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Executive Summary

Problem: scheduling in cloud environments (e.g., EC2, Azure, etc. )
Heterogeneity > losses when running on wrong server
Interference = performance loss when interference is high

High rates of unknown workloads = no a priori assumptions

How to get information for a workload?
Detailed profiling = intolerable overheads

Instead: Leverage info about previously scheduled apps =2 fast and
accurate application classification

Paragon is a scheduling framework that is:
Heterogeneity and interference-aware, app agnostic
Scalable & lightweight: scales to 10,000s of apps and servers
Results: 5,000 apps on 1,000 servers =2 48% utilization increase,
20% of apps < 10% degradation
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Cloud DC Scheduling
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Workloads are unknown

Random apps submitted for short periods, known workloads evolve
Significant churn (arrivals/departures)
High variability in workloads characteristics

Decisions must be performed fast
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Understanding App Behavior

Goal: quickly extract accurate info on each application to guide scheduling

Small app
signal
Understand : Sche?lu}:ing
insi
Big clus'rer/ app -
data

Input:
Small signal about a new workload

Large amount of information about previously-scheduled applications

Output:

Understand app behavior/requirements = recommendations for scheduling

Looks like a classification problem

Similar to systems used in e-commerce, Netflix, etc.
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Something familiar...

Collaborative filtering — similar to Netflix Challenge system

Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

Leverage the rich information the system already has

Extract similarities between applications on:
Heterogeneous platforms that benefit them

Interference they cause and tolerate in shared resources

Recommendations on platforms and co-scheduled applications

movies
54 555541
1,43 PQ 112435
A TEERE I
3 | 23 Ui M 152355 U B2 IRV
> 3, 5 sGD 1133215
2, 3 244323
3 4 135154
Sparse utility Initial Reconstructed Final

matrix decomposition utility matrix decomposition

12



Classification for Heterogeneity

The Netflix Challenge Platform Classification
Recommend movies to users Recommend platforms to apps
Utility matrix rows = users Utility matrix rows = apps

Utility matrix columns = movies Utility matrix columns = platforms
Utility matrix elements = movie ratings Utility matrix elements = app scores

Offline mode
Profile a few apps (20-30) across the different configurations
Assign performance scores per run (IPS, QPS, other system metric)
Online mode
For each new app, run briefly on two platforms (1min)
Assign performance scores

Derive missing entries & identify similarities between apps
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Classification for Interference

The Netflix Challenge Interference Classification
Recommend movies to users Recommend minimally interfering co-runners to apps
Utility matrix rows = users Utility matrix rows = apps

Utility matrix columns > movies | Utility matrix columns = microbenchmarks (Sols)

Utility matrix elements > movie | Utility matrix elements = sensitivity scores to
ratings interference

Two types of interference:
Interference the application tolerates

Interference the application causes

|dentifying sources of interference (Sols):

Cache hierarchy, memory bandwidth /capacity, CPU, network /
storage bandwidth



Measuring Interference Sensitivity
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Rank sensitivity of an application to each microbenchmark (0-100%)

Increase microbenchmark intensity until the application violates its QoS
—> sensitivity to tolerated interference

Similarly for sensitivity to caused interference



Classification Validation

Large set of ST, MT, MP and 1/O workloads
10 Server Configurations (SC)

10 Sources of Interference (Sol)

Metric Applications (%)
ST MT MP 1/0
Heterogeneity | Select best SC 86% 86% 83% | 89%
Select SC within 5% of best 91% | 90% | 89% | 92%
Avg. error across hbenchmarks 5.3%
Apps with < 10% error ST: 81% MT: 63%
Interference Sol with highest error:
for ST: L1 i-cache 15.8%

for MT: LLC capacity 7.8%
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Classification Overhead

Time overhead:
Training:

2x1min runs for heterogeneity (alone) + 2x1min with two
microbenchmarks for interference =2 in parallel

Decision:
SVD + PQ reconstruction: O(min(n?m, m?n)) + O(mn)

Practically: msec for 1,000s apps and servers

Space overhead:

64B per app and 64B per server
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Greedy Server Selection

Two step process:
Select servers with minimal interference

Select server with best hardware configuration

Overview:
Start with most critical resource
Prune servers that would violate QoS
Repeat for all resources
Select server with best HW configuration

If no candidate left, backtrack and relax QoS requirement

Rqre, but ensures convergence
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Monitor & Adapt

Sources of inaccuracy:
App goes through phases
App is misclassified

App is mis-scheduled

Monitor & adapt:

Reactive phase detection: upon performance degradation, reclassify
the workload and searches for a more suitable server

Preemptive phase detection: periodically sample a workload subset,
reclassify and if heterogeneity /interference profile has changed re-
schedule before QoS degrades

Preview: application scenario with changing workloads in
evaluation
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Methodology

Workloads:
Single-threaded: SPEC CPU2006
Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb
Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006
|/O: data mining, Matlab, single-node Hadoop

Systems:
Small-scale = 40-machine local cluster (10 configurations)

Large-scale = 1,000 EC2 servers (14 configurations)

Workload Scenarios:

Low load, high load, with phases and oversubscribed
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Evaluation: Small Scale (high load)

Alone on Best Platform --- Least Loaded (LL)
No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

QoS

-

Speedup over Alone on Best Platform

80 100 120 140 160
Workloads

0-00 2010 60

Paragon preserves QoS for 64% of workloads

Bounds degradation to less than 10% degradation for 90% of workloads 29



Decision Quality
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LL: poor decision quality both for heterogeneity and interference
NH: poor platform decisions, good interference decisions
NI: good platform decisions, poor interference decisions

Paragon: better than NI in heterogeneity, better than NH in interference
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Increasing Utilization
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Workloads with Phases
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QoS is preserved for 75% of applications
Using the other schedulers preserves QoS for < 10% of apps

Paragon adapts to workload phases over time = performance recovers

shortly after the phase change o



Large Scale (EC2) — High Load
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Large Scale (EC2) — High Load
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Bounds degradation to less than 10% for 90% of workloads.
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Large Scale (EC2) — High Load
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1 Paragon preserves QoS for 61% of workloads

1 Bounds degradation to less than 10% for 90% of workloads.

35



Conclusions

A heterogeneity and interference aware DC scheduler
Leverages robust analytical methods to quickly classify apps
Minimizes interference and maximizes utilization

It is scalable and lightweight
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Questions?
D —————

Thank youl!

cdel@stanford.edu
http: / /paragonDC.stanford.edu
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