Storage I/0 Generation and Replay for Datacenter
Applications

Christina Delimitrou®, Sriram Sankar®, Kushagra Vaid' and Christos Kozyrakis*
*Electrical Engineering Department, Stanford University, Stanford, CA.
{cdel, kozyraki}@stanford.edu
TMicrosoft, Redmond, WA.
{srsankar, kushagra.vaid } @microsoft.com

I. INTRODUCTION

With the advent of social networking and cloud data-stores,
user data is increasingly being stored in large capacity and high
performance storage systems, which account for a significant
portion of the total cost of ownership of a datacenter (DC)
[3]. One of the main challenges when trying to evaluate
storage system options is the difficulty in replaying the entire
application in all possible system configurations. Furthermore,
code and datasets of DC applications are rarely available
to storage system designers. This makes the development
of a representative model that captures key aspects of the
workload’s storage profile, even more appealing. Once such
a model is available, the next step is to create a tool that
convincingly reproduces the application’s storage behavior via
a synthetic I/O access pattern.
Previous efforts on storage I/O workload generation rely
on traces which greatly depend on the underlying system.
Publicly available tools lack the ability to detect and utilize the
spatial and temporal locality of I/O access patterns, causing
workloads to significantly deviate from the application’s true
characteristics.
In this work, we provide a toolset for research on large-scale
storage systems. The main contributions of this framework are:
« A concise statistical model that accurately captures the I/O
access pattern of large-scale applications including their
spatial locality, inter-arrival times and type of accesses.
It is also hierarchical, which allows configurable level of
detail to accommodate the features of each application.
o A tool that recognizes this model and recreates synthetic
loads with same I/O characteristics as in the original
application. No previous tool (eg: IOMeter [5]) can
simulate spatial and temporal locality of DC workloads.
o This methodology enables storage system studies that
were previously impeossible without full application
deployment and access to the real applications. We
demonstrate the applicability of our tool in evaluating
SSD caching and defragmentation. These spatial locality-
based DC challenges have been relatively unexplored due
to lack of a tool that allowed their evaluation.

II. MODELING, GENERATION AND USE CASES

In this Section we describe the modeling and generation
methodology as well as two possible use cases for the toolset.

State 1 (0-25% LBN)

State 2 (25-50% LBN)

&rd Rnd 36.21ms 4, 8%

32Kwr

State 4 (75-100% LBN)

State 3 (50-75% LBN)

Fig. 1: Two levels State Diagram

A. Model and Generation Tool

For our model we use the Markov Chain representation pro-
posed by Sankar et al. [1]. According to this, states correspond
to ranges of logical blocks on disk (LBN) and transitions
represent the probabilities of switching between LBN ranges.
Each transition is characterized by a set of features that
reflect the workload’s I/0 behavior and consist of: block size,
randomness, type of I/O (rd, wr) and inter-arrival time between
subsequent requests. The probability for each transition is the
percentage of I/Os that correspond to it. In order to convey
more detailed information on the I/O access pattern we have
extended this model to a hierarchical representation (Figure
1), where each state in the one level diagram is subdivided in
four states and becomes a new state diagram.

The model, previously discussed, consists of the first step in
recreating accurate DC I/O loads. The second step, involves a
tool, that recognizes the model and generates storage work-
loads with high fidelity. For this purpose we use DiskSpd
[4], a workload generator which we enhance with a series
of features. Succintly these features include:

1) The ability to issue I/O requests with specified inter-arrival
times, both static and following time distributions. Un-
like all previous work, our model is based on inter-
arrival times instead of outstanding I/Os making it more
representative of an application’s behavior [2].

2) The ability to generate requests from multiple threads
with individual access characteristics (block size, rd/wr,
seq/rnd), while preserving the thread weight (i.e. portion
of accesses) for each transition.



Metrics Original Load Synthetic Load Deviation
Rd:Wr Ratio 1.8:1 1.8:1 0%
Random % 83.67% 82.51% -1.38%

. 8K(87%) 64K(7.4% 8K(88%) 64K(7.8%
Block Sizes 87%) lKEl.()%; ( 1K21.7%; 0.33%
Th. Weights T1(19%) T2(11.6%) T1(19%)T2(11.68%) 0% - 0.05%
Avg Int.Time 4.63ms 4.78ms 3.1%
10PS 255.14 263.27 3.1%
Avg Latency 8.09ms 8.48ms 4.8%

TABLE I: I/O - Performance Metrics Validation (Messenger)

M Original Trace

W Synthetic Trace
450

400

350

300

« 250
o

g200 1

150

100 -

50 -

User Content D-Process

Search Email
Synthetic Trace

Messenger Display Ads

Fig. 2: Comparison between Original and Synthetic Trace

3) The ability to modify the intensity of the generated I/Os
through an intensity knob which scales the inter-arrival
time of I/O requests. This is especially useful in high
performance storage systems (e.g.: Solid State Drives).

