
Accurate Modeling and Generation of Storage I/O for Datacenter Workloads

Christina Delimitrou1, Sriram Sankar2, Kushagra Vaid2, Christos Kozyrakis1

1Stanford University, 2Microsoft

Abstract

Tools that confidently recreate I/O workloads have become
a critical requirement in designing efficient storage systems
for datacenters (DCs), since potential inefficiencies get aggre-
gated over several thousand servers. Designing performance,
power and cost optimized systems requires a deep under-
standing of target workloads, and mechanisms to effectively
model different design choices. Traditional benchmarking is
invalid in cloud data-stores, representative storage profiles
are hard to obtain, while replaying the entire application
in all storage configurations is impractical. Despite these
issues, current workload generators are not comprehensive
enough to accurately reproduce key aspects of real appli-
cation patterns. Some of these features include spatial and
temporal locality, as well as tuning the intensity of the work-
load to emulate different storage system behaviors.
To address these limitations, we use a state diagram-based
storage model, extend it to a hierarchical representation and
implement a tool that consistently recreates I/O loads of
DC applications. We present the design of the tool and the
validation process performed against six original DC appli-
cations traces. We explore the practical applications of this
methodology in two important storage challenges - 1) SSD
caching and 2) defragmentation benefits on enterprise stor-
age. In both cases we observe significant storage speedup for
most of the DC applications. Since knowledge of the work-
load’s spatial locality is necessary to model these use cases,
our tool was instrumental in quantifying their performance
benefits.

1 Introduction
With the advent of social networking and cloud data-stores,
user data is increasingly being stored in large capacity and
high performance storage systems, which account for a sig-
nificant portion of the total cost of ownership of a datacenter
(DC) [4, 14]. Specifically, for online services, data retrieval is
often the bottleneck to application performance [1, 4], mak-
ing efficient storage a first-order design constraint. One of
the main challenges when trying to evaluate storage system
options is the difficulty in replaying the entire application
in all possible system configurations. The effort itself can
be highly inefficient from the time and cost perspective. It
is hence imperative to invest in framework that allows for
extensive workload analysis.
Large scale Online Services differ from conventional appli-
cations in that they cannot be approximated by single ma-
chine benchmarking. Furthermore, code, user behavior pat-
terns and datasets of DC applications are rarely available
to storage system designers. This makes the development

of a representative model that captures key aspects of the
workload’s storage profile, even more appealing. Once such
a model is available, the next step is to create a tool that
convincingly reproduces the application’s storage behavior
via a synthetic I/O access pattern.
Previous efforts on storage I/O workload generation lack the
ability to detect and utilize the spatial and temporal locality
of I/O access patterns, causing them to significantly deviate
from the application’s indigenous characteristics.
In this work, we provide a toolset for research on large scale
storage systems. This toolset includes probabilistic, state
diagram-based models that capture information of config-
urable granularity on the workload’s access patterns. The
models are developed from production traces of real DC ap-
plications based on previous work by [1]. We design a tool
that recognizes these models and recreates synthetic access
patterns with I/O characteristics that closely match those of
the original application.
As part of this tool the following features have been imple-
mented:
1. The ability to issue I/O requests with specified inter-

arrival times, both static and following time distributions.
Unlike all previous work, our model is based on inter-
arrival times instead of outstanding I/Os making it more
representative of an application’s behavior [3].

2. The ability to generate requests from multiple threads
with individual access characteristics (block size, rd/wr,
seq/rnd), while preserving the thread weight (i.e. portion
of accesses) for each type of I/O.

3. The ability to modify the intensity of the generated I/Os
through an intensity knob which scales the inter-arrival
time of I/O requests. This is especially useful in high
performance storage systems (e.g.: Solid State Drives).

