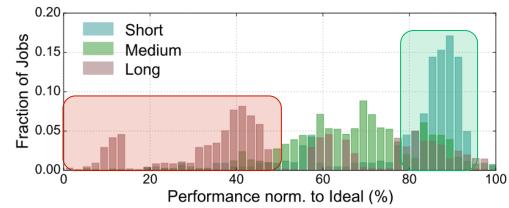
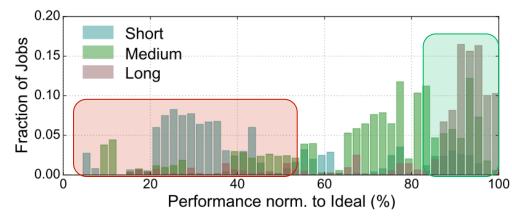
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared Clusters

Christina Delimitrou¹, Daniel Sanchez² and Christos Kozyrakis¹ ¹Stanford University, ²MIT


SOCC – August 27th 2015

Executive Summary

- Goals of cluster scheduling
 - High decision quality
 - High scheduling speed
- High performance
 High cluster utilization
- Problem: Disparity in scheduling designs
 - Centralized schedulers \rightarrow High quality, low speed
 - Sampling-based schedulers \rightarrow High speed, low quality
- Tarcil: Key scheduling techniques to bridge the gap
 - Account for resource preferences \rightarrow High decision quality
 - Analytical framework for sampling \rightarrow Predictable performance
 - □ Admission control \rightarrow High quality & speed
 - Distributed design \rightarrow High scheduling speed


Motivation

Optimize scheduling speed (sampling-based, distributed)

Good: Short jobs Bad: Long jobs

Optimize scheduling quality (centralized, greedy)

Good: Long jobs Bad: Short jobs

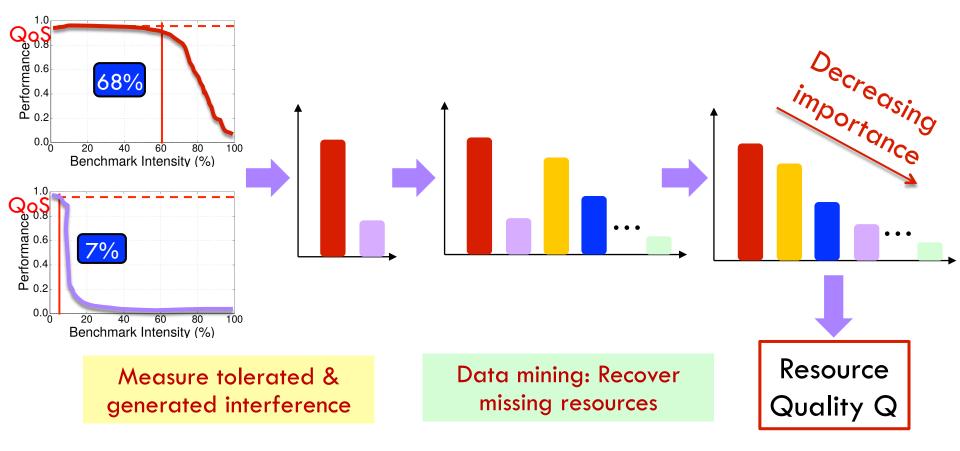
Short: 100msec, Medium: 1-10sec, Long: 10sec-10min

Motivation

Optimize scheduling speed (sampling-based, distributed)

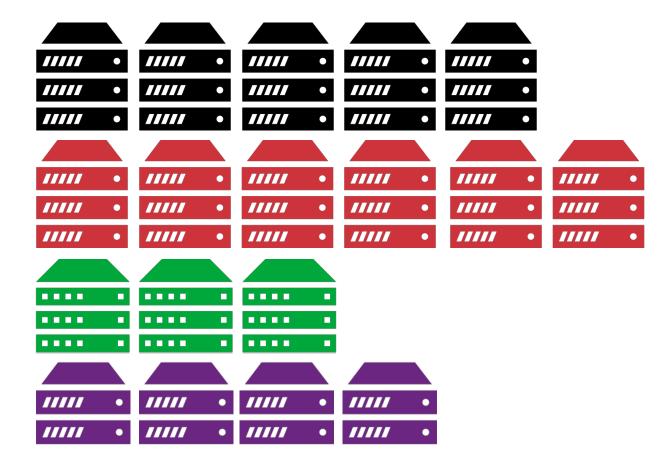
Short: 100msec, Medium: 1-10sec, Long: 10sec-10min

