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Abstract—The hundreds of thousands of servers in modern warehouse-scale systems make performance and efficiency optimizations
pressing design challenges. These systems are traditionally considered homogeneous. However, that is not typically the case. Multiple
server generations compose a heterogeneous environment, whose performance opportunities have not been fully explored since techniques
that account for platform heterogeneity typically do not scale to the tens of thousands of applications hosted in large-scale cloud providers.
We present ADSM, a scalable and efficient recommendation system for application-to-server mapping in large-scale datacenters (DCs)
that is QoS-aware. ADSM overcomes the drawbacks of previous techniques, by leveraging robust and computationally efficient analytical
methods to scale to tens of thousands of applications with minimal overheads. It is also QoS-aware, mapping applications to platforms while
enforcing strict QoS guarantees. ADSM is derived from validated analytical models, has low and bounded prediction errors, is simple to
implement and scales to thousands of applications without significant changes to the system. Over 390 real DC workloads, ADSM improves
performance by 16% on average and up to 2.5x and efficiency by 22% in a DC with 10 different server configurations.

Index Terms—Super (very large) computers, Heterogeneous (hybrid) systems, Scheduling and task partitioning, Application studies
resulting in better multiple-processor systems.
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1 INTRODUCTION

WAREHOUSE-SCALE systems now provide the com-
pute and storage infrastructure for most popular

online services [2], making their performance and power
optimization critical design challenges. In this work, we
examine one aspect of DC architectures which until re-
cently has gone mostly unnoticed and has significant
performance and energy potential. DCs have traditionally
been embraced as homogeneous platforms [1]. However,
as machines get replaced over the 15-year provisioned
deployment lifetime [2], [9], [12], they introduce some
inherent heterogeneity in the system. This heterogeneity is
at the platform level, differs from the one found in CMPs,
and ignoring it can lead to significant inefficiencies.

Previous work has quantified the performance potential
from sophisticated placement of workloads to heteroge-
neous machines [9], [10], [12]. However, the proposed
schemes rely mainly on empirical observations, require
detailed profiling and do not scale beyond a small number
of applications. This makes them unsuitable for virtual-
ized environments that host thousands of new applications
every day (e.g., EC2 [5], Azure [15], Google AppEngine
[6], or vMotion). Additionally, these schemes focus on
performance, not energy savings. As a result, applications
are mapped to servers with limited heterogeneity con-
siderations. Going forward, heterogeneity-aware workload
mapping is critical, and doing so in a computationally
efficient manner is a strict constraint for scalability.

We present Application to Datacenter Server Mapping
(ADSM), a scalable and efficient scheme for application-to-
server mapping that addresses the limitations of previous
proposals. ADSM is derived from validated, computationally
efficient analytical methods, not merely empirical observa-
tions, which allow it to scale to tens of thousands of
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servers and applications, improving system performance
and efficiency, while enforcing strict per-application QoS
guarantees, marginal overheads and tight error bounds.
It is designed as a lightweight controller that resides
with the cluster scheduler and requires minimal changes
to the system. ADSM identifies similarities between in-
coming and known applications and makes efficient rec-
ommendations of application placement to heterogeneous
servers. Additionally, because the recommendation system
is driven by analytical methods we can explicitly compute
its complexity and guarantee marginal training and de-
cision overheads. ADSM is based on a recommendation
system similar to the one deployed as part of the Netflix
Challenge [3], with users replaced by applications and
movies by server configurations.

We evaluate ADSM for a wide range of applications:
single-threaded, multi-threaded and multiprogrammed
standard benchmark suites and 390 real DC workloads
from Microsoft, including latency-critical (e.g., Search) and
computationally-intensive applications. We use two 40-
machine clusters; a ”homogeneous” production cluster,
with ten server configurations and a heterogeneous cluster
with ten high-end and low-power machine types.