We use our methodology (model and tool) to evaluate two
important DC storage design challenges.
Firstly, we explore the applicability of Solid State Devices
(SSD) caching in DC workloads. Using our tool, we show
that for some DC applications, SSD caching offers a sig-
nificant storage system speedup without application change
(18% on average for a 32GB SSD cache).
In the second use case, we motivate the need for defragmen-
tation in the DC. We observe that user data gets accumu-
lated over a period of time and files get highly fragmented.
Using this information from tracing [10], we rearrange blocks
on disk in order to improve the sequential characteristics of
the workloads. Using the tool shows that defragmentation
offers a significant boost in performance (14% on average),
in some cases greater than incorporating SSDs.
Succinctly, the main contributions of this work are:
• We present a concise statistical model that accurately cap-

tures the I/O access pattern of large scale applications in-
cluding their spatial locality, inter-arrival times and type

1



of accesses. It is also hierarchical, which allows config-
urable level of detail to accommodate the features of each
application.

• We implement a tool that recognizes this model and recre-
ates synthetic access patterns with same I/O characteris-
tics as in the original application. No previous storage tool
(eg: IOMeter) can simulate spatial and temporal locality
of DC workloads.

• This methodology (model and tool) enables storage sys-
tem studies that were previously impossible without
full application deployment and without access to
the real applications. We demonstrate the applicabil-
ity of our tool in evaluating SSD caching and defragmen-
tation. These spatial locality-based DC challenges have
been relatively unexplored due to lack of a tool that al-
lowed their evaluation.

The combination of the model, tool and use cases adheres to
the optimal study technique for DC workloads and is distin-
guished from related previous efforts in its ability to correctly
replay large scale applications.
The rest of this paper is structured as follows. Section 2 dis-
cusses related work. Section 3 presents a description of the
model and an overview of the tool’s implementation. Sec-
tion 4 discusses the methodology’s validation process and a
comparison of our toolset with a popularly used workload
generator (IOMeter). Section 5 discusses the applicability of
the tool in evaluating two important DC storage challenges.
Finally, Section 6 presents limitations of the current imple-
mentation, topics for future work and concludes the paper.

2 Related Work
Exploring different storage system configurations is of great
interest to hardware architects, especially when the target
system is a large scale DC. Significant prior work [7] has
gone into provisioning this part of the system. However,
a necessary requirement towards efficiently configuring the
storage system is studying DC workloads. An ideal way for
that should involve a model that representatively captures
the workload’s features and a tool that accurately recreates
its access pattern.
Despite this, most prior large scale storage configuration
techniques are mainly empirical, based on the workload’s
characteristics as derived from traces [8]. Kavalanekar et al
[2, 8] use a trace-based approach to characterize large online
services for storage system configuration and performance
characterization respectively. Traces offer useful insight on
the characteristics of large scale workloads, but their use-
fulness is limited by the system upon which they have been
collected. Regenerating I/O workloads with high fidelity can
offer far richer information towards understanding the be-
havior of workloads that remain largely unknown. It also
enables addressing instrumental challenges in storage sys-
tem design (e.g. SSD incorporation/migration of hot data)
when optimizing for performance and efficiency.
IOMeter [6], SQLIO [12], Vdbench [11] are all open source
generators of disk I/O loads. IOMeter allows for specific
I/O characteristics to be defined, SQLIO simulates some as-
pects of the disk load of the Microsoft SQL Server, while
Vdbench apart from the feature of I/O generation in disks
and files is equipped with the capability of trace replay. Fi-

nally, a workload generator relying on online histograms in
a virtual machine over VMWare’s ESX Server [13] captures
information on disk I/O without significant CPU or latency
overheads. However, as with IOMeter, all these workload
generators lack the ability to exploit the temporal and espe-
cially spatial locality of DC applications. Also, where appli-
cable, these tools are based on outstanding I/Os instead of
inter-arrival times. However, the latter offers a better rep-
resentation of the workload’s true behavior [3], decoupled
from the system that hosts it. For our work, we extend the
functionality of DiskSpd [5], an I/O workload generator in
ways that permit us to recreate representative DC traces.