Key Scheduling Techniques at Scale


1. Determine Resource Preferences

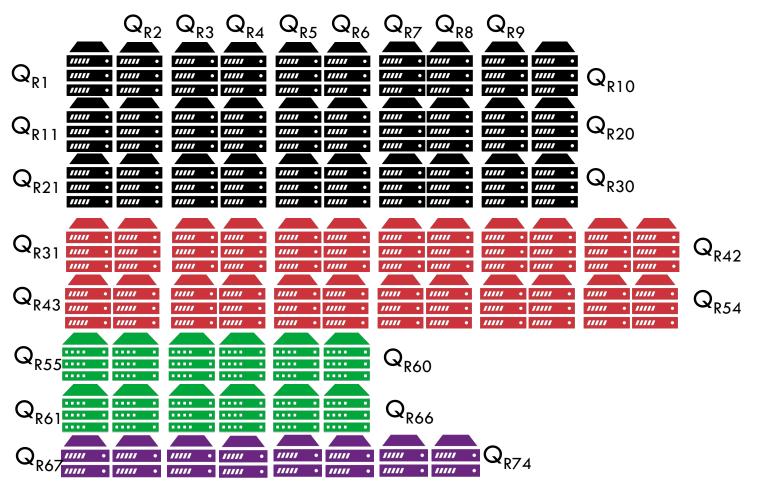
- Scheduling quality depends on: interference, heterogeneity, scale up/out, ...
 - **\square** Exhaustive exploration \rightarrow infeasible
 - Practical data mining framework¹
 - Measure impact of a couple of allocations

 A stimate for large space


Example: Quantifying Interference

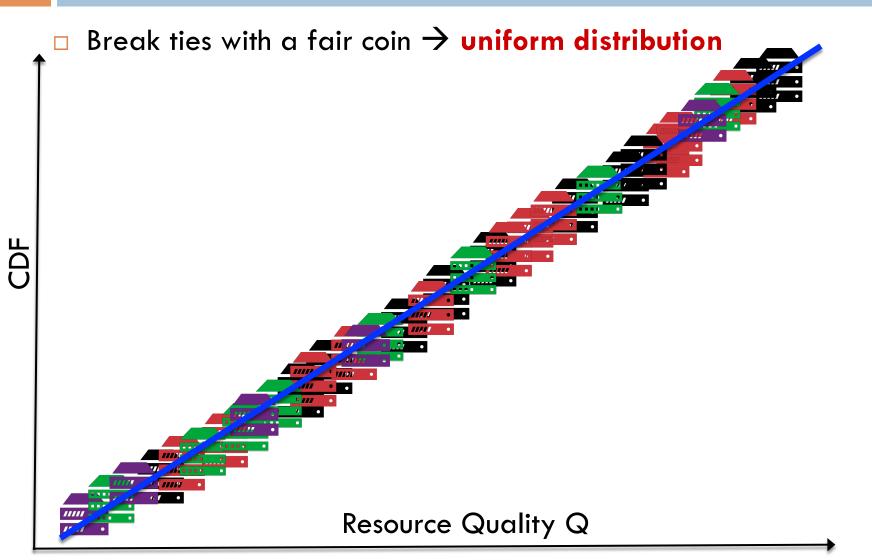
Interference: set of microbenchmarks of tunable intensity (iBench)

