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¨  Goals of cluster scheduling 

¤  High decision quality 
¤  High scheduling speed 

¨  Problem: Disparity in scheduling designs  
¤  Centralized schedulers à High quality, low speed 
¤  Sampling-based schedulers à High speed, low quality 

¨  Tarcil: Key scheduling techniques to bridge the gap 
¤  Account for resource preferences à High decision quality 

¤  Analytical framework for sampling à Predictable performance 
¤  Admission control àHigh quality & speed 

¤  Distributed design à High scheduling speed 

Executive Summary 

High performance 
High cluster utilization 
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Motivation 

¨  Optimize scheduling speed (sampling-based, distributed) 

¨  Optimize scheduling quality (centralized, greedy) 

Good: Short jobs 

Good: Long jobs 

Bad: Long jobs 

Bad: Short jobs 

Short: 100msec, Medium: 1-10sec, Long: 10sec-10min 
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Key Scheduling Techniques at Scale 
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1. Determine Resource Preferences 

¨  Scheduling quality depends on: interference, 
heterogeneity, scale up/out, …  
¤  Exhaustive exploration à infeasible 
¤  Practical data mining framework1 

¤ Measure impact of a couple of allocations à estimate for 
large space 

1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.  
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Example: Quantifying Interference 

¨  Interference: set of microbenchmarks of tunable intensity (iBench) 

1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.  

Measure tolerated & 
generated interference 

QoS 

68% 

… 

Resource  
Quality Q 

QoS 

7% 
… 

Data mining: Recover 
missing resources 
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2. Analytical Sampling Framework 

¨  Sample w.r.t. required resource quality 
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2. Analytical Sampling Framework 

¨  Fine-grain allocations: partition servers in Resource Units (RU) à 
minimum allocation unit 

RU 

Single-threaded apps 
Reclaim unused resources 
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2. Analytical Sampling Framework 

¨  Match a new job with required quality Q to appropriate RUs 

QR1 

QR2 QR3 QR4 QR5 QR6 QR7 QR8 QR9 

QR10 

QR20 

QR30 

QR42 

QR54 

QR11 

QR21 

QR31 

QR43 

QR55 

QR61 

QR67 

QR60 

QR66 

QR74 
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2. Analytical Sampling Framework 

¨  Rank resources by quality 
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2. Analytical Sampling Framework 

¨  Break ties with a fair coin à uniform distribution 

C
D

F 

Resource Quality Q 
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2. Analytical Sampling Framework 

¨  Break ties with a fair coin à uniform distribution 

C
D

F 

Resource Quality Q 

Better 
resources 

Worse 
resources 
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2. Analytical Sampling Framework 

¨  Sample on uniform distribution à guarantees on resource 
allocation quality 

       Pr[Q≤x] = xR 

Pr[Q<0.8]=10-3 
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Validation 

 
 
 
 
 
 
 
 
¨  100 server EC2 cluster 
¨  Short Spark tasks 
¨  Deviation between analytical and empirical is minimal 
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Sampling at High Load 

¨  Performance degrades (with small sample size) 
¨  Or sample size needs to increase 
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3. Admission Control 

¨  Queue jobs based on required resource quality 
¨  Resource quality vs. waiting time à set max waiting time limit 

…
 

Q 
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Tarcil Implementation 

¨  4,000 loc in C/C++ and Python 

¨  Supports apps in various frameworks (Hadoop, Spark, key-value 
stores) 

¨  Distributed design: Concurrent scheduling agents (sim. Omega2) 
¤  Each agent has local copy of state, one resilient master copy 

¤  Lock-free optimistic concurrency for conflict resolution (rare) à Abort and 
retry 

¤  30:1 worker to scheduling agent ratio 

2M. Schwarzkopf, A. Konwinski, et al. Omega: flexible, scalable schedulers for large compute clusters.  
In EuroSys 2013.  
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Evaluation Methodology 

1.  TPC-H Workload 
¤  ~40k queries of different types 
¤  Compare with a centralized scheduler (Quasar) and a distributed 

scheduler based on random sampling (Sparrow) 
¤  110-server EC2 cluster (100 workers, 10 scheduling agents) 

n  Homogeneous cluster, no interference 
n  Homogeneous cluster, with interference 
n  Heterogeneous cluster, with interference 

¨  Metrics:  
¤  Task performance 
¤  Performance predictability 
¤  Scheduling latency 
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Evaluation 

Centralized: high overheads 

Sparrow and Tarcil: similar 
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Evaluation 

Centralized: high overheads 

Sparrow and Tarcil: similar 

Centralized and Sparrow: 
comparable performance 
Tarcil: 24% lower completion 
time 
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Evaluation 

Centralized: high overheads 

Sparrow and Tarcil: similar 

Centralized and Sparrow: 
comparable performance 
Tarcil: 24% lower completion 
time 

Centralized outperforms 
Sparrow 
Tarcil: 41% lower completion 
time & less jitter 
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Scheduling Overheads 

Heterogeneous, with interference 

¨  Centralized: Two orders of magnitude slower than the distributed, 
sampling-based schedulers 

¨  Sparrow and Tarcil: Comparable scheduling overheads 
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Resident Load 

¨  Tarcil and Centralized account for cross-job interference à 
preserve memcached’s QoS 

¨  Sparrow causes QoS violations for memcached 

memcached 
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Motivation Revisited 

Distributed, sampling-based 

Centralized, greedy 

Tarcil 

Short: 100msec  
Medium: 1-10sec  
Long:10sec-10min 
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More details in the paper…  

¨  Sensitivity on parameters such as:  
¤  Cluster load 
¤  Number of scheduling agents 
¤  Sample size 
¤  Task duration, etc.  

¨  Job priorities 

¨  Large allocations 

¨  Generic application scenario (batch and latency-critical) on 200 
EC2 servers 
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Conclusions 

¨  Tarcil: Reconciles high quality and high speed scheduling 
¤  Account for resource preferences 
¤  Analytical sampling framework to improve predictability 
¤  Admission control to maintain high scheduling quality at high load 
¤  Distributed design to improve scheduling speed 

¨  Results:  
¤  41% better performance than random sampling-based schedulers 
¤  100x better scheduling latency than centralized schedulers 
¤  Predictable allocation quality & performance 
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Questions?  
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Thank you 

Questions??  