3 Modeling and Generation Tool
The purpose of this section is to describe the steps for the
modeling and generation process. We present the state diagram-
based model used, the extensions introduced to it in this
work and the implementation key-points of the tool that
creates synthetic I/O loads based on the model.

3.1 Basic State Diagram Model
For our model we use the Markov Chain representation pro-
posed by Sankar et al. [1]. According to the model, states
correspond to ranges of logical blocks on disk (LBN) and
transitions represent the probabilities of switching between
LBN ranges. Each transition is characterized by a set of fea-
tures that reflect the workload’s I/O behavior and consist
of: block size, randomness, type of I/O (read, write) and
inter-arrival time between subsequent requests. The intent
of the model is to provide a comprehensive representation
where each transition has an LBN range and an inter-arrival
time that reflect the spatial and temporal locality of the I/O
accesses respectively. The probability for each transition is
calculated as the percentage of I/Os that correspond to it.
Figure 1(a) demonstrates a simplified form of the state dia-
gram with four states, each of which corresponds to 25% of
the total LBNs.

3.2 Hierarchical State Diagram Model
Different applications have different access patterns, some
requiring more detail than others to be accurately captured.
In order to convey information of finer granularity on the
I/O access pattern we have extended the previous model to
a hierarchical representation. Figure 1(b) demonstrates one
such model with two levels. The hierarchical model is con-
structed as follows: each state in the one level diagram is
subdivided in four states and becomes a new state diagram.
The two-level state diagram will have 16 states.
Perhaps counter-intuitively the number of transitions in the
new diagram is not 256 but 76. As shown in Figure 1(b)
level-two (fine grained) transitions only exist within the large
states but not across them. Between level-one states we
maintain the previously demonstrated transitions (Figure
1(a)). This means that a hierarchical structure is preferred
over a flat representation where all transitions are explored.
The reason for that is that we expect spatial locality to be
confined within states rather than across them. This does
not cancel the value of a flat model, but rather proposes
that a hierarchical model is just as beneficial as a flat model
without making the number of transitions intractable. Com-
paring the throughput of models constructed with the hier-

2



Figure 1: (a) One level and (b) Two levels State Diagram

archical and the flat representations shows less than 5% dif-
ference in throughput.
The numbers of levels reflects the complexity of an applica-
tion’s locality pattern and as will be shown in the validation
section (4.3), finer granularity is instrumental for some ap-
plications to be accurately represented.

3.3 Generation Tool Design - DiskSpd
The model, previously discussed, consists of the first step in
recreating accurate DC I/O loads. The second step, involves
a tool, that recognizes the model and generates storage work-
loads with high fidelity, using some configuration knobs.
For this purpose we use DiskSpd, a tool that started as a
means to measure disk I/O bandwidth and expanded to a
complete workload generator [5]. It works as a command line
tool, performing read and/or write I/Os in burst mode on
either disks or files, given the I/Os’ block size, randomness,
and initial block offset. The former consist of a subset of
the most relevant features of DiskSpd for the current study.
Other features include controlling system parameters such
as hardware or software (OS) caches, thread affinity, system
warmup and cool-down, number of outstanding I/Os, etc.
In order to recreate a representative workload using the model
previously discussed, we have implemented a series of fea-
tures in DiskSpd. The following subsections describe the
major changes performed in the tool.

3.3.1 Inter-arrival Times (Static and Distributions)
Studying real application traces has shown that burst mode
I/O accesses, though present for short periods of time, are
not the norm and certainly do not dominate an application’s
lifetime. Subsequent I/Os tend to have well defined time
margins between them. Narayanan et al [3] have shown that
inter-arrival times are a critical feature of I/O behavior, es-
pecially in DC applications that experience high peaks and
low troughs throughout their execution. Multiple studies
quantify the magnitude of this metric and explore the differ-
ence in inter-arrival times among DC workloads [1, 4].

