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Executive Summary

Problem: low datacenter utilization
Overprovisioned reservations by users
Problem: high jitter on application performance

Interference, HW heterogeneity

Quasar: resource-efficient cluster management
User provides reseuree—reservetions performance goals
Online analysis of resource needs using info from past apps
Automatic selection of number & type of resources

High utilization and low performance jitter



Datacenter Underutilization

A few thousand server cluster at Twitter managed by Mesos

Running mostly latency-critical, user-facing apps
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Datacenter Underutilization

1 Goal: raise utilization without introducing performance jitter
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Reserved vs. Used Resources
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Reserved vs. Used Resources
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Rightsizing Applications is Hard
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Performance Depends on
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Rethinking Cluster Management

User provides performance goals

Joint allocation and assignment of resources
Right amount depends on quality of available resources

Monitor and adjust dynamically as needed

But wait...

The manager must know the resource/performance tradeoffs
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Understanding Resource /Performance Tradeoffs

Combine: Small app
Small signal from short run of new app signal
Large signal from previously-run apps

Generate:

Detailed insights for resource management _ﬂ
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Something familiar...

Collaborative filtering — similar to Netflix Challenge system

users

Predict preferences of new users given preferences of other users
Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

High accuracy, low complexity, relaxed density constraints
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Application Analysis with Classification

Rows Columns Recommendation

Neftflix Users Movies Movie ratings

Heterogeneity

Interference

Scale-up

Scale-out

4 parallel classifications

Lower overheads & similar accuracy to exhaustive classification




Heterogeneity Classification

Rows Columns Recommendation
Neftflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference
Scale-up
Scale-out

Profiling on two randomly selected server types

Predict performance on each server type
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Interference Classification

Rows Columns Recommendation
Neftflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up
Scale-out

Predict sensitivity to interference

Interference intensity that leads to >5% performance loss

Profiling by injecting increasing interference




Scale-Up Classification

Rows Columns Recommendation
Netflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up Apps Resource vectors Resources/node
Scale-out

Predict speedup from scale-up

Profiling with two allocations (cores & memory)




Scale-Out Classification

Rows Columns Recommendation
Netflix Users Movies Movie ratings
Heterogeneity | Apps Platforms Server type
Interference Apps | Sources of interference | Interference sensitivity
Scale-up Apps Resource vectors Resources/node
Scale-out Apps Nodes Number of nodes

Predict speedup from scale-out

Profiling with two allocations (1 & N>1 nodes)




Classification Validation

Heterogeneity | Interference | Scale-up | Scale-out
avg max | avg | max |avg | max | avg | max

Single-node 4% 8% | 5% i 10% | 4% i 9% -1 -
Batch distributed | | 4% 5% 2% i 6% [5%i11% | 5% |17%
Latency-critical || 5% 6% | 7% )i 10% [ 6%} 11% 6%
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Quasar Overview




Quasar Overview




Quasar Overview




Quasar Overview
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Quasar Overview
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Quasar Overview
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Profiling Sparse Classification  Dense Resource
[10-60sec]  input [20msec] output selection
signal signal  [50msec-2sec]
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Greedy Resource Selection

Goals

Allocate least needed resources to meet QoS target

Pack together non-interfering applications

Overview
Start with most appropriate server types

Look for servers with interference below critical intensity

Depends on which applications are running on these servers

First scale-up, next scale-out
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Quasar Implementation

6,000 loc of C++ and Python
Runs on Linux and OS X

Supports frameworks in C/C++, Java and Python

~100-600 loc for framework-specific code

Side-effect free profiling using Linux containers with chroot
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Evaluation: Cloud Scenario

Cluster

200 EC2 servers, 14 different server types

Workloads: 1,200 apps with 1sec inter-arrival rate

Analytics: Hadoop, Spark, Storm

Latency-critical: Memcached, HotCrp, Cassandra
Single-threaded: SPEC CPU2006

Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb
Multiprogrammed: 4-app mixes of SPEC CPU2006

Obijectives: high cluster utilization and good app QoS
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Instance Size
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Demo




Cloud Scenario Summary

Quasar achieves:

88% of applications get >95% performance
~10% overprovisioning as opposed to up to 5x
Up to 70% cluster utilization at steady-state

23% shorter scenario completion time
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Conclusions

Quasar: high utilization, high app performance
From reservation to performance-centric cluster management
Uses info from previous apps for accurate & online app analysis

Joint resource allocation and resource assignment

See paper for:
Utilization analysis of Twitter cluster
Detailed validation & sensitivity analysis of classification

Further evaluation scenarios and features

E.g., setting framework parameters for Hadoop
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Questionse?

Quasar: high utilization, high app performance
From reservation to performance-centric cluster management
Uses info from previous apps for accurate & online app analysis

Joint resource allocation and resource assignment

See paper for:
Utilization analysis of Twitter cluster
Detailed validation & sensitivity analysis of classification

Further evaluation scenarios and features

E.g., setting framework parameters for Hadoop
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Questions2?
N

Thank you
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Cloud Provider: Performance
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Cloud Provider: Performance
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Most applications violate their QoS constraints
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Cloud Provider: Performance
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Cloud Provider: Performance
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Cluster Utilization
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Imbalance in server utilization

Per-app QoS violations + higher execution time
7 Quasar increases server utilization by 47%

High performance for user

Better utilization for DC operator = resource efficiency
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Reducing Overprovisioning
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Scheduling Overheads
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4.1% of execution time on average, up to 15% for short-lived

workloads — mostly from profiling



