
PARAGON: QOS-AWARE SCHEDULING FOR

HETEROGENEOUS DATACENTERS

Christina Delimitrou and Christos Kozyrakis

Stanford University

ASPLOS – March 18th 2013

2

Executive Summary

 Problem: scheduling in cloud environments (e.g., EC2, Azure, etc.)

 Heterogeneity losses when running on wrong server

 Interference performance loss when interference is high

 High rates of unknown workloads no a priori assumptions

 How to get information for a workload?

 Detailed profiling intolerable overheads

 Instead: Leverage info about previously scheduled apps fast and
accurate application classification

 Paragon is a scheduling framework that is:

 Heterogeneity and interference-aware, app agnostic

 Scalable & lightweight: scales to 10,000s of apps and servers

 Results: 5,000 apps on 1,000 servers 48% utilization increase,

 90% of apps < 10% degradation

3

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

4

Cloud DC Scheduling

 Workloads are unknown

 Random apps submitted for short periods, known workloads evolve

 Significant churn (arrivals/departures)

 High variability in workloads characteristics

 Decisions must be performed fast

Applications

Scheduler

System

 State

Metrics

5

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

6

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

7

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

8

 Reason for scheduling inefficiency

 Lack of knowledge of application behavior

 Heterogeneity & interference characteristics

 Existing approach for app characterization: exhaustive profiling

 High overheads, does not work with unknown apps

 Our work: Leverage knowledge about previously-scheduled apps

 Accurate, small data Vs. noisy, big data

Insight

Scheduler

System

 State
Metrics

Apps Apps

9

 Reason for scheduling inefficiency

 Lack of knowledge of application behavior

 Heterogeneity & interference characteristics

 Existing approach for app characterization: exhaustive profiling

 High overheads, does not work with unknown apps

 Our work: Leverage knowledge about previously-scheduled apps

 Accurate, small data Vs. noisy, big data

Insight

Scheduler
Apps

System

 State

Heterogeneity

Interference

Learning

Metrics

App

Classification

10

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

11

Understanding App Behavior

 Goal: quickly extract accurate info on each application to guide scheduling

 Input:

 Small signal about a new workload

 Large amount of information about previously-scheduled applications

 Output:

 Understand app behavior/requirements recommendations for scheduling

 Looks like a classification problem

 Similar to systems used in e-commerce, Netflix, etc.

Understand

app

Small app

signal

Big cluster

data

Scheduling

insight

12

Something familiar…

 Collaborative filtering – similar to Netflix Challenge system

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

 Leverage the rich information the system already has

 Extract similarities between applications on:

 Heterogeneous platforms that benefit them

 Interference they cause and tolerate in shared resources

 Recommendations on platforms and co-scheduled applications

Sparse utility

matrix

Initial

decomposition

SVD PQ

SGD

Reconstructed

utility matrix

Final

decomposition

SVD

movies

us
e
rs

13

Classification for Heterogeneity

 Offline mode

 Profile a few apps (20-30) across the different configurations

 Assign performance scores per run (IPS, QPS, other system metric)

 Online mode

 For each new app, run briefly on two platforms (1min)

 Assign performance scores

 Derive missing entries & identify similarities between apps

The Netflix Challenge Platform Classification

Recommend movies to users Recommend platforms to apps

Utility matrix rows users Utility matrix rows apps

Utility matrix columns movies Utility matrix columns platforms

Utility matrix elements movie ratings Utility matrix elements app scores

14

Classification for Interference

 Two types of interference:

 Interference the application tolerates

 Interference the application causes

 Identifying sources of interference (SoIs):

 Cache hierarchy, memory bandwidth/capacity, CPU, network/

storage bandwidth

The Netflix Challenge Interference Classification

Recommend movies to users Recommend minimally interfering co-runners to apps

Utility matrix rows users Utility matrix rows apps

Utility matrix columns movies Utility matrix columns microbenchmarks (SoIs)

Utility matrix elements movie

ratings

Utility matrix elements sensitivity scores to

interference

15

Measuring Interference Sensitivity

 Rank sensitivity of an application to each microbenchmark (0-100%)