To demonstrate these time margins between accesses of spe-
cific block ranges, we implement the notion of inter-arrival
times in DiskSpd. Inter-arrival times are calculated for each
transition and measured in ms. Enabling inter-arrival times
also means disabling the simultaneous tuning of outstanding
I/Os since the two are incompatible, with the former ensur-
ing an ”idle” period of time between I/Os and the latter
ensuring that a defined number of on-the-fly I/Os exists in
the queues. The use of inter-arrival times instead of out-
standing I/Os in a workload generator is first proposed here.
Most previous tools are based on defining the number of
I/Os in the queues of the system. However, queued I/Os do
not characterize an application as well as inter-arrival times.
The difference between the two becomes more clear in the
case where we want to create a more intense workload as
described in Section 3.3.3.
Furthermore, in order to capture the variations in the inten-
sity of an application throughout its execution we have added
the feature of inter-arrival time distributions, i.e. during the
workload’s execution the inter-arrival times can follow one
of the following distributions: normal, exponential, poisson
and gamma. This permits a closer resemblance to the fluc-
tuations of a workload’s intensity throughout its lifetime.

3.3.2 Multiple Threads and Thread Weights
By default DiskSpd supports the execution of either one or
multiple threads but all characterized by the same access pa-
rameters. However, access patterns of real applications have
distinct per transition characteristics.
In order to recreate an I/O load using the state diagram
model, we have added the feature of executing threads with
different I/O characteristics each (block size, randomness,
type (rd/wr), target LBN range and inter-arrival times). We
have introduced the notion of thread weight, i.e. the propor-
tion of I/O accesses that correspond to each thread. Dur-
ing the threads’ execution, we ensure that thread weights
are satisfied with less than 0.05% deviation from the target
weights by adjusting the ”idle” time for each thread.
Furthermore, in order to guarantee that the thread weights
are satisfied throughout the workload’s execution we per-
form a Round Robin visit in states so that all threads are
active in different periods during the program’s execution
instead of limiting them in an arbitrary period of activity.
That way the synthetic trace becomes a compressed version
of the original workload. Although this does not cover all
possible transition patterns, self-similarity tests [2] in orig-
inal DC applications have verified that indeed the spatial
characteristics of I/Os are consistent across time.

3.3.3 Intensity Knob
One of the main incentives behind developing this tool is
evaluating different storage system configurations. Although
when referring to disks, inter-arrival times are within a few
milliseconds or tenths of a millisecond, when switching to
SSDs that number is expected to fall dramatically, since I/Os
are expected to arrive at a higher rate. Current production
traces do not have such intensity, however we expect work-
loads to be tuned to faster storage systems using SSDs. In
order to replay workloads compatible with such systems, we
have added an intensity knob that scales all threads’ inter-
arrival times down or up to increase or decrease their in-
tensity respectively. This feature clarifies the distinction be-

3



tween outstanding I/Os and inter-arrival times. Queuing
more I/Os does not emulate a faster storage system, since in
an SSD-based system, for example, I/Os do not simply get
queued in larger numbers, they also get serviced faster. Just
maintaining outstanding queue length in this case, stresses
the I/O system out of proportion and is not useful for DC
storage scaling studies. Having this knob offers the opportu-
nity to evaluate the applicability of a storage system config-
uration based on the workload’s expected intensity margins,
at a spatial locality granularity.
For example, in a Hard Disk-based system when intensity
exceeds the system’s queues’ capabilities, throughput levels
off. Although we assume that I/Os will not be dropped, un-
less timeouts are present in the system, the application can
still not meet its intensified performance requirements. The
use of SSDs for storage is motivated, among others, by this
performance limitation of the Hard Drive-based system.
An important note to make here is that our work is based on
an open-loop approach, which means that the application is
not retuned when we switch to an SSD-based system. There-
fore, the intensity knob makes the application more compat-
ible with a high service rate storage system, while retaining
the previous spatial locality information and assuming most
requests are independent of each other. Whether this local-
ity is subject to change in a faster system and thus should
also change is deferred to future work.

