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Executive Summary

Problem: Increasing utilization causes interference between co-scheduled apps
Managing /Reducing interference =2 critical to preserve QoS
Difficult to quantify = can appear in many shared resources

Relevant both in datacenters and traditional CMPs

Previous work:
Interference characterization: BubbleUp, Cuanta, etc. 2 cache/memory only

Long-term modeling: ECHO, load prediction, etc. = training takes time, does not

capture all resources

iBench is an open-source benchmark suvite that:
Helps quantify the interference caused and tolerated by a workload
Captures many different shared resources (CPU, cache, memory, net, storage, etc. )
Fast: Quantifying interference sensitivity takes a few msec-sec

Applicable in several DC and CMP studies (scheduling, provisioning, etc. )
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Motivation

Interference is the penalty of resource efficiency
Co-scheduled workloads contend in shared resources

Interference can span the core, cache /memory, net, storage
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Motivation
S

1 Exhaustive characterization of interference sensitivity against all
possible co-scheduled workloads = infeasible

Memory capacity (%)



Motivation

Instead profile against a set of carefully-designed benchmarks

Common reference point for all applications

Requirements for interference benchmark suite:
Consistent behavior = predictable resource pressure
Tunable pressure in the corresponding resource
Span multiple shared resources (one per benchmark)

Not-overlapping behavior across benchmarks
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iBench Overview

iBench consists of 15 benchmarks

Each targets a different system resource

First design principle: benchmark intensity is a tunable
parameter

Second design principle: benchmark impact increases almost
proportionately with intensity

Third design principle: each benchmark only (mostly) stresses
its target resource (no overlapping effects)



iBench Workloads

Memory capacity /bandwidth [1-2]
Cache:
L1 i-cache /d-cache [3-4]
L2 capacity/bandwidth [3'-4]
LLC capacity /bandwidth [5-6]

CPU:

Integer [/]

Floating Point [8]

Prefetchers [9]

TLBs [10]

Vector [11]

Interconnection network [12]
Network bandwidth [13]
Storage capacity /bandwidth [14-15]
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Memory Capacity

Progressively increase memory footprint (low memory bandwidth usage)

Random (or strided) access pattern (using a low-overhead random generator
function)

Uses single static assignment (SSA) to increase ILP in memory accesses

Fraction of time in idle state depends on intensity levels 2 decreases as
intensity increases

// for intensity level x

while (coverage < x%) {
// SSA: to increase ILP
access[0] += datal[r] << 1;
access|[1] += datal[r] << 1;

access[30] += datalr] << 1;
access[31] += datalr] << 1;
// idle for tx = £ (x)

walt (tx) ;
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Memory Bandwidth

Progressively increases used memory bandwidth (low memory capacity usage)
Serial (streaming) memory access pattern
Accesses happen in a small fraction of the address space ( > LLC )

Fraction of time in idle state depends on intensity levels =2 decreases as
intensity increases

// for intensity level x

for (int cnt = 0; cnt < access cnt; cnt++)
access|[cnt] = data[cnt]*datal[cnt+4];
// idle for tx = f(x)
walt (tx);




Processor benchmarks

CPU (Int/FP /vector):

Progressively increase CPU utilization = launch instructions at
increasing rates

For integer, floating point or vector (of applicable) operations

Caches:
L1 i/d-cache: sweep through increasing fractions of the L1 capacity

L2 /L3 capacity: random accesses that occupy increasing fractions of the
capacity of the cache (adapt to specific structure, number of ways, etc. to
guarantee proportionality of benchmark effect with intensity)

L2 /L3 bandwidth: streaming accesses that require increasing fractions of
the cache bandwidth
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/O benchmarks

Network bandwidth:

Only relevant for the characterization of workloads with network activity
(e.g., MapReduce, memcached)

Launches network requests of increasing sizes and at increasing rates until
saturating the link

The fanout to receiving hosts is a tunable parameter

Storage bandwidth:

Streaming /serial disk accesses across the system’s hard drives (only cover
subsets of the address space to limit capacity usage)

Accesses increase as the intensity of the benchmark increases = until
reaching the sustained disk bandwidth of the system
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Validation

Individual iBench workloads behavior: create
progressively more pressure in a resource ‘ y
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Validation: Individual benchmarks

