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Executive Summary 

 Problem: scheduling in cloud environments (e.g., EC2, Azure, etc. ) 

 Heterogeneity  losses when running on wrong server 

 Interference  performance loss when interference is high 

 High rates of unknown workloads  no a priori assumptions  
 

 How to get information for a workload?  

 Detailed profiling  intolerable overheads 

 Instead: Leverage info about previously scheduled apps  fast and 
accurate application classification 

 

 Paragon is a scheduling framework that is:  

 Heterogeneity and interference-aware, app agnostic 

 Scalable & lightweight: scales to 10,000s of apps and servers 

 Results: 5,000 apps on 1,000 servers  48% utilization increase,  

    90% of apps < 10% degradation 
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Outline 

 Motivation 

 Application Classification 

 Paragon 

 Evaluation 
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Cloud DC Scheduling 

 

 

 

 

 

 

 

 Workloads are unknown 

  Random apps submitted for short periods, known workloads evolve  

 Significant churn (arrivals/departures)  

 High variability in workloads characteristics 

 Decisions must be performed fast 

Applications 

Scheduler 

System 

 State 

Metrics 
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 Least-loaded scheduling 

 Using CPU & memory availability  

 Ignores heterogeneity 

 Ignores interference 

 

 Poor efficiency 

 Over 48% degradation compared 

to running alone 

 Some apps won’t even finish 

Common Practice Today 
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 Reason for scheduling inefficiency 

 Lack of knowledge of application behavior 

 Heterogeneity & interference characteristics 

 Existing approach for app characterization: exhaustive profiling 

 High overheads, does not work with unknown apps 

 Our work: Leverage knowledge about previously-scheduled apps 

 Accurate, small data Vs. noisy, big data 

 

Insight 

Scheduler 

System 

 State 
Metrics 

Apps Apps 
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Outline 

 Motivation 

 Application Classification 

 Paragon 

 Evaluation 
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Understanding App Behavior 

 Goal: quickly extract accurate info on each application to guide scheduling 

 

 

 

 

 Input:  

 Small signal about a new workload 

 Large amount of information about previously-scheduled applications 

 Output:  

 Understand app behavior/requirements  recommendations for scheduling 
 

 Looks like a classification problem 

 Similar to systems used in e-commerce, Netflix, etc.  
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Something familiar…  

 Collaborative filtering – similar to Netflix Challenge system 

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD) 

 Leverage the rich information the system already has 

 Extract similarities between applications on:  

 Heterogeneous platforms that benefit them 

 Interference they cause and tolerate in shared resources 
 

 Recommendations on platforms and co-scheduled applications 
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Classification for Heterogeneity 

 

 

 

 

 

 

 Offline mode 

 Profile a few apps (20-30) across the different configurations 

 Assign performance scores per run (IPS, QPS, other system metric) 

 Online mode 

 For each new app, run briefly on two platforms (1min) 

 Assign performance scores 

 Derive missing entries & identify similarities between apps 

 

The Netflix Challenge Platform Classification 

Recommend movies to users Recommend platforms to apps 

Utility matrix rows  users Utility matrix rows  apps 

Utility matrix columns  movies Utility matrix columns  platforms 

Utility matrix elements  movie ratings Utility matrix elements  app scores 
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Classification for Interference 

 

 

 

 

 
 

 Two types of interference:  

 Interference the application tolerates 

 Interference the application causes  
 

 Identifying sources of interference (SoIs):  

 Cache hierarchy, memory bandwidth/capacity, CPU, network/ 

storage bandwidth  

The Netflix Challenge Interference Classification 

Recommend movies to users Recommend minimally interfering co-runners to apps 

Utility matrix rows  users Utility matrix rows  apps 

Utility matrix columns  movies Utility matrix columns  microbenchmarks (SoIs) 

Utility matrix elements  movie 

ratings 

Utility matrix elements  sensitivity scores to 

interference  
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Measuring Interference Sensitivity 

 

 

 

 

 

 

 

 

 Rank sensitivity of an application to each microbenchmark (0-100%) 

 Increase microbenchmark intensity until the application violates its QoS     

 sensitivity to tolerated interference 

 Similarly for sensitivity to caused interference 
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QoS 
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Classification Validation 

 Large set of ST, MT, MP and I/O workloads  

 10 Server Configurations (SC) 

 10 Sources of Interference (SoI) 

 
Metric Applications (%) 

