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Executive Summary 

 Problem: Increasing utilization causes interference between co-scheduled apps 

 Managing/Reducing interference  critical to preserve QoS 

 Difficult to quantify  can appear in many shared resources 

 Relevant both in datacenters and traditional CMPs 
 

 Previous work: 

 Interference characterization: BubbleUp, Cuanta, etc.  cache/memory only 

 Long-term modeling: ECHO, load prediction, etc.  training takes time, does not 

capture all resources 
 

 iBench is an open-source benchmark suite that:  

 Helps quantify the interference caused and tolerated by a workload 

 Captures many different shared resources (CPU, cache, memory, net, storage, etc. ) 

 Fast: Quantifying interference sensitivity takes a few msec-sec 

 Applicable in several DC and CMP studies (scheduling, provisioning, etc. ) 
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Motivation 

 Interference is the penalty of resource efficiency 

 Co-scheduled workloads contend in shared resources 

 Interference can span the core, cache/memory, net, storage 

 

Loss 
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Motivation 

 Exhaustive characterization of interference sensitivity against all 

possible co-scheduled workloads  infeasible 
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Motivation 

 Instead profile against a set of carefully-designed benchmarks 

 Common reference point for all applications 

 

 

 Requirements for interference benchmark suite:  

 Consistent behavior  predictable resource pressure 

 Tunable pressure in the corresponding resource 

 Span multiple shared resources (one per benchmark) 

 Not-overlapping behavior across benchmarks 
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iBench Overview 

 iBench consists of 15 benchmarks 

 Each targets a different system resource 

 

 First design principle: benchmark intensity is a tunable 

parameter  

 

 Second design principle: benchmark impact increases almost 

proportionately with intensity 

 

 Third design principle: each benchmark only (mostly) stresses 

its target resource (no overlapping effects) 
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iBench Workloads 

 Memory capacity/bandwidth [1-2] 

 Cache:  

 L1 i-cache/d-cache [3-4] 

 L2 capacity/bandwidth [3’-4’] 

 LLC capacity/bandwidth [5-6] 

 CPU:  

 Integer [7] 

 Floating Point [8] 

 Prefetchers [9] 

 TLBs [10] 

 Vector [11] 

 Interconnection network [12] 

 Network bandwidth [13] 

 Storage capacity/bandwidth [14-15] 
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Memory Capacity 

 Progressively increase memory footprint (low memory bandwidth usage) 

 Random (or strided) access pattern (using a low-overhead random generator 

function) 

 Uses single static assignment (SSA) to increase ILP in memory accesses 

 Fraction of time in idle state depends on intensity levels  decreases as 

intensity increases 

// for intensity level x 

while (coverage < x%) {  

    // SSA: to increase ILP  

    access[0]  += data[r] << 1;  

    access[1]  += data[r] << 1;  

    ... 

    access[30] += data[r] << 1;  

    access[31] += data[r] << 1; 

    // idle for tx = f(x)  

    wait(tx);  

}  
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Memory Bandwidth 

 Progressively increases used memory bandwidth (low memory capacity usage) 

 Serial (streaming) memory access pattern 

 Accesses happen in a small fraction of the address space ( > LLC ) 

 Fraction of time in idle state depends on intensity levels  decreases as 

intensity increases 

// for intensity level x 

for (int cnt = 0; cnt < access_cnt; cnt++) {  

    access[cnt] = data[cnt]*data[cnt+4]; 

    // idle for tx = f(x)  

    wait(tx);  

}  
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Processor benchmarks 

 CPU (Int/FP/vector):  

 Progressively increase CPU utilization  launch instructions at 

increasing rates 

 For integer, floating point or vector (of applicable) operations 

 

 Caches:  

 L1 i/d-cache: sweep through increasing fractions of the L1 capacity 

 L2/L3 capacity: random accesses that occupy increasing fractions of the 

capacity of the cache (adapt to specific structure, number of ways, etc. to 

guarantee proportionality of benchmark effect with intensity) 

 L2/L3 bandwidth: streaming accesses that require increasing fractions of 

the cache bandwidth 
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I/O benchmarks 

 Network bandwidth:  

 Only relevant for the characterization of workloads with network activity 

(e.g., MapReduce, memcached) 

 Launches network requests of increasing sizes and at increasing rates until 

saturating the link  

 The fanout to receiving hosts is a tunable parameter  

 

 Storage bandwidth:  

 Streaming/serial disk accesses across the system’s hard drives (only cover 

subsets of the address space to limit capacity usage) 

 Accesses increase as the intensity of the benchmark increases  until 

reaching the sustained disk bandwidth of the system 
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Validation 

1. Individual iBench workloads behavior: create 

progressively more pressure in a resource 

 
 

2. Impact of iBench workloads to other 

applications: cause progressively higher 

performance degradation 

 
 

3. Impact of iBench workloads on each other:    

the pressure of different workloads should    

not overlap 

 

 

App App 
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Validation: Individual benchmarks 

 Increasing intensity of each benchmark  proportionately increasing 

impact in corresponding resource 

Idle Server Server 

R
e
so

ur
ce

  

U
ti
li
za

ti
o
n
 

Time 

R
e
so

ur
ce

  

U
ti
li
za

ti
o
n
 

Time 



18 

Validation: Individual benchmarks 

 Increasing intensity of each benchmark  proportionately increasing 

impact in corresponding resource 
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Validation: Impact on Performance 