First, we quantify the mapping algorithm’s benefits and
overheads. ADSM improves performance by 22% and en-
ergy efficiency by 18% on average in the ”homogeneous”
cluster, over a heterogeneity-oblivious mapping scheme.
The results are more striking in the heterogeneous cluster.
ADSM not only does not degrade performance when map-
ping applications to the low-power systems, but improves
it by 17% while reducing energy by 24% on average.
ADSM, thus, motivates more radical heterogeneity in DCs,
showing its efficiency potential, while enforcing strict QoS
guarantees. Second, we validate the accuracy of the an-
alytical methods that drive ADSM. Finally, we perform
a sensitivity study on configuration parameters, such as
training set size and time and strictness of QoS guarantees.
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2 ADSM TECHNIQUES AND DESIGN

2.1 Overview
ADSM is an application-to-server mapping scheme that is
scalable and efficient. It works for single-threaded, multi-
threaded and multiprogrammed applications. It is aimed
for large-scale virtualized environments, which receive
thousands of new applications each day, and run them
over tens of thousands of servers.

ADSM does not require extensive profiling across differ-
ent server platforms. Instead, it leverages the similarities
between virtualized applications to rank server configura-
tions and predict the one that will benefit an application
the most. This allows ADSM to provide accurate recom-
mendations for large-scale application mappings.

ADSM’s mapping scheme is derived from analytical methods
rather than empirical observations. This means that it achieves
provable, strong guarantees on the accuracy of the predic-
tions, low and tight error bounds and marginal training
and decision overheads, while being accurate and scalable.
The following sections provide the mathematical back-
ground on the concepts used in ADSM and a description
of the scoring functions and the mapping scheme.

2.2 Mathematical Background
Singular Value Decomposition: Singular value decom-
position or SVD is a matrix factorization method used
among others, for dimensionality reduction and similarity
identification. For example, SVD is applied in recommen-
dation systems to identify similarities between users and
items [3]. Let A be the matrix containing the scores users
(rows) assign to items (columns); input to SVD. Factoring
A produces the decomposition to matrices U , V and Σ.

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 = U · Σ · V T

where the matrices of left and right singular vectors are:

Um×r =


u11 · · · u1r
u21 · · · u2r

...
. . .

...
um1 · · · umr

 , Vn×r =

v11 v12 · · · v1n
...

...
. . .

...
vr1 vr2 · · · vrn



and Σr×r =

σ1 · · · 0
...

. . .
...

0 · · · σr

 , the diagonal matrix of sing-

ular values. r is the rank of matrix A.
Similarity concepts are represented by singular values σi

and the confidence in a similarity concept by the magni-
tude of the corresponding singular value. The U matrix
represents the strength of the row-to-concept similarity,
while the V matrix the concept-to-column similarity. The
complexity of SVD on a m× n matrix is min(n2m,m2n).

PQ Reconstruction with Stochastic Gradient Descent: To
map applications to servers, we need the scores in matrix
A. We use PQ-reconstruction and building from SVD we
have: Qm×r = U and PT

r×n = Σ · V T . The product of Q

and PT gives the approximation matrix R with the score
predictions. If R had no missing entries, we would be done.
However, ADSM performs minimal application profiling
to reduce overheads, leaving missing entries in A which
propagate through Q and PT to R. To reconstruct the full
utility matrix, we use Stochastic Gradient Descent (SGD), a
scalable and lightweight latent factor model that iteratively
recreates A using the following process until convergence:
∀rui, where rui an element of the reconstructed matrix R
εui = rui − qi · puT
qi ← qi + η(εuipu − λqi)
pu ← pu + η(εuiqi − λpu)

where η the learning rate and λ the regularization fac-
tor. Convergence is achieved when |ε|L2 =

√∑
u,i |εui|2

becomes marginal.

2.3 Scoring Functions
Matrix A is populated with application performance
scores. Different applications, however, should be charac-
terized by different scores, e.g., IPC cannot be used blindly
to capture perfomance of multithreaded workloads. Here
we describe scoring functions for each application type.

- Single-threaded workloads: Applications such as SPEC
CPU2006 have no synchronization primitives, therefore we
can use IPC as the scoring function. Execution time is also
possible, however it requires running to completion which
would increase ADSM’s training overheads. Comparison
between the two exhibited minimal deviations.