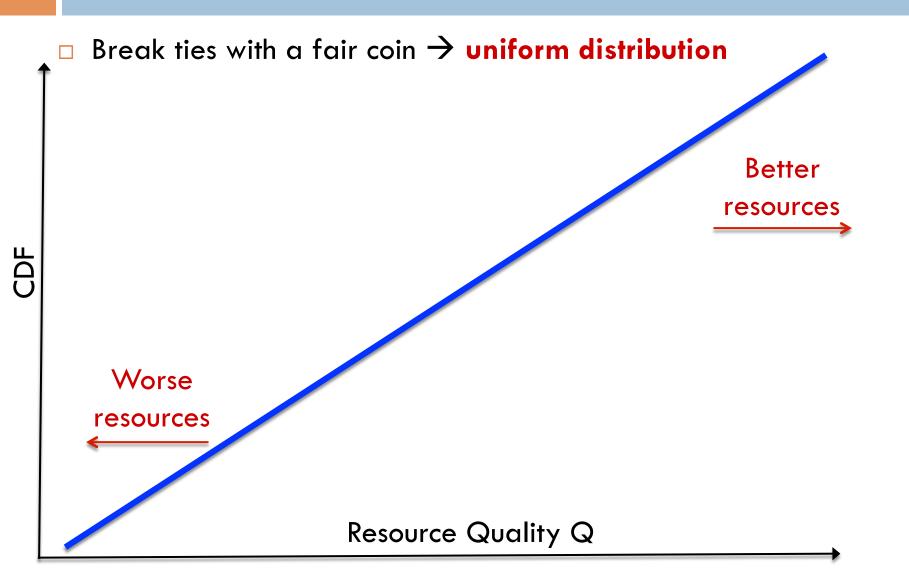
¹C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.


Sample w.r.t. required resource quality

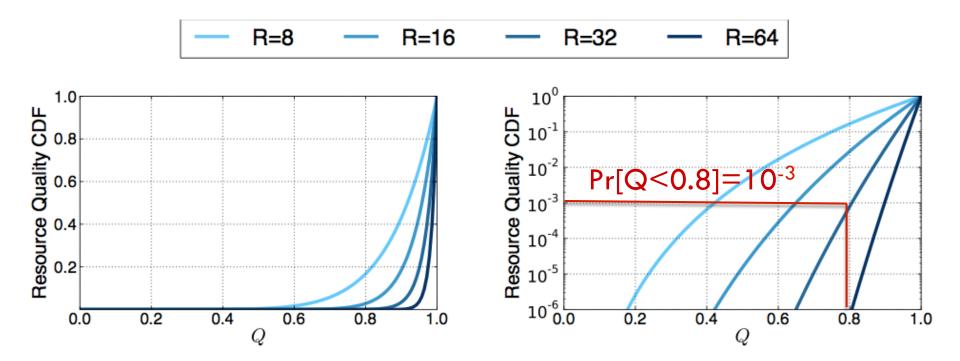
 $\hfill \label{eq:constraint}$ Fine-grain allocations: partition servers in Resource Units (RU) \rightarrow minimum allocation unit