4 Toolset Validation
4.1 Original DC Workloads
For all our experiments we use traces from production servers
of six popular large scale DC applications. Messenger, Dis-
play Ads and User Content are the SQL portions of an Online
Messenger, an Ads Display and a Live Storage application
respectively. For each one, we study the part that maintains
the SQL database with user information. These applications
service thousands of users, therefore the data being accessed
is typically spread across most of the provisioned disks.
Email and Search are latency critical online services. Email
is hosted in a much larger storage system than Search. Un-
like the three SQL-based applications, Search demonstrates
significantly higher spatial locality, with some portions of
the disk being frequently accessed and others heavily un-
derutilized. Finally, D-Process is a distributed computing
application that resembles Map-Reduce [14], collecting and
processing large amounts of information on applications such
as Search. Its storage comprises of a large number of disks,
partitioned between data and logs. These applications cover
the majority of large scale workloads in modern DCs.

4.2 Generating Models from Traces
The first step in order to create the workload models, is
collecting real, 24-hour long traces from production servers,
hosting the applications previously discussed. The length
of the traces is sufficiently representative of an application’s
behavior, given the self-similarities of access patterns in DC
workloads [3]. The traces are collected using ETW [10],
which aside from information on I/O features (block size,
type of request, etc.), offers tracking of the file name, thread
id and timestamps’ values for each storage access. Having
these traces, we create state diagram models with different

Metrics Original Load Synthetic Load Deviation
Rd:Wr Ratio 1.8:1 1.8:1 0%

Random % 83.67% 82.51% -1.38%

Block Sizes
8K(87%) 64K(7.4%) 8K(88%) 64K(7.8%)

0.33%
1K(1.6%) 1K(1.7%)

Th. Weights T1(19%) T2(11.6%) T1(19%)T2(11.68%) 0% - 0.05%

Avg Int.Time 4.63ms 4.78ms 3.1%
IOPS 255.14 263.27 3.1%

Avg Latency 8.09ms 8.48ms 4.8%

Table 1: I/O - Performance Metrics Validation (Messenger)

0

50

100

150

200

250

300

350

400

450

Messenger Search Email User Content D‐Process Display Ads

IO
ps
 

Synthetic Trace 

Original Trace Synthetic Trace

1 
le
ve
l 

1 
le
ve
l 

2 
le
ve
ls
 

3 
le
ve
ls
 

1 
le
ve
l 

3 
le
ve
ls
 

Figure 2: Throughput Comparison between Original and
Synthetic Trace

number of levels. These models are then provided as input
for the tool to create the synthetic workloads.

4.3 Validation
Validating the accuracy of the model and the tool is neces-
sary in order to ensure that original and synthetic workloads
are similar in their storage activity. Furthermore, since we
adopt an open-arrival approach (we do not guarantee a spe-
cific number of outstanding I/Os as in a closed system) I/O
fidelity is not trivial. The process we are performing is as
follows:

1. Collect traces from production servers as described in Sec-
tion 4.2

2. Create workload models with a configurable number of
levels

3. Run the synthetic workload and collect the new trace
4. Compare I/O characteristics and performance metrics be-

tween the original and synthetic storage workload.

For this part of our experiments we use an SQL-provisioned
server with 8 cores, 5 physical volumes, 10 disk partitions
and a total of 2.3TB of purely HDD storage.
We try to maintain the configuration of the storage system
the synthetic trace is replayed on as close as possible to the
one the original trace has been collected from by replay-
ing specific types of I/O requests in the appropriate disk
partitions. For the SQL-based workloads, for example, Log
I/Os are replayed in the Log partition while SQL queries
are replayed in the data partition. For the remaining three
applications, the system varies in the real DC (Search and
D-Process run on striped four-disk SATA systems); how-
ever, the throughput does not greatly deviate from its ex-
pected value. Although this result might seem unexpected
at first, for an incorrectly provisioned system, these applica-
tions have relatively low I/O throughput (IOPS) that is eas-
ily satisfied through a system engineered for SQL. Although
the percentile difference is higher for these two applications,
the absolute number of IOPS remains reasonably low.
For each one of the six applications we evaluate the similar-
ities in the features of the I/O requests (block size, rd/wr,

