
iBench: Quantifying Interference in

Datacenter Applications

Christina Delimitrou and Christos Kozyrakis

Stanford University

IISWC – September 23th 2013

2

Executive Summary

 Problem: Increasing utilization causes interference between co-scheduled apps

 Managing/Reducing interference  critical to preserve QoS

 Difficult to quantify  can appear in many shared resources

 Relevant both in datacenters and traditional CMPs

 Previous work:

 Interference characterization: BubbleUp, Cuanta, etc.  cache/memory only

 Long-term modeling: ECHO, load prediction, etc.  training takes time, does not

capture all resources

 iBench is an open-source benchmark suite that:

 Helps quantify the interference caused and tolerated by a workload

 Captures many different shared resources (CPU, cache, memory, net, storage, etc.)

 Fast: Quantifying interference sensitivity takes a few msec-sec

 Applicable in several DC and CMP studies (scheduling, provisioning, etc.)

3

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

4

Motivation

 Interference is the penalty of resource efficiency

 Co-scheduled workloads contend in shared resources

 Interference can span the core, cache/memory, net, storage

Loss

5

Motivation

 Interference is the penalty of resource efficiency

 Co-scheduled workloads contend in shared resources

 Interference can span the core, cache/memory, net, storage

Gain

6

Motivation

 Exhaustive characterization of interference sensitivity against all

possible co-scheduled workloads  infeasible

7

Motivation

 Instead profile against a set of carefully-designed benchmarks

 Common reference point for all applications

 Requirements for interference benchmark suite:

 Consistent behavior  predictable resource pressure

 Tunable pressure in the corresponding resource

 Span multiple shared resources (one per benchmark)

 Not-overlapping behavior across benchmarks

8

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

9

iBench Overview

 iBench consists of 15 benchmarks

 Each targets a different system resource

 First design principle: benchmark intensity is a tunable

parameter

 Second design principle: benchmark impact increases almost

proportionately with intensity

 Third design principle: each benchmark only (mostly) stresses

its target resource (no overlapping effects)

10

iBench Workloads

 Memory capacity/bandwidth [1-2]

 Cache:

 L1 i-cache/d-cache [3-4]

 L2 capacity/bandwidth [3’-4’]

 LLC capacity/bandwidth [5-6]

 CPU:

 Integer [7]

 Floating Point [8]

 Prefetchers [9]

 TLBs [10]

 Vector [11]

 Interconnection network [12]

 Network bandwidth [13]

 Storage capacity/bandwidth [14-15]

11

Memory Capacity

 Progressively increase memory footprint (low memory bandwidth usage)

 Random (or strided) access pattern (using a low-overhead random generator

function)

 Uses single static assignment (SSA) to increase ILP in memory accesses

 Fraction of time in idle state depends on intensity levels  decreases as

intensity increases

// for intensity level x

while (coverage < x%) {

 // SSA: to increase ILP

 access[0] += data[r] << 1;

 access[1] += data[r] << 1;

 ...

 access[30] += data[r] << 1;

 access[31] += data[r] << 1;

 // idle for tx = f(x)

 wait(tx);

}

12

Memory Bandwidth

 Progressively increases used memory bandwidth (low memory capacity usage)

 Serial (streaming) memory access pattern

 Accesses happen in a small fraction of the address space (> LLC)

 Fraction of time in idle state depends on intensity levels  decreases as

intensity increases

// for intensity level x

for (int cnt = 0; cnt < access_cnt; cnt++) {

 access[cnt] = data[cnt]*data[cnt+4];

 // idle for tx = f(x)

 wait(tx);

}

13

Processor benchmarks

 CPU (Int/FP/vector):

 Progressively increase CPU utilization  launch instructions at

increasing rates

 For integer, floating point or vector (of applicable) operations

 Caches:

 L1 i/d-cache: sweep through increasing fractions of the L1 capacity

 L2/L3 capacity: random accesses that occupy increasing fractions of the

capacity of the cache (adapt to specific structure, number of ways, etc. to

guarantee proportionality of benchmark effect with intensity)

 L2/L3 bandwidth: streaming accesses that require increasing fractions of

the cache bandwidth

14

I/O benchmarks

 Network bandwidth:

 Only relevant for the characterization of workloads with network activity

(e.g., MapReduce, memcached)

 Launches network requests of increasing sizes and at increasing rates until

saturating the link

 The fanout to receiving hosts is a tunable parameter

 Storage bandwidth:

 Streaming/serial disk accesses across the system’s hard drives (only cover

subsets of the address space to limit capacity usage)

