
Christina Delimitrou and Christos Kozyrakis

Stanford University

http://mast.stanford.edu

ASPLOS – March 3rd 2014

QUASAR: RESOURCE-EFFICIENT AND

QOS-AWARE CLUSTER MANAGEMENT

2

 Problem: low datacenter utilization

 Overprovisioned reservations by users

 Problem: high jitter on application performance

 Interference, HW heterogeneity

 Quasar: resource-efficient cluster management

 User provides resource reservations performance goals

 Online analysis of resource needs using info from past apps

 Automatic selection of number & type of resources

 High utilization and low performance jitter

Executive Summary

3

Datacenter Underutilization

 A few thousand server cluster at Twitter managed by Mesos

 Running mostly latency-critical, user-facing apps

80% of servers @ < 20% utilization

Servers are 65% of TCO

4

Datacenter Underutilization

 Goal: raise utilization without introducing performance jitter

1 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2009.

Twitter Google1

5

Reserved vs. Used Resources

 Twitter: up to 5x CPU & up to 2x memory overprovisioning

3-5x

1.5-2x

6

Reserved vs. Used Resources

 20% of job under-sized, ~70% of jobs over-sized

7

Rightsizing Applications is Hard

8

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Scale-up

9

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Heterogeneity

10

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Heterogeneity

Servers

P
e
rf

o
rm

a
nc

e
 Scale-out

11

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Heterogeneity

Servers

P
e
rf

o
rm

a
nc

e
 Scale-out

Input size

P
e
rf

o
rm

a
nc

e
 Input load

12

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Heterogeneity

Cores

P
e
rf

o
rm

a
nc

e
 Interference

Input size

P
e
rf

o
rm

a
nc

e
 Input load

Servers

P
e
rf

o
rm

a
nc

e
 Scale-out

When sw changes,

when platforms change, etc.

13

Performance Depends on

Cores

P
e
rf

o
rm

a
nc

e
 Heterogeneity

Cores

P
e
rf

o
rm

a
nc

e
 Interference

Input size

P
e
rf

o
rm

a
nc

e
 Input load

Servers

P
e
rf

o
rm

a
nc

e
 Scale-out

When sw changes,

when platforms change, etc.

14

Rethinking Cluster Management

 User provides resource reservations performance goals

 Joint allocation and assignment of resources

 Right amount depends on quality of available resources

 Monitor and adjust dynamically as needed

 But wait…

 The manager must know the resource/performance tradeoffs

15

Big cluster

data

 Combine:

 Small signal from short run of new app

 Large signal from previously-run apps

 Generate:

 Detailed insights for resource management

 Performance vs scale-up/out,

heterogeneity, …

 Looks like a classification problem

Resource/performance

tradeoffs

Small app

signal

Understanding Resource/Performance Tradeoffs

16

Something familiar…

 Collaborative filtering – similar to Netflix Challenge system

 Predict preferences of new users given preferences of other users

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

 High accuracy, low complexity, relaxed density constraints

Sparse

utility

matrix

Initial

decomposition

SVD PQ

SGD

Reconstructed

utility matrix

Final

decomposition

SVD

movies

us
e
rs

17

Application Analysis with Classification

 4 parallel classifications

 Lower overheads & similar accuracy to exhaustive classification

Rows Columns Recommendation

Netflix Users Movies Movie ratings

Heterogeneity

Interference

Scale-up

Scale-out

18

Heterogeneity Classification

 Profiling on two randomly selected server types

 Predict performance on each server type

Rows Columns Recommendation

Netflix Users Movies Movie ratings

Heterogeneity Apps Platforms Server type

Interference

Scale-up

Scale-out

19

Interference Classification

 Predict sensitivity to interference

 Interference intensity that leads to >5% performance loss

 Profiling by injecting increasing interference

Rows Columns Recommendation

Netflix Users Movies Movie ratings

Heterogeneity Apps Platforms Server type

Interference Apps Sources of interference Interference sensitivity

Scale-up

Scale-out

20

Scale-Up Classification

 Predict speedup from scale-up

 Profiling with two allocations (cores & memory)

Rows Columns Recommendation

Netflix Users Movies Movie ratings

Heterogeneity Apps Platforms Server type

Interference Apps Sources of interference Interference sensitivity

Scale-up Apps Resource vectors Resources/node

Scale-out

21

Scale-Out Classification

 Predict speedup from scale-out

 Profiling with two allocations (1 & N>1 nodes)

Rows Columns Recommendation

Netflix Users Movies Movie ratings

Heterogeneity Apps Platforms Server type

Interference Apps Sources of interference Interference sensitivity

Scale-up Apps Resource vectors Resources/node

Scale-out Apps Nodes Number of nodes

22

Classification Validation

Heterogeneity Interference Scale-up Scale-out

avg max avg max avg max avg max

Single-node 4% 8% 5% 10% 4% 9% - -

Batch distributed 4% 5% 2% 6% 5% 11% 5% 17%

Latency-critical 5% 6% 7% 10% 6% 11% 6% 12%

23

Quasar Overview

QoS

24

Quasar Overview

QoS

25

Quasar Overview

QoS

H <a..b...>
I <..cd...>
SU <e..f..>
SO <kl....>

26

Quasar Overview

H <a..b...>
I <..cd...>
SU <e..f..>
SO <kl....>

UΣVT



















mnmm

n

n

uuu

uuu

uuu

...

