

Automatic Generation of Efficient Accelerator Designs for Reconfigurable Hardware

David KoeplingerRaghu PrabhakarYaqi Zhang

Christina Delimitrou

Christos Kozyrakis

Kunle Olukotun

Stanford University

ISCA 2016

FPGAs in Data Centers

Increasing interest in use of FPGAs as application accelerators in data centers

Key advantage: Performance/Watt

Problem: Large Design Spaces

- Design spaces grow exponentially with the number of parameters
- Even relatively small designs can have very large spaces
- Parameters can change runtime by orders of magnitude
- Parameters typically aren't independent
- Manual exploration is tedious, may result in suboptimal designs

Design Space Example: Dot Product

Small and simple, but slow!

Important Parameters: Tile Sizes

Area

- Increases length of DRAM accesses Runtime
- Increases exploited spatial locality + Runtime
- Increases local memory sizes

Scratchpad

op

Reg

Important Parameters: Pipelining

Important Parameters: Parallelization

- Improves element throughput
- Runtime Duplicates compute resources **Area**

Language/Tool Requirements

	VHDL Verilog	LegUp	Vivado HLS OpenCL SDK	Aladdin	DHDL
Targets FPGAs	\checkmark	~		*	~
Enables pipelining at arbitrary loop levels		×	*	*	\checkmark
Exposes design parameters to the compiler	*	*	*	\checkmark	\checkmark
Evaluates designs prior to synthesis	×	\checkmark		\checkmark	\checkmark
Explores design space automatically	*	*	*	\checkmark	\checkmark
Generates synthesizable code	\checkmark	\checkmark		*	\checkmark

Delite Hardware Definition Language

- Includes a variety parameterized templates
 - Parallel patterns with implicit parallelization factors
 - Pipeline constructs for pipelining at arbitrary levels
 - Explicit size parameters for loop step size and buffer sizes
- All parameters are exposed to compiler
- Compiler includes latency and area models for quick design evaluation
- Compiler automatically explores design space
- Generates synthesizable MaxJ HGL after exploration

Dot Product DHDL Diagram

Dot Product in DHDL

DHDL to Hardware

DHDL Enables Fast DSE

Latency Modeling

- Analytical model
 - Uses depth-first search to get critical path of pipelines
 - Accurate estimation requires data size annotations
- Main-memory model
 - Mathematical model fit to observed runtimes
 - Parameterized by:
 - Number of contending readers/writers
 - Number of commands issued in sequence
 - Command length

Area Modeling

- Analytical model
 - Simple summation of area of each template
 - Includes estimates for delay lines, banked memories
- Neural network models
 - Models routing costs and memory duplication
 - Simple, 3 layer networks suffice here (we use 11-6-1)
 - Trained on about set of 200 characterization designs

Total area = analytical area + neural net area

Evaluation

• Accuracy:

How accurate are the models, compared to observations?

Speed:

How fast are the predictions, compared to commercial tools?

Space:

Do the design parameters help capture an interesting space?

Performance:

How good is the best generated design?

Results: Model Accuracy (Area)

Area models follow important trends and are accurate enough to drive automatic design space exploration

Results: Model Accuracy (Latency)

Latency models follow important trends and are accurate enough to drive automatic design space exploration

Results: Prediction Speed

DHDL:

Benchmark	Designs	Search Time
Dot Product	5,426	5.3 ms / design
Outer Product	1,782	30 ms / design
TPCHQ6	5	8.2 ms / design
Blackscholes	6533x	27 ms / design
Matrix Multiply	> Speedup	🧹 11 ms / design
K-Means	Over TILO:	20 ms / design
GDA	42,800	17 ms / design

Vivado HLS:

	Designs	Search Time
GDA	250	1.85 min / design

Results: GDA Design Space

four orders of magnitude

Pareto-optimal design Synthesized pareto design point

Evaluation: Multi-Core Comparison

FPGA

- Altera Stratix V (28 nm)
- 150 MHz clock
- Peak main memory bandwidth of 37.5 GB/sec
- Multi-core CPU
 - Intel Xeon E5-2630 (32nm)
 - 2.3 GHz
 - Peak main memory bandwidth of 42.6 GB/sec
 - 6 cores, 6 threads
 - Multi-threaded C++ code generated from Delite
 - Execution time = **FPGA execution time**
 - Does not include CPU $\leftarrow \rightarrow$ FPGA communication or configuration time

Results: Comparison with Multi-Core

Summary

- DHDL exposes large design spaces to the compiler
- Parameterized templates enable fast, accurate estimators
- Fast estimators enable rapid automated DSE
- Up to 6533x faster estimation compared to Vivado HLS
- Up to 16.7x speedup over 6-core CPU

Results: TPCHQ6 Design Space

Synthesized pareto design point

Invalid design point

25

Results: Blackscholes Design Space

Synthesized pareto design point