4



rnd/seq, inter-arrival time and thread weight) as well as the
performance metrics (throughput and latency) of the syn-
thetic applications as opposed to the original ones. As far
as the proportion of accesses is concerned, we verify that the
thread weights are satisfied with less than 0.05% deviation
from their original values. Table 1 shows the comparison for
these metrics between original and synthetic workload. For
the sake of clarity, we only demonstrate this data for Messen-
ger. The results are similar for the other applications. For
all metrics the deviation between original and synthetic load
is less than 4.8%. Figure 2 shows the throughput compari-
son between original and synthetic load for all applications.
The difference in IOPS is always less than 5%, verifying
the accuracy of the modeling and generation process. Fur-
thermore, in order to ensure the consistency of our results,
we calculate the variance between different runs of the same
synthetic workload and guarantee a difference in throughput
less than 1% in all cases.
Note that a number of levels is mentioned for each applica-
tion in Figure 2. This is the optimal number of levels per ap-
plication and is the one for which the synthetic trace behaves
in a way that resembles the original trace more closely. The
decision on the optimal granularity is performed by choosing
the first number of levels for which the performance metrics
stabilize (less than 2% difference in IOPS). That way, we
convey the best possible accuracy with the least necessary
model complexity. This methodology allows for a config-
urable level of detail in the model of each application.

4.4 Comparison with IOMeter
IOMeter is the most well known open source workload gener-
ator [6]. Although it offers many capabilities as far as access
characteristics are concerned, it currently has limited infor-
mation on the spatial locality of I/Os, thus making it unsuit-
able for several DC storage studies. Furthermore, IOMeter
implements the concept of outstanding I/Os but cannot rep-
resent inter-arrival times, which seriously limits its intensity
scaling capabilities. Finally, it does not allow specific file
accesses, which as will be seen in Section 5.2, would make it
impractical to evaluate the benefits of defragmentation.
In this section we compare the performance characteristics
of IOMeter and DiskSpd. For the purpose of this compari-
son no change is conducted in IOMeter, and the parameters
for the tests are defined using the tool’s default knobs. We
perform identical tests using both tools and quantify the dif-
ference in throughput and latency. The table above (Table 2)
shows how the tools behave in a series of simple access pat-
terns with the exact same parameters. All tests are run for
30 seconds, performing I/O requests to a simple file. In the
interest of clarity, we do not demonstrate all possible param-
eter configurations, but some representative examples. Note
that no notion of spatial locality is introduced in these sim-
ple tests. From the results we observe that both tools behave
similarly with a maximum deviation of 3.4% in throughput.

The main difference in the two tools becomes evident when
introducing the notion of spatial locality. In order to demon-
strate how DiskSpd takes into consideration spatial locality
while IOMeter does not, we use an optimization technique
that will be presented in more detail in the following section
(Section 5.1). SSD caching takes advantage of frequently

Test Configuration
IOMeter DiskSpd

(IOPS) (IOPS)
4K Int. Time 10ms Rd Seq 97.99 101.33
16K Int. Time 1ms Rd Seq 949.34 933.69

64K Int. Time 10ms Wr Seq 96.59 95.41
64K Int. Time 10ms Rd Rnd 86.99 84.32

Table 2: IOMeter vs DiskSpd Comparison

0.92

0.96

1

1.04

1.08

1.12

1.16

DiskSpd IOMeter

Sp
e

ed
u

p
 

Tool 

Messenger 
No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

0.9

0.95

1

1.05

1.1

1.15

1.2

DiskSpd IOMeter

Sp
e

ed
u

p
 

Tool 

User Content 
No SSD 1 SSD 2 SSDs 3 SSDs 4 SSDs - all

Figure 3: IOMeter vs DiskSpd Comparison for (a) Messen-
ger, (b) User Content.

