
PARAGON: QOS-AWARE SCHEDULING FOR

HETEROGENEOUS DATACENTERS

Christina Delimitrou and Christos Kozyrakis

Stanford University

ASPLOS – March 18th 2013

2

Executive Summary

 Problem: scheduling in cloud environments (e.g., EC2, Azure, etc.)

 Heterogeneity  losses when running on wrong server

 Interference  performance loss when interference is high

 High rates of unknown workloads  no a priori assumptions

 How to get information for a workload?

 Detailed profiling  intolerable overheads

 Instead: Leverage info about previously scheduled apps  fast and
accurate application classification

 Paragon is a scheduling framework that is:

 Heterogeneity and interference-aware, app agnostic

 Scalable & lightweight: scales to 10,000s of apps and servers

 Results: 5,000 apps on 1,000 servers  48% utilization increase,

 90% of apps < 10% degradation

3

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

4

Cloud DC Scheduling

 Workloads are unknown

 Random apps submitted for short periods, known workloads evolve

 Significant churn (arrivals/departures)

 High variability in workloads characteristics

 Decisions must be performed fast

Applications

Scheduler

System

 State

Metrics

5

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

6

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

7

 Least-loaded scheduling

 Using CPU & memory availability

 Ignores heterogeneity

 Ignores interference

 Poor efficiency

 Over 48% degradation compared

to running alone

 Some apps won’t even finish

Common Practice Today

8

 Reason for scheduling inefficiency

 Lack of knowledge of application behavior

 Heterogeneity & interference characteristics

 Existing approach for app characterization: exhaustive profiling

 High overheads, does not work with unknown apps

 Our work: Leverage knowledge about previously-scheduled apps

 Accurate, small data Vs. noisy, big data

Insight

Scheduler

System

 State
Metrics

Apps Apps

9

 Reason for scheduling inefficiency

 Lack of knowledge of application behavior

 Heterogeneity & interference characteristics

 Existing approach for app characterization: exhaustive profiling

 High overheads, does not work with unknown apps

 Our work: Leverage knowledge about previously-scheduled apps

 Accurate, small data Vs. noisy, big data

Insight

Scheduler
Apps

System

 State

Heterogeneity

Interference

Learning

Metrics

App

Classification

10

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

11

Understanding App Behavior

 Goal: quickly extract accurate info on each application to guide scheduling

 Input:

 Small signal about a new workload

 Large amount of information about previously-scheduled applications

 Output:

 Understand app behavior/requirements  recommendations for scheduling

 Looks like a classification problem

 Similar to systems used in e-commerce, Netflix, etc.

Understand

app

Small app

signal

Big cluster

data

Scheduling

insight

12

Something familiar…

 Collaborative filtering – similar to Netflix Challenge system

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

 Leverage the rich information the system already has

 Extract similarities between applications on:

 Heterogeneous platforms that benefit them

 Interference they cause and tolerate in shared resources

 Recommendations on platforms and co-scheduled applications

Sparse utility

matrix

Initial

decomposition

SVD PQ

SGD

Reconstructed

utility matrix

Final

decomposition

SVD

movies

us
e
rs

13

Classification for Heterogeneity

 Offline mode

 Profile a few apps (20-30) across the different configurations

 Assign performance scores per run (IPS, QPS, other system metric)

 Online mode

 For each new app, run briefly on two platforms (1min)

 Assign performance scores

 Derive missing entries & identify similarities between apps

The Netflix Challenge Platform Classification

Recommend movies to users Recommend platforms to apps

Utility matrix rows  users Utility matrix rows  apps

Utility matrix columns  movies Utility matrix columns  platforms

Utility matrix elements  movie ratings Utility matrix elements  app scores

14

Classification for Interference

 Two types of interference:

 Interference the application tolerates

 Interference the application causes

 Identifying sources of interference (SoIs):

 Cache hierarchy, memory bandwidth/capacity, CPU, network/

storage bandwidth

The Netflix Challenge Interference Classification

Recommend movies to users Recommend minimally interfering co-runners to apps

Utility matrix rows  users Utility matrix rows  apps

Utility matrix columns  movies Utility matrix columns  microbenchmarks (SoIs)

