
Automatic Generation of Efficient

Accelerator Designs for

Reconfigurable Hardware

Stanford University

ISCA 2016

David Koeplinger Raghu Prabhakar Yaqi Zhang

Christina Delimitrou Christos Kozyrakis Kunle Olukotun

FPGAs in Data Centers

 Increasing interest in use of FPGAs as application
accelerators in data centers

2

Key advantage: Performance/Watt

Problem: Large Design Spaces

 Design spaces grow exponentially with the number of
parameters

 Even relatively small designs can have very large spaces

 Parameters can change runtime by orders of magnitude

 Parameters typically aren’t independent

 Manual exploration is tedious, may result in suboptimal designs

3

Key

DRAM

A

B

Design Space Example: Dot Product

4

FPGA

+
×

Tile B

Tile A

Algorithm: Dot Product of Vectors A and B

Small and simple, but slow!

acc

Scratchpad

Reg
op

DRAM

A

B

Important Parameters: Tile Sizes

 Increases length of DRAM accesses Runtime

 Increases exploited spatial locality Runtime

 Increases local memory sizes Area

5

FPGA

+
×

Tile B

Tile A

Algorithm: Dot Product of Vectors A and B

acc

Key

Scratchpad

Reg
op

DRAM

A

B

FPGA

Stage 2

Stage 1

+
×

Tile B

Tile A

Important Parameters: Pipelining

6

Algorithm: Dot Product of Vectors A and B

 Overlaps memory and compute Runtime

 Increases local memory sizes Area

 Adds synchronization logic Area

acc

Key

Double

Reg
op

Buffer

DRAM

Important Parameters: Parallelization

7

FPGA

+

×

Algorithm: Dot Product of Vectors A and B

×

×

Tile A

Tile B

+ +

 Improves element throughput Runtime

 Duplicates compute resources Area

A

B

acc

Key

Scratchpad

Reg
op

Language/Tool Requirements

8

VHDL
Verilog

LegUp Vivado HLS
OpenCL SDK

Aladdin

DHDL

Targets FPGAs

Enables pipelining at arbitrary loop
levels

Exposes design parameters to the
compiler

Evaluates designs prior to synthesis

Explores design space automatically

Generates synthesizable code

Delite Hardware Definition Language
 Includes a variety parameterized templates

 Parallel patterns with implicit parallelization factors

 Pipeline constructs for pipelining at arbitrary levels

 Explicit size parameters for loop step size and buffer sizes

 All parameters are exposed to compiler

 Compiler includes latency and area models for quick
design evaluation

 Compiler automatically explores design space

 Generates synthesizable MaxJ HGL after exploration

 9

DRAM

Dot Product DHDL Diagram

10

Tile B

Tile A

×

+

Inner
Reduce

Outer
Reduce

Parallelism factor #1
Pipelining toggle

Tile Size (B)

Parallelism factor #2

Parallelism factor #3

A

B

out out

+

Dot Product in DHDL

11

val output = Reg[Float]

val vectorA = OffChipMem[Float](N)

val vectorB = OffChipMem[Float](N)

Reduce(N by B)(output){ i =>

 val tileA = Scratchpad[Float](B)

 val tileB = Scratchpad[Float](B)

 val acc = Reg[Float]

 tileA load vectorA(i :: i+B)

 tileB load vectorB(i :: i+B)

 Reduce(B by 1)(acc){ j =>

 tileA(j) * tileB(j)

 }{a, b => a + b}

}{a, b => a + b}

Parallelism factor #1
Pipelining toggle

Tile Size (B)

Parallelism factor #2

Parallelism factor #3

1

2

MaxCompiler +
Altera Toolchain

Design Space
Exploration

DHDL to Hardware

12

Simple Analyses

MaxJ HGL

DHDL + Design Space

DHDL

Fixed DHDL

Code Generation

DHDL Enables Fast DSE

13

DHDL Program

Simple Linear
Models

Concise IR

Parameterized Templates

Easily Derived
Space Constraints

Space Pruning

Fast Design Space Exploration

Fast Estimation
No Unrolling

No Scheduling
Smaller Spaces

Latency Modeling

 Analytical model

 Uses depth-first search to get critical path of
pipelines

 Accurate estimation requires data size annotations

 Main-memory model

 Mathematical model fit to observed runtimes

 Parameterized by:

 Number of contending readers/writers

 Number of commands issued in sequence

 Command length

 14

Area Modeling

 Analytical model

 Simple summation of area of each template

 Includes estimates for delay lines, banked memories

 Neural network models

 Models routing costs and memory duplication

 Simple, 3 layer networks suffice here (we use 11-6-1)

 Trained on about set of 200 characterization designs

 Total area = analytical area + neural net area

15

Evaluation

16

 Accuracy:
How accurate are the models, compared to observations?