					1
<i>///// • ///// •</i>	<i>///// • ///// •</i>	///// · ///// ·	<i>///// • ///// •</i>	<i></i> • <i></i> •	
<i>///// • ///// •</i>	<i>///// • ///// •</i>	///// · ///// ·	<i>///// • ///// •</i>	<i></i> • <i></i> •	⊨→ RU
<i>///// • ///// •</i>	<i>///// • ///// •</i>	///// · ///// ·	<i>///// • ///// •</i>	<i></i> • <i></i> •	
<i>///// • ///// •</i>	<i>///// • ///// •</i>	///// • ///// •	<i>///// • ///// •</i>	<i>///// • ///// •</i>	
<i>///// • ///// •</i>	<i>///// • ///// •</i>	<i>///// • ///// •</i>	<i>///// • ///// •</i>	<i>/////</i> • <i>/////</i> •	
<i></i> • <i></i> •	<i>///// • ///// •</i>	<i>·····</i> • <i>·····</i> •	<i>· · · · · · · · · · · · · · · · · · · </i>	<i></i> • <i></i> •	
<i>/////</i> •//////	<i>11111 • 11111 •</i>	///// • ///// •	<i>/////</i> •////	<i>/////</i> •///////	
<i>///// • ///// •</i>	<i></i>	///// • ///// •	<i>/////</i> •////	<i>/////</i> •///////	
<i>/////</i> • <i>/////</i> •	<i>/////</i> • <i>/////</i> •	///// • ///// •	<i>///// • ///// •</i>	<i>/////</i> • <i>/////</i> •	
<i>IIIII</i> • <i>IIIII</i> •	<i>IIIII</i> • <i>IIIII</i> •	<i>///// • ///// •</i>	<i>IIIII</i> • <i>IIIII</i> •	<i>///// • ///// •</i>	<i>IIIII • IIIII •</i>
<i>IIIII • IIIII •</i>	<i>///// • ///// •</i>	<i>///// • ///// •</i>	<i>IIIII • IIIII •</i>	<i>///// • ///// •</i>	<i>IIIII • IIIII •</i>
11111 • 11111 •	<i>///// • ///// •</i>	<i>///// • ///// •</i>	<i>IIIII • IIIII •</i>	<i>///// • ///// •</i>	<i>IIIII • IIIII •</i>
<i>///// • ///// •</i>	<i> • •</i>	///// • ///// •	<i>///// • ///// •</i>	<i></i> • <i></i> •	<i>IIIII • IIIII •</i>
<i> • •</i>	<i> • •</i>	///// • ///// •	///// • ///// •	<i></i> • <i></i> •	<i>IIIII • IIIII •</i>
<i> • •</i>	<i> • •</i>	///// • ///// •	<i> • •</i>	<i>/////</i> •/////•	<i>IIIII</i> • <i>IIIII</i> •
	•••••				
					T Single-threaded apps
					Reclaim unused resources
					Reciaini unused resources
)
///// • ///// •	<i> • •</i>	///// • ///// •	<i>/////</i> •/////•		
<i>///// • ///// •</i>	<i>IIIII</i> • <i>IIIII</i> •	<i>///// • ///// •</i>	///// • ///// •		