Utility matrix elements  movie

ratings

Utility matrix elements  sensitivity scores to

interference

15

Measuring Interference Sensitivity

 Rank sensitivity of an application to each microbenchmark (0-100%)

 Increase microbenchmark intensity until the application violates its QoS

 sensitivity to tolerated interference

 Similarly for sensitivity to caused interference

28%

QoS

16

Classification Validation

 Large set of ST, MT, MP and I/O workloads

 10 Server Configurations (SC)

 10 Sources of Interference (SoI)

Metric Applications (%)

Heterogeneity

ST MT MP I/O

Select best SC 86% 86% 83% 89%

Select SC within 5% of best 91% 90% 89% 92%

Interference

Avg. error across µbenchmarks 5.3%

Apps with < 10% error ST: 81% MT: 63%

SoI with highest error:

 for ST: L1 i-cache 15.8%

 for MT: LLC capacity 7.8%

17

Classification Overhead

 Time overhead:

 Training:

 2x1min runs for heterogeneity (alone) + 2x1min with two

microbenchmarks for interference  in parallel

 Decision:

 SVD + PQ reconstruction: O(min(n2m, m2n)) + O(mn)

 Practically: msec for 1,000s apps and servers

 Space overhead:

 64B per app and 64B per server

18

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

19

Greedy Server Selection

 Two step process:

 Select servers with minimal interference

 Select server with best hardware configuration

 Overview:

 Start with most critical resource

 Prune servers that would violate QoS

 Repeat for all resources

 Select server with best HW configuration

 If no candidate left, backtrack and relax QoS requirement

 Rare, but ensures convergence

20

Monitor & Adapt

 Sources of inaccuracy:

 App goes through phases

 App is misclassified

 App is mis-scheduled

 Monitor & adapt:

1. Reactive phase detection: upon performance degradation, reclassify
the workload and searches for a more suitable server

2. Preemptive phase detection: periodically sample a workload subset,
reclassify and if heterogeneity/interference profile has changed re-
schedule before QoS degrades

 Preview: application scenario with changing workloads in
evaluation

21

Outline

 Motivation

 Application Classification

 Paragon

 Evaluation

22

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb

 Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006

 I/O: data mining, Matlab, single-node Hadoop

 Systems:

 Small-scale  40-machine local cluster (10 configurations)

 Large-scale  1,000 EC2 servers (14 configurations)

 Workload Scenarios:

 Low load, high load, with phases and oversubscribed

23

Evaluation: Small Scale (high load)

24

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

25

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

Gain

26

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

Distance

from

optimal

27

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

28

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

29

Evaluation: Small Scale (high load)

 Paragon preserves QoS for 64% of workloads

 Bounds degradation to less than 10% degradation for 90% of workloads

30

Decision Quality

 LL: poor decision quality both for heterogeneity and interference

 NH: poor platform decisions, good interference decisions

 NI: good platform decisions, poor interference decisions

 Paragon: better than NI in heterogeneity, better than NH in interference

80% 82%

Heterogeneity Interference

31

Increasing Utilization

 Paragon increases server utilization by 47%:

 Same performance for user (QoS guarantees)

 Better utilization for the DC operator  resource efficiency

 With baseline (LL):

 Imbalance in server utilization (too high vs. too low)

 Per-app QoS violations + scenario execution time increase

Paragon Least-Loaded (LL)

32

Workloads with Phases

 QoS is preserved for 75% of applications

 Using the other schedulers preserves QoS for < 10% of apps

 Paragon adapts to workload phases over time  performance recovers

shortly after the phase change

33

Large Scale (EC2) – High Load

 LL: violates QoS for 99% of workloads

 NH: violates QoS for 96% of workloads

 NI: violates QoS for 97% of workloads

34

Large Scale (EC2) – High Load

 Paragon preserves QoS for 61% of workloads

 Bounds degradation to less than 10% for 90% of workloads.

35

Large Scale (EC2) – High Load

 Paragon preserves QoS for 61% of workloads

 Bounds degradation to less than 10% for 90% of workloads.

Gain

36

Conclusions

 A heterogeneity and interference aware DC scheduler

 Leverages robust analytical methods to quickly classify apps

 Minimizes interference and maximizes utilization

 It is scalable and lightweight

37

Questions?

 Thank you!

 cdel@stanford.edu

 http://paragonDC.stanford.edu