accessed blocks and thus improves performance by avoiding
visiting the disk often. If a tool takes into consideration spa-
tial and temporal locality we expect to see an improvement
in performance when the synthetic trace is run using SSD
caches. We run the synthetic traces for the six applications
and the corresponding I/O tests that best resemble their be-
havior using IOMeter. No notion of spatial locality is incor-
porated in the latter. Figure 3 shows how the performance
changes as we progressively add SSDs to the system for Mes-
senger (3.a) and User Content (3.b). The important point
in these figures is not the precise speedup but the signifi-
cantly different behavior of the tools. In all cases it becomes
evident that IOMeter does not reflect the spatial locality of
the original access pattern. For most applications there is
no speedup for increasing number of SSDs, due to incorrect
caching of blocks, and for those that a speedup exists it is
inconsistent with what would have been expected as caching
becomes more intense (more SSDs - better speedup).

5 Use Cases
One of the main benefits from using a representative model
and a corresponding robust tool to create DC workloads,
is the opportunities it offers in evaluating storage studies
that would otherwise require access to the application code
or full application deployment. Especially when targeting
large scale systems, such practicality can be proven critical
in improving the Quality of Service (QoS) and TCO of the
system. In this section we evaluate two such possible uses
for the tool: SSD caching and the Benefits of Defragmenta-
tion. Both these studies are spatial locality-dependent and
have thus been relatively unexplored using workload genera-
tion tools. Given the information on spatial locality distilled
in the state diagrams we now have a tool that can evalu-
ate storage system optimizations, in order to improve the
performance and efficiency of the system.

5.1 SSD caching
Defining an efficient storage system configuration for widely
deployed applications is a great challenge and in terms of
proper provisioning, a field that often separates high quality
systems from the norm. It is clear from studying the spatial
locality of the six DC applications that for most of them,
I/O accesses are aggregated in a small LBA range. This
creates incentive towards incorporating SSD caches to take

5



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Messenger Search Email User Content D‐Process Display Ads

Sp
ee
du

p 

Synthetic Workload 

Baseline ‐ No SSDs 1 SSD 2 SSDs 3 SSDs 4 SSDs ‐ all

Figure 4: Storage Speedup from SSD caching

advantage of the frequently accessed blocks.
As previously noted, we use an open-loop approach, which
means that the applications are not retuned when switch-
ing to the SSD-based system. This might underestimate the
benefits of the faster storage system but offers more con-
crete performance metrics. The experiments are performed
by running the previously created models on an SQL pro-
visioned server with 4 SSD caches (8GB each), which we
progressively turn on.
Figure 4 shows the storage speedup achieved when going
from no SSD caches on (left bar) to all 4 SSD caches on
(right bar). We observe that especially for Search, User
Content and D-Process, the performance benefit from us-
ing a large number of SSDs is significant (18% on average
for 4 SSDs and 38% maximum for D-Process). Studying
the clustering of accesses in the corresponding models re-
veals that these three applications demonstrate the highest
aggregation of I/O requests. An important note is that in
Figure 4, we refer to storage speedup and not speedup for
the entire application. These workloads are not necessarily
limited by storage but their performance improvement and
the expected improvement in efficiency are strong incentives
towards the use of SSD caching nonetheless.

5.2 Benefits from Defragmentation
Most DC applications experience high levels of fragmenta-
tion, with their Random proportion often exceeding 80%.
This motivates the use of defragmentation to improve per-
formance and efficiency.
From the information provided by ETW [10] we can extract
the name of the file for each I/O access, estimate fragmen-
tation levels, and perform a block rearrangement to improve
the sequential characteristics. Evaluating the new work-
load’s performance using the state models can act as an
offline method to identify the benefits of defragmentation,
as well as the optimal moment to perform defragmentation,
without having to examine the entire application. These are
usually critical applications that cannot afford the overhead
of a continuous online evaluation.
In most cases, the sequential characteristics improve on av-
erage by 20%, which corresponds to a storage speedup of
8-20% as can be seen in Figure 5. This result implies that
clustering I/Os together is more beneficial for performance
than taking advantage of parallel spindles, due to faster com-
pletion of sequential accesses. The applications that benefit
from this process the most are D-Process and Email, which
have the highest write to read probabilities. Since these ap-
plications are random-write dominated, improving their se-
quential characteristics allows them to better utilize the full
rotation of the disk.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Messenger Email Search D‐Process User Content Display Ads