B. Tool Validation

For all our experiments we use traces from production servers
of six popular large scale DC applications. Messenger, Display
Ads and User Content are the SQL portions of an Online
Messenger, an Ads Display and a Live Storage application
respectively. Email and Search are latency critical online
services and D-Process is a distributed computing application
that resembles Map-Reduce [7]. These applications cover the
majority of large-scale workloads in modern DCs.

The first step in order to create the synthetic workloads, is
collecting 24-hour long traces from production servers, hosting
these applications. From these traces we create models of
configurable detail which are then given as input to the tool.
Validating the accuracy of the model and the tool is necessary
in order to ensure that original and synthetic workloads are
similar in their storage activity. Furthermore, since we adopt an
open-arrival approach (we do not guarantee a specific number
of outstanding I/Os as in a closed system) I/O fidelity is not
trivial. The process we are performing is as follows:

1) Collect traces from production servers

2) Create models with a configurable number of levels

3) Run the synthetic workloads and collect the new traces

4) Compare I/O characteristics and performance metrics be-
tween original and synthetic storage workloads.

For this part of our experiments we use an SQL-provisioned
server with 8 cores, 10 disk partitions and a total of 2.3TB of
HDD storage. For each application we evaluate the similarities
in the features of I/O requests (block size, rd/wr, rnd/seq, inter-
arrival time and thread weight) and the performance metrics
(throughput and latency). Table 1 shows this comparison

between original and synthetic workload for Messenger. The
results are similar for the other applications. For all metrics
the deviation between original and synthetic load is less than
4.8%. Figure 2 shows the throughput comparison between
original and synthetic load for all applications. The difference
in IOPS is always less than 5%, verifying the accuracy of
the modeling and generation process. Furthermore, in order to
ensure the consistency of our results, we calculate the variance
between different runs of the same synthetic workload and
guarantee a difference in throughput less than 1% in all cases.
For each application we choose an optimal number of levels
which is the first for which the performance metrics stabilize
(less than 2% difference in IOPS). This way, we convey the
best accuracy with the least necessary model complexity.

In order to demonstrate the merit of this methodology we
perform a comparison with the most well-known workload
generator (IOMeter). We verify that for simple tests with no
spatial locality notion the two tools behave similarly (less than
3.4% difference in throughput), while in studies where spatial
locality is critical, the results are fundamentally different.

C. Use Cases

One of the main benefits from using this toolset is the
opportunities it offers in evaluating storage studies that would
otherwise require access to the application code or full appli-
cation deployment. For this work, we evaluated two possible
use cases for the tool, SSD caching and the benefits from
defragmentation in a large-scale environment.

Firstly, we explore the applicability of SSD caching in DC
workloads. Using our tool, we show that for some applications,
SSD caching offers significant storage system speedup without
application change (18% on average for a 32GB SSD cache).
In the second use case, we motivate the need for defrag-
mentation in the DC. User data gets accumulated over a
period of time and files get highly fragmented. Using tracing
information, we rearrange blocks on disk to improve the
application’s sequential characteristics. Using the tool shows
that defragmentation offers a significant speedup (14% on
average), in some cases greater than incorporating SSDs.
Part of our future work includes evaluating the energy ef-
ficiency of these use cases, as well as extending a similar
modeling methodology to encompass other parts of the system,
towards a complete DC workload model.

REFERENCES

[1] S. Sankar, K. Vaid, “Storage characterization for unstructured data in
online services applications”. In IISWC, 2009.

[2] D.Narayanan, E.Thereska, A.Donnelly, S.Elnikety, A.Rowstron, "Migrat-
ing enterprise storage to SSDs: analysis of tradeoffs”. In EuroSys 2009.

[3] S. Sankar, K. Vaid. ”Addressing the stranded power problem in data-

centers using storage workload characterization”. Proceedings of the first

WOSP/SIPEW, 2010.

DiskSpd: File/Network I/0 using Win32/.NET API’s on WindowsXP http:

//research.microsoft.com/en-us/um/siliconvalley/projects/sequentialio/

[S] IOMeter, performance analysis tool. http://www.iometer.org/.

[6] ETW: Event Tracing for Windows:
http://msdn.microsoft.com/en-us/library/bb968803\ %28VS.85\ %29.aspx

[7] J. Dean and S. Ghemawat. "MapReduce: Simplified Data Processing on
Large Clusters”. OSDI’04. CA, December, 2004.

[4

=



