QUASAR: RESOURCE-EFFICIENT AND
QOS-AWARE CLUSTER MANAGEMENT

Christina Delimitrou and Christos Kozyrakis

Stanford University
http: / /mast.stanford.edu

- ASPLOS — March 3 2014

Executive Summary

Problem: low datacenter utilization
Overprovisioned reservations by users
Problem: high jitter on application performance

Interference, HW heterogeneity

Quasar: resource-efficient cluster management
User provides reseuree—reservetions performance goals
Online analysis of resource needs using info from past apps
Automatic selection of number & type of resources

High utilization and low performance jitter

Datacenter Underutilization

A few thousand server cluster at Twitter managed by Mesos

Running mostly latency-critical, user-facing apps

100F

80
XX 80% of servers @ < 20% utilization
~ 60t 1
g Servers are 65% of TCO
GE) 40}
W

1st week 4th week
20 2nd week - Hth week | |
- 3rd week
% 20 40 60 80 100

CPU Utilization (%)

Datacenter Underutilization

1 Goal: raise utilization without introducing performance jitter

Twitter

0.03

Google'

0.025 r

0.02

0.015

Fraction of Time

0.01

0.005

0
CPU Utilization (%)

1'L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2009.

20 40 60 80 100 0 01 02 03 04 05 06 07 08 009 1

CPTU Utilization

Reserved vs. Used Resources
B

100 _CPU usedvs. reserved 100 _Memory used vs. reserved
— Used — Reserved | — Used — Reserved

§80 ggo
> S
O 60 560
3 =
© Q
3 40 T 40
=2)
o -
< 3

20 <20

00 100 200 300 400 500 600 00 200 300 400 500 600 700

Time (hr) Time (hr)

0 Twitter: up to 5x CPU & up to 2x memory overprovisioning

Reserved vs. Used Resources

=
N

Q

over-sized

Reserved/Used Ratio (-z)
right-sized

% 20 40 60 80 100
Workloads (%)

20% of job under-sized, ~70% of jobs over-sized

Rightsizing Applications is Hard

Performance Depends on

/

>

Performance

Cores

Performance Depends on

Performance

Cores

Performance Depends on

Performance

4 Heterogeneity

Cores

X

Performance

A

Scale-out

Servers

Performance Depends on

Performance

4 Heterogeneity

Cores

X

A -

o Scale-out

O

C

O

£

o)

T

3

a- >
Servers

ot Input load

O

-

o

g \\

“'g \

D

Input size

>

11

Performance Depends on

Performance

4 Heterogeneity

X

Performance

A

Scale-out

Performance

When sw changes,
when platforms change, etc.

A Intwl LA AR ALAAT

/

>

Cores

X

Performance

| \— A =

—_

>

Input size

12

Performance Depends on

Performance

Performance

/g

oV

>

platforms change, etc.

X

Performance

-

Input size

Rethinking Cluster Management

User provides performance goals

Joint allocation and assignment of resources
Right amount depends on quality of available resources

Monitor and adjust dynamically as needed

But wait...

The manager must know the resource/performance tradeoffs

14

Understanding Resource /Performance Tradeoffs

Combine: Small app
Small signal from short run of new app signal
Large signal from previously-run apps

Generate:

Detailed insights for resource management _ﬂ
) ,E -
Performqnc.e vs scale-up /out, 4 ; “cz‘ j Big cluster
heterogeneity, ... E;ﬁ =2 data
.’-....":: iL:“j
Looks like a classification problem - _J

V

Resource /performance
tradeoffs

15

Something familiar...

Collaborative filtering — similar to Netflix Challenge system

users

Predict preferences of new users given preferences of other users
Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

High accuracy, low complexity, relaxed density constraints

movies
54 555541
1,43 PQ 112435
PR THEEE I
1 1
23 o] e CER B 1325 55— T R N
2, 3 SGD 12424323
3 4 135154
Sparse Initial Reconstructed Final
utility decomposition utility matrix decomposition

matrix

16

Application Analysis with Classification

Rows Columns Recommendation

Neftflix Users Movies Movie ratings

Heterogeneity

Interference

Scale-up

Scale-out

4 parallel classifications

Lower overheads & similar accuracy to exhaustive classification

Heterogeneity Classification

Rows Columns Recommendation
Neftflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference
Scale-up
Scale-out

Profiling on two randomly selected server types

Predict performance on each server type

18

Interference Classification

Rows Columns Recommendation
Neftflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up
Scale-out

Predict sensitivity to interference

Interference intensity that leads to >5% performance loss

Profiling by injecting increasing interference

Scale-Up Classification

Rows Columns Recommendation
Netflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up Apps Resource vectors Resources/node
Scale-out

Predict speedup from scale-up

Profiling with two allocations (cores & memory)

Scale-Out Classification

Rows Columns Recommendation
Netflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up Apps Resource vectors Resources/node
Scale-out Apps Nodes Number of nodes

Predict speedup from scale-out

Profiling with two allocations (1 & N>1 nodes)

Classification Validation

Heterogeneity | Interference | Scale-up | Scale-out
avg max | avg | max |avg | max | avg | max

Single-node 4% 8% | 5% i 10% | 4% i 9% -1 -
Batch distributed | | 4% 5% 2% i 6% [5%i11% | 5% |17%
Latency-critical || 5% 6% | 7%)i 10% [6%} 11% 6%

