PARAGON: QOS-AWARE SCHEDULING FOR
HETEROGENEOUS DATACENTERS

Christina Delimitrou and Christos Kozyrakis

Stanford University

- ASPLOS - March 18 2013

Executive Summary

Problem: scheduling in cloud environments (e.g., EC2, Azure, etc.)
Heterogeneity > losses when running on wrong server
Interference = performance loss when interference is high

High rates of unknown workloads = no a priori assumptions

How to get information for a workload?
Detailed profiling = intolerable overheads

Instead: Leverage info about previously scheduled apps =2 fast and
accurate application classification

Paragon is a scheduling framework that is:
Heterogeneity and interference-aware, app agnostic
Scalable & lightweight: scales to 10,000s of apps and servers
Results: 5,000 apps on 1,000 servers =2 48% utilization increase,
20% of apps < 10% degradation

Outline
N

Motivation

m
o1 Application Classification
1 Paragon

m

Evaluation

Cloud DC Scheduling

Applications
-_— Scheduler

1

System Metrics
State

Workloads are unknown

Random apps submitted for short periods, known workloads evolve
Significant churn (arrivals/departures)
High variability in workloads characteristics

Decisions must be performed fast

Common Practice Today

Least-loaded scheduling

Alone on Best Platform Using CPU & memory availability
1.2 — |Least Loaded .

Ignores heterogeneity

1.0 .
Ignores interference

Poor efficiency

o
=)

Over 48% degradation compared
to running alone

©
2

o
N

Speedup over Alone on Best Platform

Some apps won'’t even finish

0.00 20 40 60 80 100 120 140 160
Workloads

Common Practice Today

Alone on Best Platform
1.2 — |Least Loaded

Speedup over Alone on Best Platform

0.00 36 20 60 80 100 120 140 160
Workloads

Least-loaded scheduling
Using CPU & memory availability
Ignores heterogeneity

Ignores interference

Poor efficiency

Over 48% degradation compared
to running alone

Some apps won'’t even finish

Common Practice Today

Speedup over Alone on Best Platform

1.2

1.0r

e

Alone on Best Platform
— |Least Loaded

20 40 60 80 100 120 140 160
Workloads

Least-loaded scheduling
Using CPU & memory availability
Ignores heterogeneity

Ignores interference

Poor efficiency

Over 48% degradation compared
to running alone

Some apps won'’t even finish

Insight
—

0 Reason for scheduling inefficiency
Lack of knowledge of application behavior
Heterogeneity & interference characteristics
11 Existing approach for app characterization: exhaustive profiling

High overheads, does not work with unknown apps

1 Qur work: Leverage knowledge about previously-scheduled apps

Accurate, small data Vs. noisy, big data

Apps Apps

>»| Scheduler | > |

T 1

System Metrics
State

Insight

Reason for scheduling inefficiency
Lack of knowledge of application behavior
Heterogeneity & interference characteristics
Existing approach for app characterization: exhaustive profiling

High overheads, does not work with unknown apps

Qur work: Leverage knowledge about previously-scheduled apps

Accurate, small data Vs. noisy, big data

Heterogeneity Learning
Apps App >
—_— s Sch —>

eduler
Classification

Interference T T

System Metrics
State

Outline
e

Motivation

m
0 Application Classification
1 Paragon

m

Evaluation

10

Understanding App Behavior

Goal: quickly extract accurate info on each application to guide scheduling

Small app
signal
Understand : Sche?lu}:ing
insi
Big clus'rer/ app -
data

Input:
Small signal about a new workload

Large amount of information about previously-scheduled applications

Output:

Understand app behavior/requirements = recommendations for scheduling

Looks like a classification problem

Similar to systems used in e-commerce, Netflix, etc.

11

Something familiar...

Collaborative filtering — similar to Netflix Challenge system

Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

Leverage the rich information the system already has

Extract similarities between applications on:
Heterogeneous platforms that benefit them

Interference they cause and tolerate in shared resources

Recommendations on platforms and co-scheduled applications

movies
54 555541
1,43 PQ 112435
A TEERE I
3 | 23 Ui M 152355 U B2 IRV
> 3, 5 sGD 1133215
2, 3 244323
3 4 135154
Sparse utility Initial Reconstructed Final

matrix decomposition utility matrix decomposition

12

Classification for Heterogeneity

The Netflix Challenge Platform Classification
Recommend movies to users Recommend platforms to apps
Utility matrix rows = users Utility matrix rows = apps

Utility matrix columns = movies Utility matrix columns = platforms
Utility matrix elements = movie ratings Utility matrix elements = app scores

Offline mode
Profile a few apps (20-30) across the different configurations
Assign performance scores per run (IPS, QPS, other system metric)
Online mode
For each new app, run briefly on two platforms (1min)
Assign performance scores

