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 Problem: low datacenter utilization 

 Overprovisioned reservations by users 

 Problem: high jitter on application performance  

 Interference, HW heterogeneity 

 

 Quasar: resource-efficient cluster management 

 User provides resource reservations performance goals 

 Online analysis of resource needs using info from past apps 

 Automatic selection of number & type of resources  

 High utilization and low performance jitter 

 

Executive Summary 
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Datacenter Underutilization 

 A few thousand server cluster at Twitter managed by Mesos 

 Running mostly latency-critical, user-facing apps 

80% of servers @ < 20% utilization 

Servers are 65% of TCO 
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Datacenter Underutilization 

 Goal: raise utilization without introducing performance jitter 

 

 

 

 

 

 

 

 

 

 

 
1 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2009.  

Twitter Google1 
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Reserved vs. Used Resources 

 

 

 

 

 

 

 

 

 

 

 

 

 Twitter: up to 5x CPU & up to 2x memory overprovisioning 

3-5x 

1.5-2x 
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Reserved vs. Used Resources 

 

 

 

 

 

 

 

 

 

 

  

 20% of job under-sized, ~70% of jobs over-sized 
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Rightsizing Applications is Hard 
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Rethinking Cluster Management 

 User provides resource reservations performance goals 

 

 Joint allocation and assignment of resources 

 Right amount depends on quality of available resources 

 Monitor and adjust dynamically as needed 

 

 But wait…   

 The manager must know the resource/performance tradeoffs 
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Big cluster  

data 

 Combine:  

 Small signal from short run of new app 

 Large signal from previously-run apps 

 Generate:  

 Detailed insights for resource management 

 Performance vs scale-up/out, 

heterogeneity, … 

 

 Looks like a classification problem 

Resource/performance 

tradeoffs 

Small app  

signal 

Understanding Resource/Performance Tradeoffs 
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Something familiar…  

 Collaborative filtering – similar to Netflix Challenge system 

 Predict preferences of new users given preferences of other users 

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD) 

 High accuracy, low complexity, relaxed density constraints 
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Application Analysis with Classification 

 

 

 

 

 

 

 
 

 4 parallel classifications 

  Lower overheads & similar accuracy to exhaustive classification 

Rows Columns Recommendation 

Netflix Users Movies Movie ratings 

Heterogeneity 

Interference 

Scale-up 

Scale-out 
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Heterogeneity Classification 

 

 

 

 

 

 

 
 

 Profiling on two randomly selected server types 

 Predict performance on each server type 

Rows Columns Recommendation 

Netflix Users Movies Movie ratings 

Heterogeneity Apps Platforms Server type 

Interference 

Scale-up 

Scale-out 
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Interference Classification 

 

 

 

 

 

 

 
 

 Predict sensitivity to interference 

 Interference intensity that leads to >5% performance loss  

 Profiling by injecting increasing interference  

Rows Columns Recommendation 

Netflix Users Movies Movie ratings 

Heterogeneity Apps Platforms Server type 

Interference Apps Sources of interference Interference sensitivity 

Scale-up 

Scale-out 
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Scale-Up Classification 

 

 

 

 

 

 

 
 

 Predict speedup from scale-up 

 Profiling with two allocations (cores & memory) 

Rows Columns Recommendation 

Netflix Users Movies Movie ratings 

Heterogeneity Apps Platforms Server type 

Interference Apps Sources of interference Interference sensitivity 

Scale-up Apps Resource vectors Resources/node 

Scale-out 
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Scale-Out Classification 

 

 

 

 

 

 

 
 

 Predict speedup from scale-out 

 Profiling with two allocations (1 & N>1 nodes) 

 

Rows Columns Recommendation 

Netflix Users Movies Movie ratings 

Heterogeneity Apps Platforms Server type 

Interference Apps Sources of interference Interference sensitivity 

Scale-up Apps Resource vectors Resources/node 

Scale-out Apps Nodes Number of nodes 
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Classification Validation 

Heterogeneity Interference Scale-up Scale-out 

avg max avg max avg max avg max 

Single-node 4% 8% 5% 10% 4% 9% - - 

Batch distributed 4% 5% 2% 6% 5% 11% 5% 17% 

Latency-critical 5% 6% 7% 10% 6% 11% 6% 12% 
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Quasar Overview 

QoS 
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Greedy Resource Selection 

 Goals 

 Allocate least needed resources to meet QoS target 

 Pack together non-interfering applications  

 

 Overview 

 Start with most appropriate server types 

 Look for servers with interference below critical intensity  

 Depends on which applications are running on these servers 

 First scale-up, next scale-out 
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Quasar Implementation 

 6,000 loc of C++ and Python 

 

 Runs on Linux and OS X  

 

 Supports frameworks in C/C++, Java and Python 

 ~100-600 loc for framework-specific code 

 

 Side-effect free profiling using Linux containers with chroot 
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Evaluation: Cloud Scenario 

 Cluster 

 200 EC2 servers, 14 different server types 

 

 Workloads: 1,200 apps with 1sec inter-arrival rate 

 Analytics: Hadoop, Spark, Storm   

 Latency-critical: Memcached, HotCrp, Cassandra 

 Single-threaded: SPEC CPU2006 

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb 

 Multiprogrammed: 4-app mixes of SPEC CPU2006 
 

 Objectives: high cluster utilization and good app QoS 
 

 
 



32 

Demo 
In

st
a
n
ce

 S
iz

e
 

memcached 

Cassandra 

Storm Hadoop 
Single-node Spark 

Core Allocation Map 

Quasar 

Instance 
Core 

Core Allocation Map 

Reservation & LL 

Performance histogram 

Quasar 

Performance histogram 

Reservation & LL 

Cluster  

Utilization 

Progress bar Progress bar 

100% 

0% 

100% 

0% 

Quasar Reservation + LL 



33 



34 

Quasar achieves: 

 88% of applications get >95% performance 

 

 ~10% overprovisioning as opposed to up to 5x 

 

 Up to 70% cluster utilization at steady-state 

 

 23% shorter scenario completion time 

 

 

Cloud Scenario Summary 
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Conclusions 

 Quasar: high utilization, high app performance 

 From reservation to performance-centric cluster management  

 Uses info from previous apps for accurate & online app analysis 

 Joint resource allocation and resource assignment 

 

 See paper for:  

 Utilization analysis of Twitter cluster 

 Detailed validation & sensitivity analysis of classification  

 Further evaluation scenarios and features 

 E.g., setting framework parameters for Hadoop  
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Thank you 

Questions??  
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Cloud Provider: Performance 
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Cloud Provider: Performance 

 Most applications violate their QoS constraints 
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Cloud Provider: Performance 

 83% of performance target when only assignment is heterogeneity & 

interference aware 
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Cloud Provider: Performance 

 98% of performance target on average 
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Cluster Utilization 

 Baseline (Reservation+LL): 

 Imbalance in server utilization 

 Per-app QoS violations + higher execution time 

 Quasar increases server utilization by 47% 

 High performance for user 

 Better utilization for DC operator  resource efficiency 
 

Quasar 
Least-Loaded (LL) 
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Reducing Overprovisioning 

 ~10% overprovisioning, compared to 40%-5x for Reservation+LL  
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Scheduling Overheads 

 4.1% of execution time on average, up to 15% for short-lived 

workloads – mostly from profiling 

Distributed  

decisions 

Cold-start 

solutions 


