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Executive Summary 

 Problem: scheduling in cloud environments (e.g., EC2, Azure, etc. ) 

 Heterogeneity  losses when running on wrong server 

 Interference  performance loss when interference is high 

 High rates of unknown workloads  no a priori assumptions  
 

 How to get information for a workload?  

 Detailed profiling  intolerable overheads 

 Instead: Leverage info about previously scheduled apps  fast and 
accurate application classification 

 

 Paragon is a scheduling framework that is:  

 Heterogeneity and interference-aware, app agnostic 

 Scalable & lightweight: scales to 10,000s of apps and servers 

 Results: 5,000 apps on 1,000 servers  48% utilization increase,  

    90% of apps < 10% degradation 
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Cloud DC Scheduling 

 

 

 

 

 

 

 

 Workloads are unknown 

  Random apps submitted for short periods, known workloads evolve  

 Significant churn (arrivals/departures)  

 High variability in workloads characteristics 

 Decisions must be performed fast 

Applications 

Scheduler 

System 

 State 

Metrics 
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 Least-loaded scheduling 

 Using CPU & memory availability  

 Ignores heterogeneity 

 Ignores interference 

 

 Poor efficiency 

 Over 48% degradation compared 

to running alone 

 Some apps won’t even finish 

Common Practice Today 
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 Reason for scheduling inefficiency 

 Lack of knowledge of application behavior 

 Heterogeneity & interference characteristics 

 Existing approach for app characterization: exhaustive profiling 

 High overheads, does not work with unknown apps 

 Our work: Leverage knowledge about previously-scheduled apps 

 Accurate, small data Vs. noisy, big data 
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Understanding App Behavior 

 Goal: quickly extract accurate info on each application to guide scheduling 

 

 

 

 

 Input:  

 Small signal about a new workload 

 Large amount of information about previously-scheduled applications 

 Output:  

 Understand app behavior/requirements  recommendations for scheduling 
 

 Looks like a classification problem 

 Similar to systems used in e-commerce, Netflix, etc.  
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Something familiar…  

 Collaborative filtering – similar to Netflix Challenge system 

 Singular Value Decomposition (SVD) + PQ reconstruction (SGD) 

 Leverage the rich information the system already has 

 Extract similarities between applications on:  

 Heterogeneous platforms that benefit them 

 Interference they cause and tolerate in shared resources 
 

 Recommendations on platforms and co-scheduled applications 
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Classification for Heterogeneity 

 

 

 

 

 

 

 Offline mode 

 Profile a few apps (20-30) across the different configurations 

 Assign performance scores per run (IPS, QPS, other system metric) 

 Online mode 

 For each new app, run briefly on two platforms (1min) 

 Assign performance scores 

 Derive missing entries & identify similarities between apps 

 

The Netflix Challenge Platform Classification 

Recommend movies to users Recommend platforms to apps 

Utility matrix rows  users Utility matrix rows  apps 

Utility matrix columns  movies Utility matrix columns  platforms 

Utility matrix elements  movie ratings Utility matrix elements  app scores 
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Classification for Interference 

 

 

 

 

 
 

 Two types of interference:  

 Interference the application tolerates 

 Interference the application causes  
 

 Identifying sources of interference (SoIs):  

 Cache hierarchy, memory bandwidth/capacity, CPU, network/ 

storage bandwidth  

The Netflix Challenge Interference Classification 

Recommend movies to users Recommend minimally interfering co-runners to apps 

Utility matrix rows  users Utility matrix rows  apps 

Utility matrix columns  movies Utility matrix columns  microbenchmarks (SoIs) 

Utility matrix elements  movie 

ratings 

Utility matrix elements  sensitivity scores to 

interference  
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Measuring Interference Sensitivity 

 

 

 

 

 

 

 

 

 Rank sensitivity of an application to each microbenchmark (0-100%) 

 Increase microbenchmark intensity until the application violates its QoS     

 sensitivity to tolerated interference 

 Similarly for sensitivity to caused interference 
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Classification Validation 

 Large set of ST, MT, MP and I/O workloads  

 10 Server Configurations (SC) 

 10 Sources of Interference (SoI) 

 
Metric Applications (%) 