 Inject a benchmark in an active workload  tune up intensity  record 

increasing degradation in performance 
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Validation: Impact on Performance 

 mcf from SPECCPU2006 (memory intensive) + LLC capacity 

 

 

 

 

 

 

 

 

 Performance degrades as intensity of LLC capacity benchmark 

increases 
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Validation: Impact on Performance 

 memcached (memory + network intensive) + network bandwidth 

 

 

 

 

 

 

 

 

 QPS drops as intensity of network bw benchmark increases 
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Validation: Cross-benchmark Impact 

 Co-schedule two iBench workloads on the same machine  tune up 

intensity  minimal impact on each other 
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Validation: Cross-benchmark impact 

 Co-schedule the memory capacity and memory bandwidth benchmarks 
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Use Cases 

 Interference-aware datacenter scheduling 

 

 Datacenter server provisioning 

 

 Resource-efficient application design 

 

 Interference-aware heterogeneous CMP scheduling 
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Use Cases 
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Interference-aware DC Scheduling 

 Cloud provider scenario:  

 Unknown workloads are submitted in the system 

 Cluster scheduler should determine which applications can be scheduled on 

the same machine 

 Scheduling decisions should be:  

 Fast  minimize scheduling overheads 

 QoS-aware  minimize cross-application interference  

 Resource-efficient  co-schedule as many applications as possible to increase 

utilization 

 

 Objective: preserve per-application performance & increase 

utilization 
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DC Scheduling Steps 

1. Applications are admitted to the system    

 Profile against iBench workloads  

 Determine the contended resources they are sensitive to 
 

2. Scheduler finds the servers that minimize the:  
 

   ||it-ic||L1 
      

 

3. If multiple, selects the least-loaded one (can add placement, 

platform configuration, etc. considerations) 
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Methodology 

 Workloads:  

 Single-threaded: SPEC CPU2006 

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench 

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads 

 I/O-bound: Hadoop + data mining (Matlab) 

 Latency-critical: memcached   
 

 Systems:  

 40 servers, 10 server configurations (Xeons, Atoms, etc. ) 
 

 Scenarios:  

 Cloud provider: 200 applications submitted with 1 sec inter-arrival times 

 Hadoop as the primary workload + batch best-effort apps 

 Memcached as the primary workload + batch best-effort apps 

214 apps 
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Cloud Provider: Performance 

 Least-loaded (interference-oblivious scheduler) vs. interference-aware 

scheduling with iBench 
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Cloud Provider: Performance 

 Least-loaded (interference-oblivious scheduler) vs. interference-aware 

scheduling with iBench 

 

 

 

 

 

 

 

 

 

 Performance improves by 16% on average (up to 28%).  

 60% of apps preserve their QoS – 5% with the least-loaded scheduler 

 

 

 

 

 

 

 

 

 

 



33 

Cloud Provider: Utilization 

 

 

 

 

 

 

 

 

 

 Utilization improves by 38% compared to least-loaded 

 The scenario completes 28% faster  higher resource-efficiency 

 Individual servers operate at higher utilization without being oversubscribed 
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DC Server Provisioning 

 Default server configuration not necessarily optimal for each DC workload 

(custom servers, Open Compute, etc. ) 

 

 Study the resources each workload stresses & the resources it is sensitive to 

using iBench  provision accordingly the machines that service that workload 

 

 Offline characterization, but can also apply online to capture changes in 

application behavior 



35 

DC Server Provisioning 

 memcached instance: 

 1000 clients  

 QoS target 40,000 QPS  

 latency constraint of 200usec 

 
 

 Server: Xeon E5345 (4 cores, 8MB LLC, 16GB RAM), 1GB NIC 

 
 

 Characterize the interference memcached puts on each resource 

captured by iBench 
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DC Server Provisioning 

memory bw LLC bw 

network bw 

Switch to triple memory 

 channel & 24GB RAM 

Switch to 10 GB NIC 
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DC Server Provisioning 

 

 

 

 

 

 

 

 

 Memory/cache contention is reduced 

 Network contention is reduced 

 Core contention starts becoming the bottleneck 
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DC Server Provisioning 

 

 

 

 

 

 

 

 

 Change in interference profile reflects in performance & resource efficiency 

improvement 

 IPC increases by 22% on average 

 CPU throttling due to memory stalls reduces (utilization decreases by 41% 

on average) 
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Other Use Cases 

 Resource-efficient application design 

 Reduce execution time by 35% 

 Reduce memory footprint by 44% 

 

 Interference-aware heterogeneous CMP scheduling 

 Map app to specific core  minimize interference across co-

scheduled workloads 

 Per-app performance improves by 36% compared to random 

app-to-core mapping 

 Memory stalls decrease by 18% 

 Network traffic decreases by 11% 
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Conclusions 

 iBench is a set of benchmarks (contentious kernels) that put 

pressure on one of many shared resources 

 

 It helps quantify the sensitivity workloads have to interference 

 

 Each benchmark targets a specific resource  tunable 

intensity 

 

 Applicable to both DC and conventional system studies 
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Thank you 
 

Questions: cdel@stanford.edu 

Questions??  
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Thank you 
 

Source code available soon at: 

ibench.stanford.edu 

Questions??  