22

Quasar Overview

Quasar Overview

Quasar Overview

Quasar Overview

H <a..b...>
I <..cd...>

SU <e..f..>
SO <kl....>

H <abcdefghi>
I <gwertyuio>
SU <esdfghijkl>
SO <kljhgfdsa>

Quasar Overview

H <abccefghi>
I <qwertyuio>

SU <esdfghjkl>
SO <kljhgfdsa>

R

27

Quasar Overview

H <abcdefghi>

I <gwertyuio>
SU <esdfghjkl>
SO <kljhgfdsa>

Profiling Sparse Classification Dense Resource
[10-60sec] input [20msec] output selection
signal signal [50msec-2sec]

28

Greedy Resource Selection

Goals

Allocate least needed resources to meet QoS target

Pack together non-interfering applications

Overview
Start with most appropriate server types

Look for servers with interference below critical intensity

Depends on which applications are running on these servers

First scale-up, next scale-out

29

Quasar Implementation

6,000 loc of C++ and Python
Runs on Linux and OS X

Supports frameworks in C/C++, Java and Python

~100-600 loc for framework-specific code

Side-effect free profiling using Linux containers with chroot

30

Evaluation: Cloud Scenario

Cluster

200 EC2 servers, 14 different server types

Workloads: 1,200 apps with 1sec inter-arrival rate

Analytics: Hadoop, Spark, Storm

Latency-critical: Memcached, HotCrp, Cassandra
Single-threaded: SPEC CPU2006

Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb
Multiprogrammed: 4-app mixes of SPEC CPU2006

Obijectives: high cluster utilization and good app QoS

31

Instance Size

B memcached [Hodoop M Storm
DemO Cassandra _Spark Single-node
Quasar Reservation + LL

100% 00%

0%

Performance Histogram I | Performance Histogram
>095%| CluSteg,, |
90,95)| Utilizqgdien|
80,90 . . 80,90)t R]
:m Bgm Performance histogram 251 Performance histogram
.. - [70,80)} i _
50.70)| Quasar _ 6070 Reservation & LL
[50,60) 50,60)}
<50% : . : . . . <50%} : . : £] 1
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Progress bar Progress bar 32

Demo

Cloud Scenario Summary

Quasar achieves:

88% of applications get >95% performance
~10% overprovisioning as opposed to up to 5x
Up to 70% cluster utilization at steady-state

23% shorter scenario completion time

34

Conclusions

Quasar: high utilization, high app performance
From reservation to performance-centric cluster management
Uses info from previous apps for accurate & online app analysis

Joint resource allocation and resource assignment

See paper for:
Utilization analysis of Twitter cluster
Detailed validation & sensitivity analysis of classification

Further evaluation scenarios and features

E.g., setting framework parameters for Hadoop

35

Questionse?

Quasar: high utilization, high app performance
From reservation to performance-centric cluster management
Uses info from previous apps for accurate & online app analysis

Joint resource allocation and resource assignment

See paper for:
Utilization analysis of Twitter cluster
Detailed validation & sensitivity analysis of classification

Further evaluation scenarios and features

E.g., setting framework parameters for Hadoop

36

Questions2?
N

Thank you

37

Cloud Provider: Performance

> 1.0

©

= 0.8}

L

€ 0.6

O — Target Performance
- 0.4

o 0.

>

0.2

)

Q

$0.00—200 400 600 800 1000 1200

Workload

Cloud Provider: Performance

% 1.0 .
© 3
~ 0.8!
S S NPT PL b
£06[.

S — Target Performance
a 0.4} --- Reservation+LL

2 0.2}

()]

Q.

" 0.05——200 200 600 800 1000 1200

Workload

Most applications violate their QoS constraints

39

Cloud Provider: Performance

"G-J‘ .

o 1.0

S ——
0.8_ ‘o'

I

& 0.6} P i

o — Target Performance

a 0.4/ --- Reservation+LL

8 02! —— Reservation+Paragon |

S

" 0.00—260 400 600 800 1000 1200

Workload

83% of performance target when only assignment is heterogeneity &
interference aware

Cloud Provider: Performance

R EE——
a
o 0.8/ ------------- ,

£ 0.6/ ewrmenmene

E '_.--"" — Target Performance

=) >4 --- Reservation+LL

B 0.2} — Reservation+Paragon |
= = Quasar

N 0.05— 260 400 600 800 1000 1200

Workload

98% of performance target on average

41

Cluster Utilization

: Reseﬂr\,/,.a-:ur? _n+LL - g 100 200

=
(&)}
(=)

(@]
o -
o1 HET I B

Server Utilization (%)
Servers
S
(=)

= g
e L ol - W

100
90
80
70
60
150
140
130
120
110

e e s
5000 10000 15000 20000 25000
Time (sec)

01 Baseline (Reservation+LL):

Imbalance in server utilization

Per-app QoS violations + higher execution time
7 Quasar increases server utilization by 47%

High performance for user

Better utilization for DC operator = resource efficiency

L

Server Utilization (%)

42

Reducing Overprovisioning
S =

— used Quasar — alloc Quasar — Reservation

00
o

N
o

CPU Usgge (%)
o

N
o

00 50 100 150 200 250 300 350

Time (min)
1 ~10% overprovisioning, compared to 40%-5x for Reservation+LL

43

Scheduling Overheads

16 . . | | |
141 Tota-l- Distributed
o 127 Profiling decisions
> —— Classification |
% 10} Greedy X
O 8[| Adaptation il Cold-start
-CIEJ 6 L' solutions
O 4 w,w"" z
2 _ - m‘,,«_,@-.':“ ’
0 T T | e
0 200 400 600 800 1000 1200
Workload

4.1% of execution time on average, up to 15% for short-lived

workloads — mostly from profiling