Heterogeneity 

ST MT MP I/O 

Select best SC 86% 86% 83% 89% 

Select SC within 5% of best 91% 90% 89% 92% 

Interference 

Avg. error across µbenchmarks  5.3% 

Apps with < 10% error ST: 81%          MT: 63% 

SoI with highest error:  

              for ST: L1 i-cache 15.8% 

              for MT: LLC capacity 7.8% 
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Classification Overhead 

 Time overhead:  

 Training:  

 2x1min runs for heterogeneity (alone) + 2x1min with two 

microbenchmarks for interference  in parallel 

 Decision:  

 SVD + PQ reconstruction: O(min(n2m, m2n)) + O(mn) 

 Practically: msec for 1,000s apps and servers 

 

 Space overhead:  

 64B per app and 64B per server 
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Greedy Server Selection 

 Two step process:  

 Select servers with minimal interference  

 Select server with best hardware configuration  

 

 Overview:  

 Start with most critical resource 

 Prune servers that would violate QoS 

 Repeat for all resources 

 Select server with best HW configuration 

 If no candidate left, backtrack and relax QoS requirement 

 Rare, but ensures convergence 
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Monitor & Adapt 

 Sources of inaccuracy:  

 App goes through phases 

 App is misclassified 

 App is mis-scheduled  
 

 

 Monitor & adapt:  

1. Reactive phase detection: upon performance degradation, reclassify 
the workload and searches for a more suitable server 

2. Preemptive phase detection: periodically sample a workload subset, 
reclassify and if heterogeneity/interference profile has changed re-
schedule before QoS degrades 

 

 

 Preview: application scenario with changing workloads in 
evaluation 
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Methodology 

 Workloads:  

 Single-threaded: SPEC CPU2006 

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb 

 Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006 

 I/O: data mining, Matlab, single-node Hadoop 
 

 Systems:  

 Small-scale  40-machine local cluster (10 configurations) 

 Large-scale  1,000 EC2 servers (14 configurations) 
 

 Workload Scenarios:  

 Low load, high load, with phases and oversubscribed 
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Evaluation: Small Scale (high load)  
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Evaluation: Small Scale (high load)  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 64% of workloads  

 Bounds degradation to less than 10% degradation for 90% of workloads  
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Evaluation: Small Scale (high load)  
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Decision Quality 

 

 

 

 

 

 

 

 

 

 
 

 LL: poor decision quality both for heterogeneity and interference 

 NH: poor platform decisions, good interference decisions 

 NI: good platform decisions, poor interference decisions 

 Paragon: better than NI in heterogeneity, better than NH in interference 

80% 82% 

Heterogeneity Interference 
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Increasing Utilization 

 

 

 

 

 

 

 

 Paragon increases server utilization by 47%:  

 Same performance for user (QoS guarantees) 

 Better utilization for the DC operator  resource efficiency 
 

 With baseline (LL):  

 Imbalance in server utilization (too high vs. too low) 

 Per-app QoS violations + scenario execution time increase 

Paragon Least-Loaded (LL) 
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Workloads with Phases 

 

 

 

 

 

 
 

 QoS is preserved for 75% of applications  

 Using the other schedulers preserves QoS for < 10% of apps  
 

 Paragon adapts to workload phases over time  performance recovers 

shortly after the phase change 
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Large Scale (EC2) – High Load  

 

 

 

 

 

 

 

 

 

 LL: violates QoS for 99% of workloads 

 NH: violates QoS for 96% of workloads 

 NI: violates QoS for 97% of workloads 
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Large Scale (EC2) – High Load  

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon preserves QoS for 61% of workloads  

 Bounds degradation to less than 10% for 90% of workloads.  
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Conclusions 

 A heterogeneity and interference aware DC scheduler 

 

 Leverages robust analytical methods to quickly classify apps 

 

 Minimizes interference and maximizes utilization 

 

 It is scalable and lightweight 
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Questions?  

 

 

 

 

 

   Thank you!  

    cdel@stanford.edu 

    http://paragonDC.stanford.edu 


