
Christina Delimitrou1, Daniel Sanchez2
and Christos Kozyrakis1

1Stanford University, 2MIT

SOCC	
 –	
 August	
 27th	
 2015	

Tarcil: Reconciling Scheduling Speed and
Quality in Large Shared Clusters

2

¨  Goals of cluster scheduling

¤  High decision quality
¤  High scheduling speed

¨  Problem: Disparity in scheduling designs
¤  Centralized schedulers à High quality, low speed
¤  Sampling-based schedulers à High speed, low quality

¨  Tarcil: Key scheduling techniques to bridge the gap
¤  Account for resource preferences à High decision quality

¤  Analytical framework for sampling à Predictable performance
¤  Admission control àHigh quality & speed

¤  Distributed design à High scheduling speed

Executive Summary

High performance
High cluster utilization

3

Motivation

¨  Optimize scheduling speed (sampling-based, distributed)

¨  Optimize scheduling quality (centralized, greedy)

Good: Short jobs

Good: Long jobs

Bad: Long jobs

Bad: Short jobs

Short: 100msec, Medium: 1-10sec, Long: 10sec-10min

4

Motivation

¨  Optimize scheduling speed (sampling-based, distributed)

¨  Optimize scheduling quality (centralized, greedy)

Good: Short jobs

Good: Long jobs

Bad: Long jobs

Bad: Short jobs

Short: 100msec, Medium: 1-10sec, Long: 10sec-10min

5

Key Scheduling Techniques at Scale

6

1. Determine Resource Preferences

¨  Scheduling quality depends on: interference,
heterogeneity, scale up/out, …
¤  Exhaustive exploration à infeasible
¤  Practical data mining framework1

¤ Measure impact of a couple of allocations à estimate for
large space

1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.

7

Example: Quantifying Interference

¨  Interference: set of microbenchmarks of tunable intensity (iBench)

1C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In ASPLOS 2014.

Measure tolerated &
generated interference

QoS

68%

…

Resource
Quality Q

QoS

7%
…

Data mining: Recover
missing resources

8

2. Analytical Sampling Framework

¨  Sample w.r.t. required resource quality

9

2. Analytical Sampling Framework

¨  Fine-grain allocations: partition servers in Resource Units (RU) à
minimum allocation unit

RU

Single-threaded apps
Reclaim unused resources

10

2. Analytical Sampling Framework

¨  Match a new job with required quality Q to appropriate RUs

QR1

QR2 QR3 QR4 QR5 QR6 QR7 QR8 QR9

QR10

QR20

QR30

QR42

QR54

QR11

QR21

QR31

QR43

QR55

QR61

QR67

QR60

QR66

QR74

11

2. Analytical Sampling Framework

¨  Rank resources by quality

12

2. Analytical Sampling Framework

¨  Break ties with a fair coin à uniform distribution

C
D

F

Resource Quality Q

13

2. Analytical Sampling Framework

¨  Break ties with a fair coin à uniform distribution

C
D

F

Resource Quality Q

Better
resources

Worse
resources

14

2. Analytical Sampling Framework

¨  Sample on uniform distribution à guarantees on resource
allocation quality

 Pr[Q≤x] = xR

Pr[Q<0.8]=10-3

15

Validation

¨  100 server EC2 cluster
¨  Short Spark tasks
¨  Deviation between analytical and empirical is minimal

16

Sampling at High Load

¨  Performance degrades (with small sample size)
¨  Or sample size needs to increase

17

3. Admission Control

¨  Queue jobs based on required resource quality
¨  Resource quality vs. waiting time à set max waiting time limit

…

Q

18

Tarcil Implementation

¨  4,000 loc in C/C++ and Python

¨  Supports apps in various frameworks (Hadoop, Spark, key-value
stores)

¨  Distributed design: Concurrent scheduling agents (sim. Omega2)
¤  Each agent has local copy of state, one resilient master copy

¤  Lock-free optimistic concurrency for conflict resolution (rare) à Abort and
retry

¤  30:1 worker to scheduling agent ratio

2M. Schwarzkopf, A. Konwinski, et al. Omega: flexible, scalable schedulers for large compute clusters.
In EuroSys 2013.

19

Evaluation Methodology

1.  TPC-H Workload
¤  ~40k queries of different types
¤  Compare with a centralized scheduler (Quasar) and a distributed

scheduler based on random sampling (Sparrow)
¤  110-server EC2 cluster (100 workers, 10 scheduling agents)

n  Homogeneous cluster, no interference
n  Homogeneous cluster, with interference
n  Heterogeneous cluster, with interference

¨  Metrics:
¤  Task performance
¤  Performance predictability
¤  Scheduling latency

20

Evaluation

Centralized: high overheads

Sparrow and Tarcil: similar

21

Evaluation

Centralized: high overheads

Sparrow and Tarcil: similar

Centralized and Sparrow:
comparable performance
Tarcil: 24% lower completion
time

22

Evaluation

Centralized: high overheads

Sparrow and Tarcil: similar

Centralized and Sparrow:
comparable performance
Tarcil: 24% lower completion
time

Centralized outperforms
Sparrow
Tarcil: 41% lower completion
time & less jitter

23

Scheduling Overheads

Heterogeneous, with interference

¨  Centralized: Two orders of magnitude slower than the distributed,
sampling-based schedulers

¨  Sparrow and Tarcil: Comparable scheduling overheads

24

Resident Load

¨  Tarcil and Centralized account for cross-job interference à
preserve memcached’s QoS

¨  Sparrow causes QoS violations for memcached

memcached

25

Motivation Revisited

Distributed, sampling-based

Centralized, greedy

Tarcil

Short: 100msec
Medium: 1-10sec
Long:10sec-10min

26

More details in the paper…

¨  Sensitivity on parameters such as:
¤  Cluster load
¤  Number of scheduling agents
¤  Sample size
¤  Task duration, etc.

¨  Job priorities

¨  Large allocations

¨  Generic application scenario (batch and latency-critical) on 200
EC2 servers

27

Conclusions

¨  Tarcil: Reconciles high quality and high speed scheduling
¤  Account for resource preferences
¤  Analytical sampling framework to improve predictability
¤  Admission control to maintain high scheduling quality at high load
¤  Distributed design to improve scheduling speed

¨  Results:
¤  41% better performance than random sampling-based schedulers
¤  100x better scheduling latency than centralized schedulers
¤  Predictable allocation quality & performance

28

Questions?

¨  Tarcil: Reconciles high quality and high speed schedulers
¤  Account for resource preferences
¤  Analytical sampling framework to improve predictability
¤  Admission control to maintain high scheduling quality at high load
¤  Distributed design to improve scheduling speed

¨  Results:
¤  41% better performance than random sampling-based schedulers
¤  100x better scheduling latency than centralized schedulers
¤  Predictable allocation quality & performance

29

	

	

	

Thank you

Questions??