 Speed:
How fast are the predictions, compared to commercial tools?

 Space:
Do the design parameters help capture an interesting space?

 Performance:
How good is the best generated design?

Model

Synthesized

Results: Model Accuracy (Area)

17

Area models follow important trends
and are accurate enough to drive

automatic design space exploration

100%

60%

20%

ALMs

BRAMs

DSPs

R
e

so
u

rc
e

 U
sa

ge
 (

%
)

 dotproduct outerprod tpchq6 blackscholes gda kmeans gemm

Results: Model Accuracy (Latency)

18

Latency models follow important trends
and are accurate enough to drive

automatic design space exploration

2.8%
1.3%

3.1% 3.4%

6.7% 7%

18.4%

0%

5%

10%

15%

20%

dotproduct outerprod tpchq6 blackscholes gda kmeans gemm

A
ve

ra
ge

 E
rr

o
r

(%
)

Results: Prediction Speed

19

Benchmark Designs Search Time

Dot Product 5,426 5.3 ms / design

Outer Product 1,702 30 ms / design

TPCHQ6 5,426 8.2 ms / design

Blackscholes 572 27 ms / design

Matrix Multiply 70,740 11 ms / design

K-Means 75,200 20 ms / design

GDA 42,800 17 ms / design

Designs Search Time

GDA 250 1.85 min / design

Vivado HLS:

6533x
Speedup

Over HLS!

DHDL:

 20% 60% 100% 20% 60% 100% 20% 60% 100%
 ALMs DSPs BRAMs
 Resource Usage (% of maximum)

C
yc

le
s

(L
o

g
Sc

al
e

)

Results: GDA Design Space

20

1010
109
108

107

 Valid design point Pareto-optimal design
 Invalid design point Synthesized pareto design point

Performance limited
by available BRAMs

Space for GDA spans
four orders of magnitude

Evaluation: Multi-Core Comparison

21

 FPGA

 Altera Stratix V (28 nm)

 150 MHz clock

 Peak main memory bandwidth of 37.5 GB/sec

 Multi-core CPU

 Intel Xeon E5-2630 (32nm)

 2.3 GHz

 Peak main memory bandwidth of 42.6 GB/sec

 6 cores, 6 threads

 Multi-threaded C++ code generated from Delite

 Execution time = FPGA execution time

 Does not include CPU   FPGA communication or configuration time

Results: Comparison with Multi-Core

22

1.07
2.42

1.11

16.73

4.55

1.15
0.1

0

5

10

15

20

dotproduct outerprod tpchq6 blackscholes gda kmeans gemm

Sp
e

e
d

u
p

Memory-bound Compute-bound

Gemm uses multi-threaded
OpenBLAS on CPU

Summary

 DHDL exposes large design spaces to the compiler

 Parameterized templates enable fast, accurate estimators

 Fast estimators enable rapid automated DSE

 Up to 6533x faster estimation compared to Vivado HLS

 Up to 16.7x speedup over 6-core CPU

23

24

 20% 60% 100% 20% 60% 100% 20% 60% 100%
 ALMs DSPs BRAMs
 Resource Usage (% of maximum)

C
yc

le
s

(L
o

g
Sc

al
e

)

Results: TPCHQ6 Design Space

25

108

107

106

 Valid design point Pareto-optimal design
 Invalid design point Synthesized pareto design point

108

107

106

 20% 60% 100% 20% 60% 100% 20% 60% 100%
 ALMs DSPs BRAMs
 Resource Usage (% of maximum)

C
yc

le
s

(L
o

g
Sc

al
e

)

Results: Blackscholes Design Space

26

 Valid design point Pareto-optimal design
 Invalid design point Synthesized pareto design point