Heterogeneity 

ST MT MP I/O 

Select best SC 86% 86% 83% 89% 

Select SC within 5% of best 91% 90% 89% 92% 

Interference 

Avg. error across µbenchmarks  5.3% 

Apps with < 10% error ST: 81%          MT: 63% 

SoI with highest error:  

              for ST: L1 i-cache 15.8% 

              for MT: LLC capacity 7.8% 
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Classification Overhead 

 Time overhead:  

 Training:  

 2x1min runs for heterogeneity (alone) + 2x1min with two 

microbenchmarks for interference  in parallel 

 Decision:  

 SVD + PQ reconstruction: O(min(n2m, m2n)) + O(mn) 

 Practically: msec for 1,000s apps and servers 

 

 Space overhead:  

 64B per app and 64B per server 
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Outline 

 Motivation 

 Application Classification 

 Paragon 

 Evaluation 
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Greedy Server Selection 

 Two step process:  

 Select servers with minimal interference  

 Select server with best hardware configuration  

 

 Overview:  

 Start with most critical resource 

 Prune servers that would violate QoS 

 Repeat for all resources 

 Select server with best HW configuration 

 If no candidate left, backtrack and relax QoS requirement 

 Rare, but ensures convergence 
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Monitor & Adapt 

 Sources of inaccuracy:  

 App goes through phases 

 App is misclassified 

 App is mis-scheduled  
 

 

 Monitor & adapt:  

1. Reactive phase detection: upon performance degradation, reclassify 
the workload and searches for a more suitable server 

2. Preemptive phase detection: periodically sample a workload subset, 
reclassify and if heterogeneity/interference profile has changed re-
schedule before QoS degrades 

 

 

 Preview: application scenario with changing workloads in 
evaluation 
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Outline 

 Motivation 

 Application Classification 

 Paragon 

 Evaluation 
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Methodology 

 Workloads:  

 Single-threaded: SPEC CPU2006 

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb 

 Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006 

 I/O: data mining, Matlab, single-node Hadoop 
 

 Systems:  

 Small-scale  40-machine local cluster (10 configurations) 

 Large-scale  1,000 EC2 servers (14 configurations) 
 

 Workload Scenarios:  

 Low load, high load, with phases and oversubscribed 
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Evaluation: Small Scale (high load)  
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Evaluation: Small Scale (high load)  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 64% of workloads  

 Bounds degradation to less than 10% degradation for 90% of workloads  
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Evaluation: Small Scale (high load)  
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Evaluation: Small Scale (high load)  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 64% of workloads  

 Bounds degradation to less than 10% degradation for 90% of workloads  



30 

Decision Quality 

 

 

 

 

 

 

 

 

 

 
 

 LL: poor decision quality both for heterogeneity and interference 

 NH: poor platform decisions, good interference decisions 

 NI: good platform decisions, poor interference decisions 

 Paragon: better than NI in heterogeneity, better than NH in interference 

80% 82% 

Heterogeneity Interference 



31 

Increasing Utilization 

 

 

 

 

 

 

 

 Paragon increases server utilization by 47%:  

 Same performance for user (QoS guarantees) 

 Better utilization for the DC operator  resource efficiency 
 

 With baseline (LL):  

 Imbalance in server utilization (too high vs. too low) 

 Per-app QoS violations + scenario execution time increase 

Paragon Least-Loaded (LL) 
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Workloads with Phases 

 

 

 

 

 

 
 

 QoS is preserved for 75% of applications  

 Using the other schedulers preserves QoS for < 10% of apps  
 

 Paragon adapts to workload phases over time  performance recovers 

shortly after the phase change 
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Large Scale (EC2) – High Load  

 

 

 

 

 

 

 

 

 

 LL: violates QoS for 99% of workloads 

 NH: violates QoS for 96% of workloads 

 NI: violates QoS for 97% of workloads 
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Large Scale (EC2) – High Load  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 61% of workloads  

 Bounds degradation to less than 10% for 90% of workloads.  
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Large Scale (EC2) – High Load  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 61% of workloads  

 Bounds degradation to less than 10% for 90% of workloads.  

Gain 
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Conclusions 

 A heterogeneity and interference aware DC scheduler 

 

 Leverages robust analytical methods to quickly classify apps 

 

 Minimizes interference and maximizes utilization 

 

 It is scalable and lightweight 
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Questions?  

 

 

 

 

 

   Thank you!  

    cdel@stanford.edu 

    http://paragonDC.stanford.edu 