- Multiprogrammed workloads: Similarly, we use aggregate
IPC across the multiprogrammed mix. Although this will
select the platform that maximizes aggregate IPC, on its
own it does not guarantee per-application QoS. To pro-
vide such fairness guarantees, we additionally enforce no
performance degradation for each application in the mix
and verify this through per-mix hmean of speedup.

- Multi-threaded workloads: Here IPC is not the straight-
forward metric [14]. Locking schemes, especially spin-
locks, can taint the instruction count, masking idle waits as
high performance. We address this by periodically polling
low-overhead performance counters to detect changes in
the register file and weight-out of the IPC computation
such execution segments. We have verified that mappings
using this ”useful” IPC are almost identical to mappings
produced using execution time as the scoring function.

- DC workloads: Large-scale cloud providers typically
host multi-threaded applications, therefore the default
scoring function for this workload type is ”useful” IPC.
Even for other workloads using ”useful” IPC will yield the
same benefits as using raw IPC. The differentiation exists
to eliminate the overhead of spin-lock detection when the
workload type is known. In general, when workloads are
not known, or multiple workload types are present we use
”useful” IPC to drive the analytical methods of ADSM.

This categorization assumes that we focus on perfor-
mance optimization. The same principles apply for energy
(IPC/W ) or cost efficiency optimization (IPC/(W · $)).

2.4 Mapping Scheme
ADSM works by assigning per-application scores to differ-
ent server platforms based on the metric we optimize for.
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Fig. 1. Offline, online phases of ADSM and reconstruction of utility matrix with PQ
reconstruction using SGD.
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Fig. 2. Execution time breakdown for ADSM
over the 29 SPEC CPU2006 workloads.

It is divided in an offline and an online mode. In the offline
mode, it selects a small number of applications (< 5-10%)
and profiles them on all server configurations. In the on-
line mode, ADSM provides application-to-server mapping
recommendations. When a new application arrives, ADSM
samples its behavior on two server platforms (to satisfy
SVD’s sparsity constraints), assigns scores and uses SVD to
identify similarities between known and new applications
and predict missing scores in the sparse matrix A. The rows
in A represent applications and the columns server config-
urations (SC). U captures the application to similarity con-
cept strength and V the SC to similarity concept strength,
while Σ the strength of each similarity concept. As more
applications are added in A the training set increases and
the recommendation accuracy improves. Fig. 1 shows a
walk through the steps of mapping applications to servers
for a simplified scenario. Scores have a 1-5 granularity
and the training set consists of the first 5 applications.
For simplicity, we assume integer scoring values; in a real
experiment, the entries of matrix A can have real values.

The core idea behind ADSM is that applications with
similar characteristics will have similar behaviors on the
same platforms. For example, applications that are bound
by memory capacity are likely to benefit from a SC with
large memory. This means that the singular value for
the corresponding similarity concept of memory-bound
applications will be large. Obviously, two applications can
be similar in one characteristic but different in others,
especially when scaling to large application spaces. This
is where SVD helps by uncovering hidden similarities and
filtering out the ones less likely to have an impact on the
application’s behavior. Identifying such similarity concepts
and evaluating their strength enables ADSM to perform
efficient application-to-server mappings.
3 EVALUATION

We use a collection of single-threaded (SPEC CPU2006),
multithreaded (PARSEC [4], SPLASH-2 [16], BioParallel [8],
Minebench [11]), multiprogrammed (350 mixes of 4 SPEC
workloads, based on the methodology described in [13])
and finally 390 DC workloads from Microsoft.