Sp
ee
du

p 

Synthetic Workload 

Baseline Defragmented

Figure 5: Storage Speedup from Defragmentation

6 Future Work and Conclusions
In this work we have extended a probabilistic model that cap-
tures granular information on a workload’s I/O patterns and
implemented a tool that recreates DC workloads with high
fidelity. We differentiate from previous work in that we take
into account spatial and temporal locality of I/O accesses.
We have performed extensive validation of the synthetic I/O
traces against six real DC applications and verified the con-
sistency of our results. Finally, we have evaluated two possi-
ble uses for the tool, SSD caching and defragmentation, and
quantified the improvement in storage performance. We be-
lieve that, compared to previously available workload gen-
erators, this toolset can be used to make confident design
decisions for DC scale systems.
As part of future work, we plan to address the limitations of
this methodology, one of which is substituting single transi-
tions with paths in the state diagram to preserve history of
accesses. We are planning to evaluate the energy efficiency
of the two uses presented here and quantify the full-system
benefit. Finally, having a model that aggregates all different
parts of the system and a tool that recreates a synthetic load
for complete DC workloads is the main focus of our future
work, with possible applications in virtualization, applica-
tion consolidation and energy efficient DC designs.

References
[1] S. Sankar, K. Vaid, ”Storage characterization for unstructured data

in online services applications”. IEEE International Symposium on
Workload Characterization (IISWC), 2009.

[2] S. Kavalanekar, B. Worthington, Q. Zha, V. Sharda ”Characteriza-
tion of storage workload traces from production Windows servers”.
In Proc. IISWC 2008, Seattle, WA, Sept. 2008.

[3] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron, ”Migrating enterprise storage to SSDs: analysis of tradeoffs”.
In Proceedings of EuroSys 2009, Nuremberg, 2009.

[4] S. Sankar, K. Vaid. ”Addressing the stranded power problem in
datacenters using storage workload characterization”. Proceedings
of the first WOSP/SIPEW, 2010.

[5] DiskSpd: File and Network I/O using Win32 and .NET
API’s on Windows XP http://research.microsoft.com/en-
us/um/siliconvalley/projects/sequentialio/

[6] IOMeter, performance analysis tool. http://www.iometer.org/.
[7] C. Kozyrakis, A. Kansal, S. Sankar, K. Vaid, ”Server Engineering

Insights for Large-Scale Online Services”. In IEEE Micro, July 2010
[8] S. Kavalanekar, D. Narayanan, S. Sankar, E. Thereska, K. Vaid,

B. Worthington,” Measuring Database Performance in Online Ser-
vices: a Trace-Based Approach”. In First TPC TC, France, 2009

[9] Adaptec MaxIQ. 32GB SSD Cache Performance Kit.
[10] ETW: Event Tracing for Windows:

http://msdn.microsoft.com/en-
us/library/bb968803%28VS.85%29.aspx

[11] H. Vandenbergh.Vdbench: User Guide. Version:5.00 October 2008
[12] SQLIO Disk Subsystem Benchmark Tool.
[13] I. Ahmad. ”Easy and Efficient Disk I/O Workload Characteriza-

tion in VMware ESX Server”. VMware Inc. In IISWC 2007.
[14] J. Dean and S. Ghemawat. ”MapReduce: Simplified Data Pro-

cessing on Large Clusters”. OSDI’04. CA, December, 2004.

6