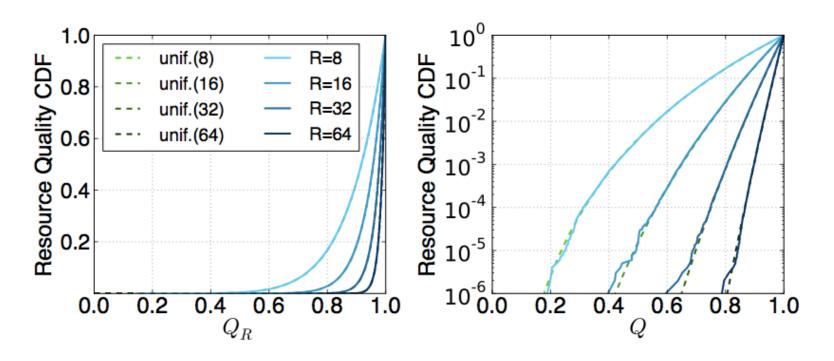

Match a new job with required quality Q to appropriate RUs



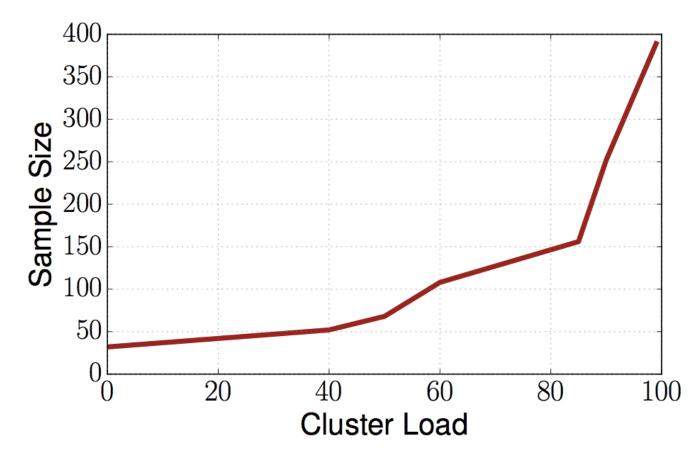
,,,,,, ,,,,,, ,,,,,,


Rank resources by quality

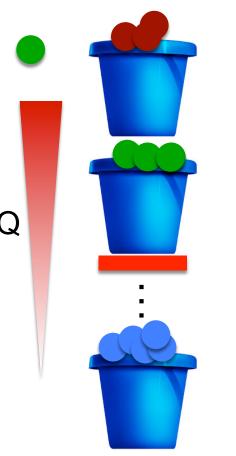
	• • • • • •	·///· · · · · · · · · · · · · · · · · ·	<i></i>			
<i></i>	• • • • • • •	///// • ///// •	///// • ///// •			
		///// • ///// •	///// • ///// •			
· · · · · · · · · · · · · · · · · · ·	· ///// · ///// ·	<i></i>	<i>///// • ///// •</i>		///// •	
<i></i>		///// • ///// •	///// • ///// •		///// •	
<i></i>		///// • ///// •	///// • ///// •			
<i></i>	· ///// · ///// ·	<i>///// • ///// •</i>	///// · ///// ·			
<i></i>	· ///// · ///// ·	<i>///// • ///// •</i>	<i>///// • ///// •</i>			
<i></i>	· ///// · ///// ·	<i>///// • ///// •</i>	///// • ///// •		///// •	
						_
///// • ///// •		///// • ///// •	///// • ///// •		•	/////
///// • ///// •		///// • ///// •	///// • ///// •		•	/////
• • • • • •		····· · ····· ·		•	•	
<i>/////</i> •/////•		///// • ///// •	///// • ///// •		•	,,,,,
<i>///// • ///// •</i>		///// • ///// •	///// · ///// ·		•	,,,,,
	<i></i> • <i></i> •	·//// • ///// •	///// • ///// •	///// •	///// •	/////
<i></i>	11111 • 11111 •	///// • ///// •	///// • ///// •			
<i></i>	<i></i>	///// • ///// •	///// • ///// •	-		



 $\Pr[Q \le x] = x^R$


Validation

- 100 server EC2 cluster
- Short Spark tasks
- Deviation between analytical and empirical is minimal


Sampling at High Load

- Performance degrades (with small sample size)
- Or sample size needs to increase

3. Admission Control

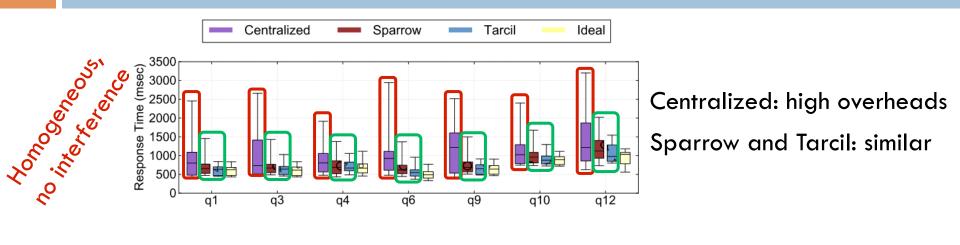
- Queue jobs based on required resource quality
- \square Resource quality vs. waiting time \rightarrow set max waiting time limit

/////	•		•	/////	•
/////	•	/////	•	/////	•
/////	•	/////	•	/////	•
/////	•		•	/////	•
/////	•		•	/////	•
/////	•		•	/////	•
			•		

