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Executive Summary

Goals of cluster scheduling

High decision quality ——> High performance

High cluster utilization
High scheduling speed

Problem: Disparity in scheduling designs
Centralized schedulers = High quality, low speed
Sampling-based schedulers 2 High speed, low quality

Tarcil: Key scheduling techniques to bridge the gap
Account for resource preferences > High decision quality

Analytical framework for sampling = Predictable performance

Admission control 2 High quality & speed
Distributed design = High scheduling speed



Motivation

1 Optimize scheduling
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11 Optimize scheduling quality (centralized, greedy)
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Motivation
T

Optimize scheduling speed (sampling-based, distributed)
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Key Scheduling Techniques at Scale



1. Determine Resource Preferences

Scheduling quality depends on: interference,
heterogeneity, scale up /out, ...

Exhaustive exploration = infeasible

Practical data mining framework!

Measure impact of a couple of allocations 2 estimate for
large space

1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 201 4.
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Example: Quantifying Interference

Interference: set of microbenchmarks of tunable intensity (iBench)

1.0

: ~ _—— - ]
Qa3
P 65 Iy, S,
[qla 02 A A A po S//)
0.0 rfo/) g
° Benchmark Intensity (%) Ce
1.0 e e A
Qa3 J
T 0.6 Tt e
E o el
202
0.0 20 40 60 80 100
Benchmark Intensity (%)
Measure tolerated & Data mining: Recover Resource
generated interference missing resources Quality Q

7
1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.



2. Analytical Sampling Framework

1 Sample w.r.t. required resource quality
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2. Analytical Sampling Framework

1 Match a new job with required quality Q to appropriate RUs
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2. Analytical Sampling Framework

71 Rank resources by quality

11



CDF

4

2. Analytical Sampling Framework

7 Break ties with a fair coin 2 uniform distribution

Resource Quality Q
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CDF

2. Analytical Sampling Framework

Break ties with a fair coin =2 uniform distribution
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2. Analytical Sampling Framework

71 Sample on uniform distribution = guarantees on resource
allocation quality
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Validation
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Sampling at High Load

Performance degrades (with small sample size)

Or sample size needs to increase
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3. Admission Control

Quevue jobs based on required resource quality

Resource quality vs. waiting time = set max waiting time limit
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Tarcil Implementation

4,000 loc in C/C++ and Python

Supports apps in various frameworks (Hadoop, Spark, key-value
stores)

Distributed design: Concurrent scheduling agents (sim. Omega?)
Each agent has local copy of state, one resilient master copy

Lock-free optimistic concurrency for conflict resolution (rare) = Abort and
retry

30:1 worker to scheduling agent ratio

2M. Schwarzkopf, A. Konwinski, et al. Omega: flexible, scalable schedulers for large compute clusters.

In EuroSys 201 3. 18



Evaluation Methodology

TPC-H Workload
~40k queries of different types

Compare with a centralized scheduler (Quasar) and a distributed
scheduler based on random sampling (Sparrow)

110-server EC2 cluster (100 workers, 10 scheduling agents)
Homogeneous cluster, no interference
Homogeneous cluster, with interference

Heterogeneous cluster, with interference

Metrics:
Task performance
Performance predictability

Scheduling latency

19



Evaluation
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Evaluation
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Scheduling Overheads

Heterogeneous, with interference
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Centralized: Two orders of magnitude slower than the distributed,
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Resident Load
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Motivation Revisited
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More details in the paper...

Sensitivity on parameters such as:
Cluster load
Number of scheduling agents
Sample size

Task duration, etc.
Job priorities
Large allocations

Generic application scenario (batch and latency-critical) on 200
EC2 servers

26



Conclusions

Tarcil: Reconciles high quality and high speed scheduling
Account for resource preferences
Analytical sampling framework to improve predictability
Admission control to maintain high scheduling quality at high load

Distributed design to improve scheduling speed

Results:

41% better performance than random sampling-based schedulers
100x better scheduling latency than centralized schedulers

Predictable allocation quality & performance

27



Questions?

Tarcil: Reconciles high quality and high speed schedulers
Account for resource preferences
Analytical sampling framework to improve predictability
Admission control to maintain high scheduling quality at high load

Distributed design to improve scheduling speed

Results:

41% better performance than random sampling-based schedulers
100x better scheduling latency than centralized schedulers

Predictable allocation quality & performance
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Questions2e?

Thank you
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