A. Evaluation of ADSM
Performance/Energy impact: We briefly present the results
for the ”homogeneous” DC and focus on the findings for
the heterogeneous system.
- Homogeneous DC: ADSM improves performance by 19%
for single-threaded, 17% for multi-threaded, 24% for multi-
programmed and 22% for DC workloads over random and
is within 3.8% from an oracle policy that always chooses
the best platform for an application. Similarly, given the
scoring function for efficiency optimization it achieves 18%
energy savings, while providing QoS guarantees.
- Heterogeneous DC: Fig.3 shows the performance benefits
on the multiprogrammed (18%), multi-threaded (17%) and
DC workload suites (16%). The data in Fig. 3a and 3c are
shown from worst to best workload, and the speedup is
measured over the performance of a random assignment.
ADSM finds the optimal platform for 85-90% of workloads
on average and for the remaining workloads it finds a
platform within 5-10% of the best one, and is within 4.6%
from the oracle mapping scheme.
Overheads: Fig. 2 is the breakdown of execution time
for the 29 SPEC applications and highlights two results;
first, the ratio of the time that corresponds to useful
computation over execution time in the optimal platform is
very close to 1 and second, training and decision overheads
are on average 0.1% and 2.0% respectively.
Validation of analytical methods: Fig. 3 also shows
the comparison between predictions from the analytical
models (red dots) and performance measured in the corre-
sponding platform. On average the deviation is less than
3.8%, guaranteeing the accuracy of the methods driving
ADSM. We have additionally verified the accuracy of the
utility matrix reconstruction through Pearson correlation
coefficients for problems of smaller scale and have ob-
served less than 5% deviation between the two methods.

B. Sensitivity Study
Sensitivity to training set: Fig. 4a, 5a show the sensitivity
of ADSM to training set sizes for SPEC and DC workloads.
The error is defined as the difference in performance
between optimal and recommended platform. For SPEC
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Fig. 3. Performance benefits from using ADSM on multiprogrammed (Fig. 3a), multi-threaded (Fig. 3b) and DC workloads (Fig. 3c).
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Fig. 4. Sensitivity to training set size and training
time for the SPEC workloads.
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Fig. 5. Sensitivity to training set size for DC applications: (a) accuracy and (b)
performance benefits. Fig. 5c: Sensitivity of energy savings to QoS guarantees.

the error decreases for larger training sets and is minimized
for 13 applications. Applications in the training set are
chosen randomly, but consistently across experiments. The
error increases after 13 applications, due to overfitting. DC
applications exhibit a more radical decrease in error. For
sizes 1% and 5% errors are high, but converge to constant
and low values as the training set reaches 10%, and do
not improve significantly after that, while for large sizes
(over 50%) there is overfitting. This change is reflected in
performance benefits as well, with speedups converging
to maximum at 10% (Fig. 5b). Comparing SPEC and DC
workloads shows that ADSM requires certain workloads to
extract similarity features, however their fraction becomes
negligible as the application space grows.

Sensitivity to training time: Fig. 4b shows the accuracy of
ADSM when the training time changes from 1M to 40B in-
structions, after a 40B instrs warmup period, for the SPEC
benchmarks. The error is high for short training times (1-
400M instrs) and converges to a constant value less than
5% at 1B instrs. Longer training times capture transient
workload phases and improve mapping decisions. The
results are consistent for the DC applications as well.
Sensitivity to QoS strictness: Previously we described
that given appropriate scoring functions ADSM can op-
timize for efficiency while maintaining performance re-
quirements. Here, we additionally examine how these
energy benefits increase as QoS restrictions are relaxed.
Fig. 5c shows the savings for DC applications, when
performance degradation is tolerable. This affects signif-
icantly applications which can now be mapped to low-
power platforms (x-axis:135-200), while others need high-
performance systems irrespective of QoS (x-axis: 300-315).
Finally, most applications improve due to ADSM allocating
fewer threads or mapping them to a slightly more efficient
platform. For 80% QoS there is a 38% energy improvement.

4 CONCLUSIONS
We presented ADSM a scalable and efficient scheme
for application-to-server mapping that is QoS and
heterogeneity-aware. ADSM scales to thousands of appli-
cations with minimal training and decision overheads, and
because it leverages robust analytical methods it can guar-
antee upper-bounded and small errors. We used ADSM
on a wide collection of workloads and showed significant
performance gains. Additionally, when ADSM is used for
energy efficiency optimizations it yields important energy
savings while enforcing strict QoS guarantees.
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