...

...

21

22221

11211



H <abcdefghi>
I <qwertyuio>
SU <esdfghjkl>
SO <kljhgfdsa>

QoS

27

Quasar Overview

H <a..b...>
I <..cd...>
SU <e..f..>
SO <kl....>

UΣVT



















mnmm

n

n

uuu

uuu

uuu

...

...

...

21

22221

11211



H <abcdefghi>
I <qwertyuio>
SU <esdfghjkl>
SO <kljhgfdsa>

QoS

28

Quasar Overview

H <a..b...>
I <..cd...>
SU <e..f..>
SO <kl....>

UΣVT



















mnmm

n

n

uuu

uuu

uuu

...

...

...

21

22221

11211



H <abcdefghi>
I <qwertyuio>
SU <esdfghjkl>
SO <kljhgfdsa>

Profiling

[10-60sec]

Sparse

input

signal

Classification

[20msec]

Dense

output

signal

Resource

selection

[50msec-2sec]

QoS

29

Greedy Resource Selection

 Goals

 Allocate least needed resources to meet QoS target

 Pack together non-interfering applications

 Overview

 Start with most appropriate server types

 Look for servers with interference below critical intensity

 Depends on which applications are running on these servers

 First scale-up, next scale-out

30

Quasar Implementation

 6,000 loc of C++ and Python

 Runs on Linux and OS X

 Supports frameworks in C/C++, Java and Python

 ~100-600 loc for framework-specific code

 Side-effect free profiling using Linux containers with chroot

31

Evaluation: Cloud Scenario

 Cluster

 200 EC2 servers, 14 different server types

 Workloads: 1,200 apps with 1sec inter-arrival rate

 Analytics: Hadoop, Spark, Storm

 Latency-critical: Memcached, HotCrp, Cassandra

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb

 Multiprogrammed: 4-app mixes of SPEC CPU2006

 Objectives: high cluster utilization and good app QoS

32

Demo
In

st
a
n
ce

 S
iz

e

memcached

Cassandra

Storm Hadoop
Single-node Spark

Core Allocation Map

Quasar

Instance
Core

Core Allocation Map

Reservation & LL

Performance histogram

Quasar

Performance histogram

Reservation & LL

Cluster

Utilization

Progress bar Progress bar

100%

0%

100%

0%

Quasar Reservation + LL

33

34

Quasar achieves:

 88% of applications get >95% performance

 ~10% overprovisioning as opposed to up to 5x

 Up to 70% cluster utilization at steady-state

 23% shorter scenario completion time

Cloud Scenario Summary

35

Conclusions

 Quasar: high utilization, high app performance

 From reservation to performance-centric cluster management

 Uses info from previous apps for accurate & online app analysis

 Joint resource allocation and resource assignment

 See paper for:

 Utilization analysis of Twitter cluster

 Detailed validation & sensitivity analysis of classification

 Further evaluation scenarios and features

 E.g., setting framework parameters for Hadoop

36

 Quasar: high utilization, high app performance

 From reservation to performance-centric cluster management

 Uses info from previous apps for accurate & online app analysis

 Joint resource allocation and resource assignment

 See paper for:

 Utilization analysis of Twitter cluster

 Detailed validation & sensitivity analysis of classification

 Further evaluation scenarios and features

 E.g., setting framework parameters for Hadoop

Questions??

37

Thank you

Questions??

38

Cloud Provider: Performance

39

Cloud Provider: Performance

 Most applications violate their QoS constraints

40

Cloud Provider: Performance

 83% of performance target when only assignment is heterogeneity &

interference aware

41

Cloud Provider: Performance

 98% of performance target on average

42

Cluster Utilization

 Baseline (Reservation+LL):

 Imbalance in server utilization

 Per-app QoS violations + higher execution time

 Quasar increases server utilization by 47%

 High performance for user

 Better utilization for DC operator  resource efficiency

Quasar
Least-Loaded (LL)

43

Reducing Overprovisioning

 ~10% overprovisioning, compared to 40%-5x for Reservation+LL

44

Scheduling Overheads

 4.1% of execution time on average, up to 15% for short-lived

workloads – mostly from profiling

Distributed

decisions

Cold-start

solutions

