iBench: Quantifying Interference in
Datacenter Applications

Christina Delimitrou and Christos Kozyrakis

Stanford University

- lISWC - September 23t 2013

Executive Summary

Problem: Increasing utilization causes interference between co-scheduled apps
Managing /Reducing interference =2 critical to preserve QoS
Difficult to quantify = can appear in many shared resources

Relevant both in datacenters and traditional CMPs

Previous work:
Interference characterization: BubbleUp, Cuanta, etc. 2 cache/memory only

Long-term modeling: ECHO, load prediction, etc. = training takes time, does not

capture all resources

iBench is an open-source benchmark suvite that:
Helps quantify the interference caused and tolerated by a workload
Captures many different shared resources (CPU, cache, memory, net, storage, etc.)
Fast: Quantifying interference sensitivity takes a few msec-sec

Applicable in several DC and CMP studies (scheduling, provisioning, etc.)

Outline
S

1 Motivation
1 iBench Workloads
1 Validation

1 Use Cases

Motivation

Interference is the penalty of resource efficiency
Co-scheduled workloads contend in shared resources

Interference can span the core, cache /memory, net, storage

£

S

©

o 1.2 /

7

3 1.0f :
- 1 -
S 0.8 e R ;
c Loss Ptia e

Eo 0.6 LT

— 'F‘

204

(@) a®

S0l S

S0ty

5 |-

G000 ""7000 2000 3000 4000 5000

Workloads

Motivation
S

0 Interference is the penalty of resource efficiency

Co-scheduled workloads contend in shared resources

Interference can span the core, cache /memory, net, storage

er Alone on Best Platform

=

0 1000 2000 3000 4000 5000
Workloads

Motivation
S

1 Exhaustive characterization of interference sensitivity against all
possible co-scheduled workloads = infeasible

Memory capacity (%)

Motivation

Instead profile against a set of carefully-designed benchmarks

Common reference point for all applications

Requirements for interference benchmark suite:
Consistent behavior = predictable resource pressure
Tunable pressure in the corresponding resource
Span multiple shared resources (one per benchmark)

Not-overlapping behavior across benchmarks

Outline
N

1 Motivation
1 iBench Workloads
1 Validation

1 Use Cases

iBench Overview

iBench consists of 15 benchmarks

Each targets a different system resource

First design principle: benchmark intensity is a tunable
parameter

Second design principle: benchmark impact increases almost
proportionately with intensity

Third design principle: each benchmark only (mostly) stresses
its target resource (no overlapping effects)

iBench Workloads

Memory capacity /bandwidth [1-2]
Cache:
L1 i-cache /d-cache [3-4]
L2 capacity/bandwidth [3'-4]
LLC capacity /bandwidth [5-6]

CPU:

Integer [/]

Floating Point [8]

Prefetchers [9]

TLBs [10]

Vector [11]

Interconnection network [12]
Network bandwidth [13]
Storage capacity /bandwidth [14-15]

10

Memory Capacity

Progressively increase memory footprint (low memory bandwidth usage)

Random (or strided) access pattern (using a low-overhead random generator
function)

Uses single static assignment (SSA) to increase ILP in memory accesses

Fraction of time in idle state depends on intensity levels 2 decreases as
intensity increases

// for intensity level x

while (coverage < x%) {
// SSA: to increase ILP
access[0] += datal[r] << 1;
access|[1] += datal[r] << 1;

access[30] += datalr] << 1;
access[31] += datalr] << 1;
// idle for tx = £ (x)

walt (tx) ;

11

Memory Bandwidth

Progressively increases used memory bandwidth (low memory capacity usage)
Serial (streaming) memory access pattern
Accesses happen in a small fraction of the address space (> LLC)

Fraction of time in idle state depends on intensity levels =2 decreases as
intensity increases

// for intensity level x

for (int cnt = 0; cnt < access cnt; cnt++)
access|[cnt] = data[cnt]*datal[cnt+4];
// idle for tx = f(x)
walt (tx);

Processor benchmarks

CPU (Int/FP /vector):

Progressively increase CPU utilization = launch instructions at
increasing rates

For integer, floating point or vector (of applicable) operations

Caches:
L1 i/d-cache: sweep through increasing fractions of the L1 capacity

L2 /L3 capacity: random accesses that occupy increasing fractions of the
capacity of the cache (adapt to specific structure, number of ways, etc. to
guarantee proportionality of benchmark effect with intensity)

L2 /L3 bandwidth: streaming accesses that require increasing fractions of
the cache bandwidth

13

/O benchmarks

Network bandwidth:

Only relevant for the characterization of workloads with network activity
(e.g., MapReduce, memcached)

Launches network requests of increasing sizes and at increasing rates until
saturating the link

The fanout to receiving hosts is a tunable parameter

Storage bandwidth:

Streaming /serial disk accesses across the system’s hard drives (only cover
subsets of the address space to limit capacity usage)

Accesses increase as the intensity of the benchmark increases = until
reaching the sustained disk bandwidth of the system

14

Outline
S

1 Motivation
1 iBench Workloads
7 Validation

1 Use Cases

15

Validation

Individual iBench workloads behavior: create
progressively more pressure in a resource ‘ y

—>

L
|

Impact of iBench workloads to other
applications: cause progressively higher
performance degradation

-
¥

Impact of iBench workloads on each other:

the pressure of different workloads should l s l

-
-
<

[

C

not overlap

%

Validation: Individual benchmarks

0 Increasing intensity of each benchmark = proportionately increasing

impact in corresponding resource

Idle Server > Server

Resource
Utilization
Resource
Utilization

Time Time

17

Validation: Individual benchmarks

Increasing intensity of each benchmark = proportionately increasing
impact in corresponding resource

_Sol1: Mem Cap

Capacity (%)

20

% 20 an 6 80
Sol Intensity (%)

Sol6:: LLC Cap

100

100

80r

60

Capacity (%)

Ry W 40 B0 8D
Sol Intensity (%)

1040

100

=

I

Bandwidth (%)
o

20
i 30 0 60 & 100
Sol Intensity (%)
Soli1:: Int Unit
100
B
S
5 60
J§
= 40
35
20
07 20 a0 B0 80 100

Sol2:: Mem Bw

* Sol Intensity (%)

_Sol5:: Network Bw

1oof

Bandwidth (%)
E g =

[

% 20 40 0 R0 0o
Sol Intensity (%)
Sol10:: TLBs

100}

TLB misses (%)
E o2 =

2

W @ @ @ 1w
Sol Intensity (%)

18

Validation: Impact on Performance
—

7 Inject a benchmark in an active workload = tune up intensity = record
increasing degradation in performance

*

Server running lv Server running A
app A & iBench

< < | -
O h ()]
o &
- O >
O O
e e
| - | -
(o] (o]
9 [T
} - | -
& &
Time Time

A

19

Validation: Impact on Performance

mcf from SPECCPU2006 (memory intensive) + LLC capacity

100

= w4
= =

Miss Rate (%)
=

207

S ——0 100 0 20 _ 40 60 __ 80 100
. _Sol Intensity (%) Sol Intensity (%)

Performance degrades as intensity of LLC capacity benchmark

increases

20

Validation: Impact on Performance

memcached (memory + network intensive) + network bandwidth

1.0 =
o —
= =

it O &0
0.8 =
? k5|
(]

0w enl

Eu.ﬁ = 60

< E
(=]

8.4 c 40t
S £
E ge]

50.2 Z 207
T =
D)
o o

0.0t - : : . : O = : : - -
0 90 0 60 &0 100 0 20 40 60 80 100
Sol Intensity (%) Sol Intensity (%)

QPS drops as intensity of network bw benchmark increases

21

Validation: Cross-benchmark Impact

-1 Co-schedule two iBench workloads on the same machine = tune up
intensity = minimal impact on each other

A

Performance A

Idle Server

|

Time

1

Performance B

Time

Performance A

|

Performance B

Time

= 2

)

Time

22

Validation: Cross-benchmark impact

Co-schedule the memory capacity and memory bandwidth benchmarks

Sol1:: Memory Capacity 100

100
0.95 ===+ alone

S0 801 = with Sol2

o
o0.85
5
£0.80

L

ik

&0

Intensity (%)

e

On 7

EU..D

0.65

0-60y 74 6 5§ 10 %
Time (msec)

Sol2:: Memory Bandwidth 100

20

4 6) 10
Time (msec)

1.00

alone
Bl | = with Sol1

095
c
50,85
£0.80
S0.75

Og 7

Qo0

065
0.60 : R I R

0 2 4 6 8 10 . 6
Time (msec) Time (msec)

601

Is

Intensity (%)

20

& 10
23

Outline
S

1 Motivation
1 iBench Workloads
1 Validation

1 Use Cases

24

Use Cases

Interference-aware datacenter scheduling

Datacenter server provisioning

Resource-efficient application design

Interference-aware heterogeneous CMP scheduling

25

Use Cases

Interference-aware datacenter scheduling

Datacenter server provisioning

Resource-efficient application design

Interference-aware heterogeneous CMP scheduling

26

Interference-aware DC Scheduling

Cloud provider scenario:
Unknown workloads are submitted in the system

Cluster scheduler should determine which applications can be scheduled on

the same machine

Scheduling decisions should be:
Fast = minimize scheduling overheads
QoS-aware = minimize cross-application interference

Resource-efficient =2 co-schedule as many applications as possible to increase

utilization

Obijective: preserve per-application performance & increase
utilization

27

DC Scheduling Steps

Applications are admitted to the system =2
Profile against iBench workloads

Determine the contended resources they are sensitive to

Scheduler finds the servers that minimize the:

Rt 2 N PXY

If multiple, selects the least-loaded one (can add placement,
platform configuration, etc. considerations)

28

Methodology

Workloads:
Single-threaded: SPEC CPU2006
Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads 214 apps
|/O-bound: Hadoop + data mining (Matlab)

Latency-critical: memcached

Systems:

40 servers, 10 server configurations (Xeons, Atoms, etc.)