Derive missing entries & identify similarities between apps

13

Classification for Interference

The Netflix Challenge Interference Classification
Recommend movies to users Recommend minimally interfering co-runners to apps
Utility matrix rows = users Utility matrix rows = apps

Utility matrix columns > movies | Utility matrix columns = microbenchmarks (Sols)

Utility matrix elements > movie | Utility matrix elements = sensitivity scores to
ratings interference

Two types of interference:
Interference the application tolerates

Interference the application causes

|dentifying sources of interference (Sols):

Cache hierarchy, memory bandwidth /capacity, CPU, network /
storage bandwidth

Measuring Interference Sensitivity

435.gromacs

Qosl‘0_=\“!

0.8

0.6

IPC

0.4+

0.2

28%

o 20 40 60 80 100
Benchmark Intensity (%)

0.0

Rank sensitivity of an application to each microbenchmark (0-100%)

Increase microbenchmark intensity until the application violates its QoS
—> sensitivity to tolerated interference

Similarly for sensitivity to caused interference

Classification Validation

Large set of ST, MT, MP and 1/O workloads
10 Server Configurations (SC)

10 Sources of Interference (Sol)

Metric Applications (%)
ST MT MP 1/0
Heterogeneity | Select best SC 86% 86% 83% | 89%
Select SC within 5% of best 91% | 90% | 89% | 92%
Avg. error across hbenchmarks 5.3%
Apps with < 10% error ST: 81% MT: 63%
Interference Sol with highest error:
for ST: L1 i-cache 15.8%

for MT: LLC capacity 7.8%

16

Classification Overhead

Time overhead:
Training:

2x1min runs for heterogeneity (alone) + 2x1min with two
microbenchmarks for interference =2 in parallel

Decision:
SVD + PQ reconstruction: O(min(n?m, m?n)) + O(mn)

Practically: msec for 1,000s apps and servers

Space overhead:

64B per app and 64B per server

17

Outline
N

Motivation

m
o1 Application Classification
0 Paragon

m

Evaluation

18

Greedy Server Selection

Two step process:
Select servers with minimal interference

Select server with best hardware configuration

Overview:
Start with most critical resource
Prune servers that would violate QoS
Repeat for all resources
Select server with best HW configuration

If no candidate left, backtrack and relax QoS requirement

Rqre, but ensures convergence

19

Monitor & Adapt

Sources of inaccuracy:
App goes through phases
App is misclassified

App is mis-scheduled

Monitor & adapt:

Reactive phase detection: upon performance degradation, reclassify
the workload and searches for a more suitable server

Preemptive phase detection: periodically sample a workload subset,
reclassify and if heterogeneity /interference profile has changed re-
schedule before QoS degrades

Preview: application scenario with changing workloads in
evaluation

20

Outline
N

Motivation

m
o1 Application Classification
1 Paragon

m

Evaluation

21

Methodology

Workloads:
Single-threaded: SPEC CPU2006
Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb
Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006
|/O: data mining, Matlab, single-node Hadoop

Systems:
Small-scale = 40-machine local cluster (10 configurations)

Large-scale = 1,000 EC2 servers (14 configurations)

Workload Scenarios:

Low load, high load, with phases and oversubscribed

22

Evaluation: Small Scale (high load)

Alone on Best Platform --- Least Loaded (LL)
No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

edup over Alone on Best Platform

60 80 100 120 140 160
Workloads

Evaluation: Small Scale (high load)

Alone on Best Platform
No Heterogeneity (NH)
— No Interference (NI)

Least Loaded (LL)
— Paragon (P)

<
=

o
)

Speedup over Alone on Best Platform

o

20 40 60 80

100 120 140 160

Workloads

Paragon preserves QoS for 64% of workloads

Bounds degradation to less than 10% degradation for 90% of workloads

QoS

24

Evaluation: Small Scale (high load)
—

Alone on Best Platform --- Least Loaded (LL)
----- No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

[
[N}

—_
=

QoS

0.8

<
o

=
e

<
[

Speedup over Alone on Best Platform

=
o
S

20 40 60 80 100 120 140 160
Workloads

71 Paragon preserves QoS for 64% of workloads

1 Bounds degradation to less than 10% degradation for 90% of workloads 25

Evaluation: Small Scale (high load)

Distance
from
optimal

T

esf Platform

o0

Speedup over Alone on B
e =~ &

o

Alone on Best Platform
No Heterogeneity (NH)
— No Interference (NI)

Least Loaded (LL)
— Paragon (P)

R

Y020 40 60 R0

100 120 140 160

Workloads

Paragon preserves QoS for 64% of workloads

Bounds degradation to less than 10% degradation for 90% of workloads

QoS

26

Evaluation: Small Scale (high load)