0 Increasing intensity of each benchmark = proportionately increasing

impact in corresponding resource
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Validation: Individual benchmarks

Increasing intensity of each benchmark = proportionately increasing
impact in corresponding resource
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Validation: Impact on Performance
—

7 Inject a benchmark in an active workload = tune up intensity = record
increasing degradation in performance
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Validation: Impact on Performance

mcf from SPECCPU2006 (memory intensive) + LLC capacity
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Validation: Impact on Performance

memcached (memory + network intensive) + network bandwidth
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Validation: Cross-benchmark Impact

-1 Co-schedule two iBench workloads on the same machine = tune up
intensity = minimal impact on each other
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Validation: Cross-benchmark impact

Co-schedule the memory capacity and memory bandwidth benchmarks
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Use Cases

Interference-aware datacenter scheduling

Datacenter server provisioning

Resource-efficient application design

Interference-aware heterogeneous CMP scheduling
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Interference-aware DC Scheduling

Cloud provider scenario:
Unknown workloads are submitted in the system

Cluster scheduler should determine which applications can be scheduled on

the same machine

Scheduling decisions should be:
Fast = minimize scheduling overheads
QoS-aware = minimize cross-application interference

Resource-efficient =2 co-schedule as many applications as possible to increase

utilization

Obijective: preserve per-application performance & increase
utilization
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DC Scheduling Steps

Applications are admitted to the system =2
Profile against iBench workloads

Determine the contended resources they are sensitive to

Scheduler finds the servers that minimize the:

Rt 2 N PXY

If multiple, selects the least-loaded one (can add placement,
platform configuration, etc. considerations)
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Methodology

Workloads:
Single-threaded: SPEC CPU2006
Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads 214 apps
|/O-bound: Hadoop + data mining (Matlab)

Latency-critical: memcached

Systems:

40 servers, 10 server configurations (Xeons, Atoms, etc. )

Scenarios:
Cloud provider: 200 applications submitted with 1 sec inter-arrival times
Hadoop as the primary workload + batch best-effort apps

Memcached as the primary workload + batch best-effort apps
29
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Cloud Provider: Performance

Least-loaded (interference-oblivious scheduler) vs. interference-aware
scheduling with iBench
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Cloud Provider: Performance

Least-loaded (interference-oblivious scheduler) vs. interference-aware
scheduling with iBench
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Performance improves by 16% on average (up to 28%,).

60% of apps preserve their QoS — 5% with the least-loaded scheduler
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Cloud Provider: Utilization
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0 Individual servers operate at higher utilization without being oversubscribed
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DC Server Provisioning

Default server configuration not necessarily optimal for each DC workload
(custom servers, Open Compute, efc. )

Study the resources each workload stresses & the resources it is sensitive to
using iBench = provision accordingly the machines that service that workload

Offline characterization, but can also apply online to capture changes in
application behavior
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DC Server Provisioning

memcached instance:
1000 clients
QoS target 40,000 QPS

latency constraint of 200usec

Server: Xeon E5345 (4 cores, 8MB LLC, 16GB RAM), 1GB NIC

Characterize the interference memcached puts on each resource
captured by iBench
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DC Server Provisioning

Caused interference (%)
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DC Server Provisioning
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DC Server Provisioning

—— before — after
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improvement
o IPCincreases by 22% on average

o1 CPU throttling due to memory stalls reduces (utilization decreases by 41%

on average)
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Other Use Cases

Resource-efficient application design
Reduce execution time by 35%

Reduce memory footprint by 44%

Interference-aware heterogeneous CMP scheduling

Map app to specific core = minimize interference across co-
scheduled workloads

Per-app performance improves by 36% compared to random
app-to-core mapping

Memory stalls decrease by 18%
Network traffic decreases by 11%
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Conclusions

iBench is a set of benchmarks (contentious kernels) that put
pressure on one of many shared resources

It helps quantify the sensitivity workloads have to interference

Each benchmark targets a specific resource = tunable
intensity

Applicable to both DC and conventional system studies
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Questions?e?

Thank you

Questions: cdel@stanford.edu
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Questions?e?

Thank you

Source code available soon at:
ibench.stanford.edu
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