 Accesses increase as the intensity of the benchmark increases  until

reaching the sustained disk bandwidth of the system

15

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

16

Validation

1. Individual iBench workloads behavior: create

progressively more pressure in a resource

2. Impact of iBench workloads to other

applications: cause progressively higher

performance degradation

3. Impact of iBench workloads on each other:

the pressure of different workloads should

not overlap

App App

17

Validation: Individual benchmarks

 Increasing intensity of each benchmark  proportionately increasing

impact in corresponding resource

Idle Server Server

R
e
so

ur
ce

U
ti
li
za

ti
o
n

Time

R
e
so

ur
ce

U
ti
li
za

ti
o
n

Time

18

Validation: Individual benchmarks

 Increasing intensity of each benchmark  proportionately increasing

impact in corresponding resource

19

Validation: Impact on Performance

 Inject a benchmark in an active workload  tune up intensity  record

increasing degradation in performance

Server running

app A

Server running A

& iBench

P
e
rf

o
rm

a
n
ce

 A

Time P
e
rf

o
rm

a
n
ce

 A

Time

A A

20

Validation: Impact on Performance

 mcf from SPECCPU2006 (memory intensive) + LLC capacity

 Performance degrades as intensity of LLC capacity benchmark

increases

21

Validation: Impact on Performance

 memcached (memory + network intensive) + network bandwidth

 QPS drops as intensity of network bw benchmark increases

22

Validation: Cross-benchmark Impact

 Co-schedule two iBench workloads on the same machine  tune up

intensity  minimal impact on each other

 A

P
e
rf

o
rm

a
n
ce

 A

Time Pe
rf

o
rm

a
nc

e
 A

Time

Idle Server

B

Server A B

Pe
rf

o
rm

a
nc

e
 B

Time P
e
rf

o
rm

a
n
ce

 B

Time

23

Validation: Cross-benchmark impact

 Co-schedule the memory capacity and memory bandwidth benchmarks

24

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

25

Use Cases

 Interference-aware datacenter scheduling

 Datacenter server provisioning

 Resource-efficient application design

 Interference-aware heterogeneous CMP scheduling

26

Use Cases

 Interference-aware datacenter scheduling

 Datacenter server provisioning

 Resource-efficient application design

 Interference-aware heterogeneous CMP scheduling

27

Interference-aware DC Scheduling

 Cloud provider scenario:

 Unknown workloads are submitted in the system

 Cluster scheduler should determine which applications can be scheduled on

the same machine

 Scheduling decisions should be:

 Fast  minimize scheduling overheads

 QoS-aware  minimize cross-application interference

 Resource-efficient  co-schedule as many applications as possible to increase

utilization

 Objective: preserve per-application performance & increase

utilization

28

DC Scheduling Steps

1. Applications are admitted to the system 

 Profile against iBench workloads

 Determine the contended resources they are sensitive to

2. Scheduler finds the servers that minimize the:

 ||it-ic||L1

3. If multiple, selects the least-loaded one (can add placement,

platform configuration, etc. considerations)

29

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads

 I/O-bound: Hadoop + data mining (Matlab)

 Latency-critical: memcached

 Systems:

 40 servers, 10 server configurations (Xeons, Atoms, etc.)

 Scenarios:

 Cloud provider: 200 applications submitted with 1 sec inter-arrival times

 Hadoop as the primary workload + batch best-effort apps

 Memcached as the primary workload + batch best-effort apps

214 apps

30

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads

 I/O-bound: Hadoop + data mining (Matlab)

 Latency-critical: memcached

 Systems:

 40 servers, 10 server configurations (Xeons, Atoms, etc.)

 Scenarios:

 Cloud provider: 200 applications submitted with 1 sec inter-arrival times

 Hadoop as the primary workload + batch best-effort apps

 Memcached as the primary workload + batch best-effort apps

214 apps

31

Cloud Provider: Performance

 Least-loaded (interference-oblivious scheduler) vs. interference-aware

scheduling with iBench

32

Cloud Provider: Performance

 Least-loaded (interference-oblivious scheduler) vs. interference-aware

scheduling with iBench

 Performance improves by 16% on average (up to 28%).

 60% of apps preserve their QoS – 5% with the least-loaded scheduler

33

Cloud Provider: Utilization

 Utilization improves by 38% compared to least-loaded

 The scenario completes 28% faster  higher resource-efficiency

 Individual servers operate at higher utilization without being oversubscribed

34

DC Server Provisioning

 Default server configuration not necessarily optimal for each DC workload

(custom servers, Open Compute, etc.)

 Study the resources each workload stresses & the resources it is sensitive to

using iBench  provision accordingly the machines that service that workload

 Offline characterization, but can also apply online to capture changes in

application behavior

35

DC Server Provisioning

 memcached instance:

 1000 clients

 QoS target 40,000 QPS

 latency constraint of 200usec

 Server: Xeon E5345 (4 cores, 8MB LLC, 16GB RAM), 1GB NIC

 Characterize the interference memcached puts on each resource

captured by iBench

36

DC Server Provisioning

memory bw LLC bw

network bw

Switch to triple memory

 channel & 24GB RAM

Switch to 10 GB NIC

37

DC Server Provisioning

 Memory/cache contention is reduced

 Network contention is reduced

 Core contention starts becoming the bottleneck

38

DC Server Provisioning

 Change in interference profile reflects in performance & resource efficiency

improvement

 IPC increases by 22% on average

 CPU throttling due to memory stalls reduces (utilization decreases by 41%

on average)

39

Other Use Cases

 Resource-efficient application design

 Reduce execution time by 35%

 Reduce memory footprint by 44%

 Interference-aware heterogeneous CMP scheduling

 Map app to specific core  minimize interference across co-

scheduled workloads

 Per-app performance improves by 36% compared to random

app-to-core mapping

 Memory stalls decrease by 18%

 Network traffic decreases by 11%

40

Conclusions

 iBench is a set of benchmarks (contentious kernels) that put

pressure on one of many shared resources

 It helps quantify the sensitivity workloads have to interference

 Each benchmark targets a specific resource  tunable

intensity

 Applicable to both DC and conventional system studies

41

Thank you

Questions: cdel@stanford.edu

Questions??

42

Thank you

Source code available soon at:

ibench.stanford.edu

Questions??