Alone on Best Platform --- Least Loaded (LL)
No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

QoS

0.2F o=

Speedup over Alone on Best Platform

Y020 40 60 80 100 120 140 160
Workloads

Paragon preserves QoS for 64% of workloads

Bounds degradation to less than 10% degradation for 90% of workloads 27

Evaluation: Small Scale (high load)
—

Alone on Best Platform --- Least Loaded (LL)
----- No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

[
o

1.0

‘ QoS

=
e

=
b

Speedup over Alone on Best Platform

=
o
S

20 40 60 80 100 120 140 160
Workloads

71 Paragon preserves QoS for 64% of workloads

1 Bounds degradation to less than 10% degradation for 20% of workloads 28

Evaluation: Small Scale (high load)

Alone on Best Platform --- Least Loaded (LL)
No Heterogeneity (NH) — Paragon (P)
— No Interference (NI)

QoS

-

Speedup over Alone on Best Platform

80 100 120 140 160
Workloads

0-00 2010 60

Paragon preserves QoS for 64% of workloads

Bounds degradation to less than 10% degradation for 90% of workloads 29

Decision Quality

O O o 0Od

I No degradation B > 10% degradation
B < 10% degradation Il - 20% degradation
100 100
% 80} 80}
T
o)
S 60 60}
o
80% ¢ 82%
— 207 40}
O
a
g 20} 20}

0
LL NH NI P LL NH NI P
Heterogeneity Interference

LL: poor decision quality both for heterogeneity and interference
NH: poor platform decisions, good interference decisions
NI: good platform decisions, poor interference decisions

Paragon: better than NI in heterogeneity, better than NH in interference

30

Increasing Utilization

1 L 3
‘ 4 5.
5000 10000 15000 20000 25000
Time (s)

Paragon

100
90
80
70
60
50
40
30
20
10

Server Utilization (%)

S0 ey il Goh

ui

I =
5000 10000 15000 20000 25000
Time (s)

Least-Loaded (LL)

1 Paragon increases server utilization by 47%:

Same performance for user (QoS guarantees)

100
90
80
70
60
150
40
30
20
10

Better utilization for the DC operator = resource efficiency

1 With baseline (LL):

Imbalance in server utilization (too high vs. too low)

Per-app QoS violations + scenario execution time increase

Server Utilization (%)

31

Workloads with Phases

Alone on Best Platform --- Least Loaded (LL) — Paragon (P)
o Workloads with Phases Phase2 Phase 3
© L ' o :
o . ™ 1 ()W
-'g 1.2} J/ g : !
m . . Q . | Tmaay : :
c 10f * O8] :
© - 3 N !
2 0% 3 0.6} e
-_ - Q : b v . : -
< 0.6 i o _g : : ' N
§ ‘‘‘‘‘ 0 0.4¢ : : 1 "’
© 0.4} o L : : ;
o - w . ;
_GO:; []2 | ".r C>D []2 : :
® N < : :
2 0.0 e e 0.0 ot : T o
W0 20 40 60 80 100 120 140 160 0 50 100 150 200
Workloads Time (min)

QoS is preserved for 75% of applications
Using the other schedulers preserves QoS for < 10% of apps

Paragon adapts to workload phases over time = performance recovers

shortly after the phase change o

Large Scale (EC2) — High Load

r—l
(N

p—t

—_

o
T

Alone on Best Platform
Least Loaded
— Paragon

Speedup over Alone on Best Platform

0.8} ’

0.6 R L !

0.4f SR

0001000 2000 3000
Workloads

LL: violates QoS for 99% of workloads
NH: violates QoS for 96% of workloads
NI: violates QoS for 97% of workloads

1000

5000

33

Large Scale (EC2) — High Load

i e

=
o

Speedup over Alone on Best Platform

—
e’
-

—_—
—

Paragon preserves QoS for 61% of workloads

r—l
]

r—l

—_

—
1

Alone on Best Platform
Least Loaded
— Paragon

1000

2000 3000
Workloads

1000

Bounds degradation to less than 10% for 90% of workloads.

34

Large Scale (EC2) — High Load

P—\ r—l
= (]
i

Speedup over Alone on Best Platform

0.8 Alone on Best Platform
Least Loaded
0.6 — Paragon
0.4
0.2
0.0 1000 2000 3000 4000 5000
Workloads

1 Paragon preserves QoS for 61% of workloads

1 Bounds degradation to less than 10% for 90% of workloads.

35

Conclusions

A heterogeneity and interference aware DC scheduler
Leverages robust analytical methods to quickly classify apps
Minimizes interference and maximizes utilization

It is scalable and lightweight

36

Questions?
D —————

Thank youl!

cdel@stanford.edu
http: / /paragonDC.stanford.edu

37

