(i :: i+B) 

 

   Reduce(B by 1)(acc){ j =>  

      tileA(j) * tileB(j) 

   }{a, b => a + b} 

}{a, b => a + b} 

Parallelism factor #1 
Pipelining toggle 

Tile Size (B) 

Parallelism factor #2 

Parallelism factor #3 

1 
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MaxCompiler + 
Altera Toolchain 

Design Space 
Exploration 

DHDL to Hardware 
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Simple Analyses 

MaxJ HGL 

DHDL + Design Space 

DHDL 

Fixed DHDL 

Code Generation 



DHDL Enables Fast DSE 
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DHDL Program 

Simple Linear 
Models 

Concise IR 

Parameterized Templates 

Easily Derived 
Space Constraints 

Space Pruning 

Fast Design Space Exploration 

Fast Estimation 
No Unrolling 

No Scheduling 
Smaller Spaces 



Latency Modeling 

 Analytical model 

 Uses depth-first search to get critical path of 
pipelines 

 Accurate estimation requires data size annotations 

 Main-memory model 

 Mathematical model fit to observed runtimes 

 Parameterized by: 

 Number of contending readers/writers 

 Number of commands issued in sequence 

 Command length 
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Area Modeling 

 Analytical model 

 Simple summation of area of each template 

 Includes estimates for delay lines, banked memories 

 Neural network models 

 Models routing costs and memory duplication 

 Simple, 3 layer networks suffice here (we use 11-6-1) 

 Trained on about set of 200 characterization designs 

 

 Total area = analytical area + neural net area 
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Evaluation 
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 Accuracy:  
How accurate are the models, compared to observations?  

 Speed:  
How fast are the predictions, compared to commercial tools? 

 Space:  
Do the design parameters help capture an interesting space? 

 Performance:  
How good is the best generated design? 



Model 

Synthesized 

Results: Model Accuracy (Area) 
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Area models follow important trends  
and are accurate enough to drive  

automatic design space exploration 

 
100% 

 

60% 
 

20% 

ALMs 

BRAMs 

DSPs 

R
e

so
u

rc
e

 U
sa

ge
 (

%
) 

    dotproduct   outerprod     tpchq6    blackscholes      gda            kmeans        gemm 



Results: Model Accuracy (Latency) 
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Latency models follow important trends  
and are accurate enough to drive  

automatic design space exploration 
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Results: Prediction Speed 
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Benchmark Designs Search Time 

Dot Product 5,426 5.3 ms / design 

Outer Product 1,702 30 ms / design 

TPCHQ6 5,426 8.2 ms / design 

Blackscholes 572 27 ms / design 

Matrix Multiply 70,740 11 ms / design 

K-Means 75,200 20 ms / design 

GDA 42,800 17 ms / design 

Designs Search Time 

GDA 250 1.85 min / design 

Vivado HLS: 

6533x 
Speedup 

Over HLS! 

DHDL: 
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Results: GDA Design Space 
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      Valid design point             Pareto-optimal design 
      Invalid design point             Synthesized pareto design point 

Performance limited 
by available BRAMs 

Space for GDA spans  
four orders of magnitude 



Evaluation: Multi-Core Comparison 
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 FPGA 

 Altera Stratix V (28 nm) 

 150 MHz clock 

 Peak main memory bandwidth of 37.5 GB/sec 
 

 Multi-core CPU  

 Intel Xeon E5-2630 (32nm) 

 2.3 GHz 

 Peak main memory bandwidth of 42.6 GB/sec 

 6 cores, 6 threads 

 Multi-threaded C++ code generated from Delite 
 

 Execution time = FPGA execution time 

 Does not include CPU   FPGA communication or configuration time 



Results: Comparison with Multi-Core 
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Memory-bound Compute-bound 

Gemm uses multi-threaded 
OpenBLAS on CPU 



Summary 

 DHDL exposes large design spaces to the compiler 

 Parameterized templates enable fast, accurate estimators  

 Fast estimators enable rapid automated DSE 

 Up to 6533x faster estimation compared to Vivado HLS 

 Up to 16.7x speedup over 6-core CPU 
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Results: TPCHQ6 Design Space 
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Results: Blackscholes Design Space 
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      Valid design point             Pareto-optimal design 
      Invalid design point             Synthesized pareto design point 