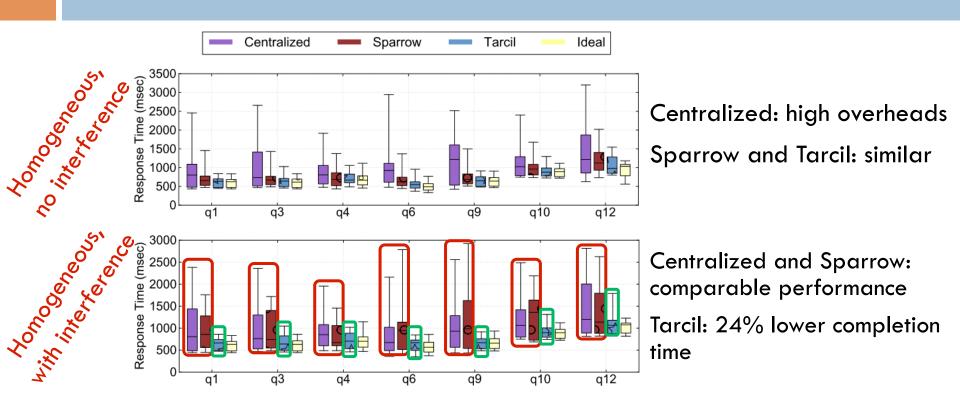
Tarcil Implementation

- \Box 4,000 loc in C/C++ and Python
- Supports apps in various frameworks (Hadoop, Spark, key-value stores)
- Distributed design: Concurrent scheduling agents (sim. Omega²)
 - Each agent has local copy of state, one resilient master copy
 - Lock-free optimistic concurrency for conflict resolution (rare) → Abort and retry
 - 30:1 worker to scheduling agent ratio

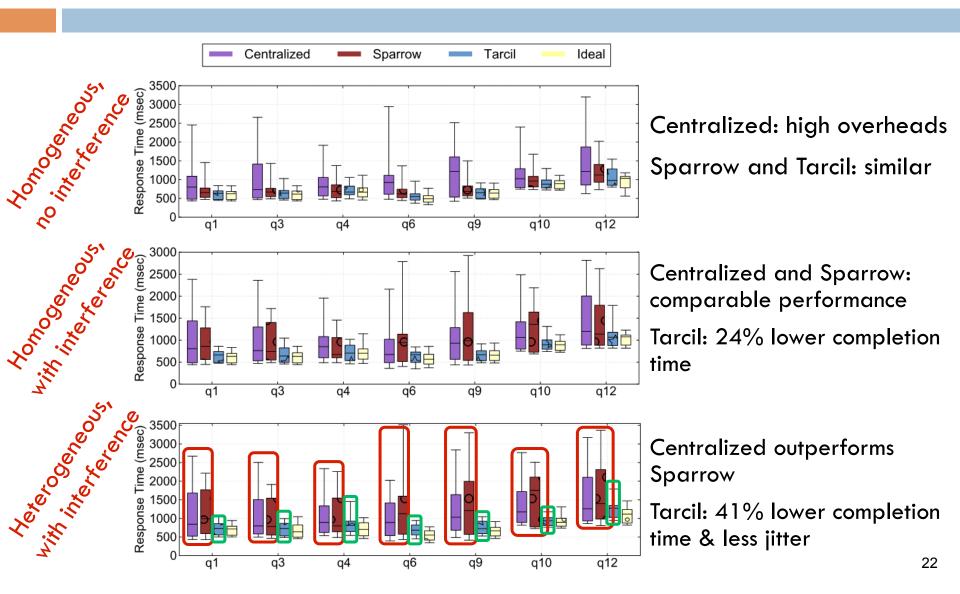
²M. Schwarzkopf, A. Konwinski, et al. Omega: flexible, scalable schedulers for large compute clusters. In EuroSys 2013.