 Increase microbenchmark intensity until the application violates its QoS

 sensitivity to tolerated interference

 Similarly for sensitivity to caused interference

28%

QoS

16

Classification Validation

 Large set of ST, MT, MP and I/O workloads

 10 Server Configurations (SC)

 10 Sources of Interference (SoI)

Metric Applications (%)

Heterogeneity

ST MT MP I/O

Select best SC 86% 86% 83% 89%

Select SC within 5% of best 91% 90% 89% 92%

Interference

Avg. error across µbenchmarks 5.3%

Apps with < 10% error ST: 81% MT: 63%

SoI with highest error:

 for ST: L1 i-cache 15.8%

 for MT: LLC capacity 7.8%

17

Classification Overhead

 Time overhead:

 Training:

 2x1min runs for heterogeneity (alone) + 2x1min with two

microbenchmarks for interference in parallel

 Decision:

 SVD + PQ reconstruction: O(min(n2m, m2n)) + O(mn)

 Practically: msec for 1,000s apps and servers

 Space overhead:

 64B per app and 64B per server

18

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

19

Greedy Server Selection

 Two step process:

 Select servers with minimal interference

 Select server with best hardware configuration

 Overview:

 Start with most critical resource

 Prune servers that would violate QoS

 Repeat for all resources

 Select server with best HW configuration

 If no candidate left, backtrack and relax QoS requirement

 Rare, but ensures convergence

20

Monitor & Adapt

 Sources of inaccuracy:

 App goes through phases

 App is misclassified

 App is mis-scheduled

 Monitor & adapt:

1. Reactive phase detection: upon performance degradation, reclassify
the workload and searches for a more suitable server

2. Preemptive phase detection: periodically sample a workload subset,
reclassify and if heterogeneity/interference profile has changed re-
schedule before QoS degrades

 Preview: application scenario with changing workloads in
evaluation

21

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

22

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb

 Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006

 I/O: data mining, Matlab, single-node Hadoop

 Systems:

 Small-scale 40-machine local cluster (10 configurations)

 Large-scale 1,000 EC2 servers (14 configurations)

 Workload Scenarios:

 Low load, high load, with phases and oversubscribed

23

Evaluation: Small Scale (high load)

24

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

25

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

Gain

26

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

Distance

from

optimal

27

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

28

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

29

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

30

Decision Quality

 LL: poor decision quality both for heterogeneity and interference

 NH: poor platform decisions, good interference decisions

 NI: good platform decisions, poor interference decisions

 Paragon: better than NI in heterogeneity, better than NH in interference

80% 82%

Heterogeneity Interference

31

Increasing Utilization

 Paragon increases server utilization by 47%:

 Same performance for user (QoS guarantees)

 Better utilization for the DC operator resource efficiency

 With baseline (LL):

 Imbalance in server utilization (too high vs. too low)

 Per-app QoS violations + scenario execution time increase

Paragon Least-Loaded (LL)

32

Workloads with Phases

 QoS is preserved for 75% of applications

 Using the other schedulers preserves QoS for < 10% of apps

 Paragon adapts to workload phases over time performance recovers

shortly after the phase change

33

Large Scale (EC2) – High Load

 LL: violates QoS for 99% of workloads

 NH: violates QoS for 96% of workloads

 NI: violates QoS for 97% of workloads

34

Large Scale (EC2) – High Load

 Paragon preserves QoS for 61% of workloads

 Bounds degradation to less than 10% for 90% of workloads.

35

Large Scale (EC2) – High Load

 Paragon preserves QoS for 61% of workloads

 Bounds degradation to less than 10% for 90% of workloads.

Gain

36

Conclusions

 A heterogeneity and interference aware DC scheduler

 Leverages robust analytical methods to quickly classify apps

 Minimizes interference and maximizes utilization

 It is scalable and lightweight

37

Questions?

 Thank you!

 cdel@stanford.edu

 http://paragonDC.stanford.edu