Scenarios:
Cloud provider: 200 applications submitted with 1 sec inter-arrival times
Hadoop as the primary workload + batch best-effort apps

Memcached as the primary workload + batch best-effort apps
29

Methodology

Workloads:
Single-threaded: SPEC CPU2006
Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads 214 apps
|/O-bound: Hadoop + data mining (Matlab)

Latency-critical: memcached

Systems:

40 servers, 10 server configurations (Xeons, Atoms, etc.)

Scenarios:
Cloud provider: 200 applications submitted with 1 sec inter-arrival times
Hadoop as the primary workload + batch best-effort apps

Memcached as the primary workload + batch best-effort apps
30

Cloud Provider: Performance

Least-loaded (interference-oblivious scheduler) vs. interference-aware
scheduling with iBench

C

2 1.0 R

C_U o"

3 0.8 PUPERRL L &

206

o

304

o 0 In isolation

O U.

N --=-+ | east Loaded
0.05 50 100 150 500

Workload number

Cloud Provider: Performance

Least-loaded (interference-oblivious scheduler) vs. interference-aware
scheduling with iBench

C

2 1.0} —

E f"

g0sl PUPRPL

206

o : :

S04 In isolation

o 0 --=: | east Loaded

R — |nterference-aware
0.0 50 100 150 500

Workload number
Performance improves by 16% on average (up to 28%,).

60% of apps preserve their QoS — 5% with the least-loaded scheduler

32

Cloud Provider: Utilization

100
- |east-Loaded

01 - |nterf.-aware ;\i
= =
= o
c 60} ©
2 N
© =
S 40f >
5 o
D

c
20 &
0 5000 10000 15000 20000 25000

Time (s)

01 Utilization improves by 38% compared to least-loaded
-1 The scenario completes 28% faster = higher resource-efficiency

0 Individual servers operate at higher utilization without being oversubscribed

33

DC Server Provisioning

Default server configuration not necessarily optimal for each DC workload
(custom servers, Open Compute, efc.)

Study the resources each workload stresses & the resources it is sensitive to
using iBench = provision accordingly the machines that service that workload

Offline characterization, but can also apply online to capture changes in
application behavior

34

DC Server Provisioning

memcached instance:
1000 clients
QoS target 40,000 QPS

latency constraint of 200usec

Server: Xeon E5345 (4 cores, 8MB LLC, 16GB RAM), 1GB NIC

Characterize the interference memcached puts on each resource
captured by iBench

35

DC Server Provisioning

Caused interference (%)

100

801

601

401

201

o

[before B after

—f g MM < f OR O
OO M0 Og Of M

i | IR IPTTET

B7

memory bw LLC bw

g J ¥
Y network bw

Switch to triple memory
channel & 24GB RAM

Switch to 10 GB NIC

36

DC Server Provisioning
—r

—t
o
(e

[before B after

o
o

=
o O

A\
o

Caused interference (%)

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B12
B13
B14
B15

B11

71 Memory /cache contention is reduced
1 Network contention is reduced

1 Core contention starts becoming the bottleneck

37

DC Server Provisioning

—— before — after

oo

e (=]

Sample Percentage (%)

0

1 1.5 2.5

C%’l 3 20 ﬁ)me ((%[g 80 100

1 Change in interference profile reflects in performance & resource efficiency

improvement
o IPCincreases by 22% on average

o1 CPU throttling due to memory stalls reduces (utilization decreases by 41%

on average)
38

Other Use Cases

Resource-efficient application design
Reduce execution time by 35%

Reduce memory footprint by 44%

Interference-aware heterogeneous CMP scheduling

Map app to specific core = minimize interference across co-
scheduled workloads

Per-app performance improves by 36% compared to random
app-to-core mapping

Memory stalls decrease by 18%
Network traffic decreases by 11%

39

Conclusions

iBench is a set of benchmarks (contentious kernels) that put
pressure on one of many shared resources

It helps quantify the sensitivity workloads have to interference

Each benchmark targets a specific resource = tunable
intensity

Applicable to both DC and conventional system studies

40

Questions?e?

Thank you

Questions: cdel@stanford.edu

41

Questions?e?

Thank you

Source code available soon at:
ibench.stanford.edu

42