18

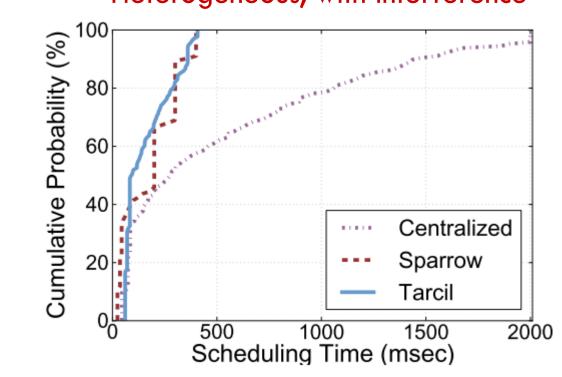
Evaluation Methodology


1. TPC-H Workload

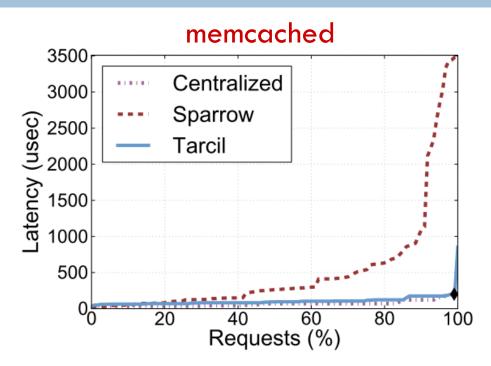
- ~40k queries of different types
- Compare with a centralized scheduler (Quasar) and a distributed scheduler based on random sampling (Sparrow)
- 110-server EC2 cluster (100 workers, 10 scheduling agents)
 - Homogeneous cluster, no interference
 - Homogeneous cluster, with interference
 - Heterogeneous cluster, with interference
- Metrics:
 - Task performance
 - Performance predictability
 - Scheduling latency


Evaluation

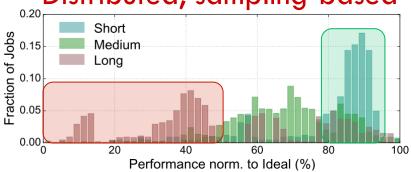
Evaluation



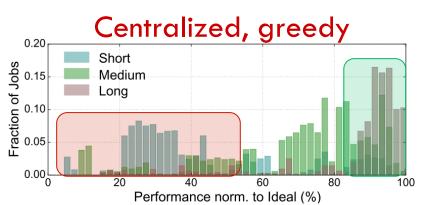
Evaluation

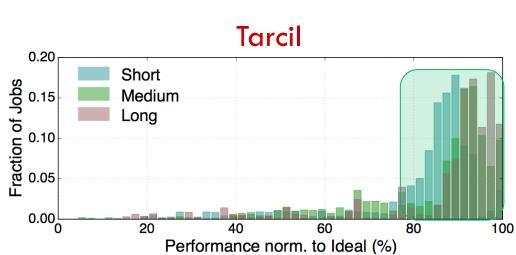

Scheduling Overheads

Heterogeneous, with interference


- Centralized: Two orders of magnitude slower than the distributed, sampling-based schedulers
- □ Sparrow and Tarcil: Comparable scheduling overheads

Resident Load




- □ Tarcil and Centralized account for cross-job interference → preserve memcached's QoS
- Sparrow causes QoS violations for memcached

Motivation Revisited

Short: 100msec Medium: 1-10sec Long:10sec-10min

More details in the paper...

Sensitivity on parameters such as:

- Cluster load
- Number of scheduling agents
- Sample size
- Task duration, etc.
- Job priorities
- Large allocations
- Generic application scenario (batch and latency-critical) on 200 EC2 servers

Conclusions

Tarcil: Reconciles high quality and high speed scheduling

- Account for resource preferences
- Analytical sampling framework to improve predictability
- Admission control to maintain high scheduling quality at high load
- Distributed design to improve scheduling speed

Results:

- 41% better performance than random sampling-based schedulers
- 100x better scheduling latency than centralized schedulers
- Predictable allocation quality & performance

Questions?

Tarcil: Reconciles high quality and high speed schedulers

- Account for resource preferences
- Analytical sampling framework to improve predictability
- Admission control to maintain high scheduling quality at high load
- Distributed design to improve scheduling speed

Results:

- 41% better performance than random sampling-based schedulers
- 100x better scheduling latency than centralized schedulers
- Predictable allocation quality & performance

Questions??

Thank you