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THE DRAM-BASED RECONFIGURABLE ACCELERATION FABRIC (DRAF) USES COMMODITY

DRAM TECHNOLOGY TO IMPLEMENT A BIT-LEVEL, RECONFIGURABLE FABRIC THAT

IMPROVES AREA DENSITY BY 10 TIMES AND POWER CONSUMPTION BY MORE THAN

3 TIMES OVER CONVENTIONAL FIELD-PROGRAMMABLE GATE ARRAYS. LATENCY

OVERLAPPING AND MULTICONTEXT SUPPORT ALLOW DRAF TO MEET THE PERFORMANCE

AND DENSITY REQUIREMENTS OF DEMANDING APPLICATIONS IN DATACENTER AND

MOBILE ENVIRONMENTS.

......The end of Dennard scaling has
made it imperative to turn toward applica-
tion- and domain-specific acceleration as an
energy-efficient way to improve performance.1

Field-programmable gate arrays (FPGAs)
have become a prominent acceleration plat-
form as they achieve a good balance between
flexibility and efficiency.2 FPGAs have enabled
accelerator designs for numerous domains,
including datacenter computing,3 in which
applications are much more complex and
change frequently, and multitenancy sharing is
a principal way to achieve resource efficiency.

For FPGA-based accelerators to become
widely adopted, their cost must remain low.
This is an issue both for large-scale datacenters
that are optimized for total cost of ownership
and for small mobile devices that have strict
budgets for power and chip area. Unfortu-
nately, conventional FPGAs realize arbitrary

bit-level logic functions using static RAM
(SRAM) based lookup tables and configurable
interconnects, both of which incur significant
area and power overheads. The poor logic
density and high power consumption limit
the functionality that one can implement
within an FPGA. Previous research has used
networks of medium-sized FPGAs3 or devel-
oped multicontext FPGAs4 to circumvent
these limitations, but these approaches come
with their own overheads. For details, see the
sidebar, “FPGAs in Datacenters and Multi-
context Reconfigurable Fabrics.”

We developed the DRAM-Based Recon-
figurable Acceleration Fabric (DRAF), a
reconfigurable fabric that improves logic den-
sity and reduces power consumption through
the use of dense, commodity DRAM arrays.
DRAF is bit-level reconfigurable and has sim-
ilar flexibility as conventional FPGAs. DRAF
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includes architectural optimizations, such as
latency overlapping and multicontext sup-
port with fast context switching, that allow it
to transform slow DRAM into a performant
reconfigurable fabric suitable for both data-
centers and mobile platforms.

Challenges for DRAM-Based FPGAs
Dense DRAM technology provides a new
approach to realize high-density, low-power
reconfigurable fabrics necessary in constrained
environments such as datacenters and mobile
devices. However, simply replacing the
SRAM-based lookup tables in FPGAs with
DRAM-based cell arrays would lead to crit-
ical challenges in logic utilization, perform-
ance, and even operation correctness. First,
DRAM arrays are heavily optimized for

area and cost efficiency by using very wide
inputs (address) and outputs (data). Such
wide granularity does not match the rela-
tively fine-grained logic functions in most
real-world accelerator designs, resulting in
underutilization of the DRAM-based lookup
tables. Simply reducing the I/O width of
DRAM arrays would forfeit the density ben-
efit, because the peripheral logic would now
dominate the lookup table area. Second,
DRAM access speed is 30 times slower than
that of SRAM arrays (2 to 10 ns versus 0.1
to 0.5 ns). Without careful optimization, a
30 times slower FPGA would hardly provide
any acceleration over programmable process-
ors. Third, implementing large and complex
logic functions often requires multiple lookup
tables to be chained together, which is prob-
lematic with DRAM lookup tables, because

FPGAs in Datacenters and Multicontext Reconfigurable Fabrics
The advantages of spatial programmability and post-fabrication

reconfigurability have made field-programmable gate arrays (FPGAs)

the most successful and widely used reconfigurable fabric for accel-

erator designs in various domains. FPGAs provide bit-level reconfi-

gurability through lookup tables, which can implement arbitrary

combinational logic functions by storing the function outputs in small

static RAM arrays. The typical lookup table granularity at the

moment is 6-bit input and 1-bit output. FPGAs also have flip-flops for

data retiming and temporary storage. The lookup tables and flip-flops

are grouped into configurable logic blocks, which are organized into

a 2D grid layout with other dedicated DSP and block RAM blocks. A

bit-level, statically configurable interconnect supports communica-

tion between these blocks.

FPGAs have recently been used in datacenters as an accelera-

tion fabric for cloud applications.1–3 Datacenter servers often host

multiple complex applications. Hence, multiple large FPGA devices

are often necessary to provide sufficient resources for multiple

large accelerators. Unfortunately, the tight power budget and the

focus on total cost of ownership make it impractical to introduce

expensive, power-hungry devices. To counteract these issues,

Microsoft proposed the Catapult design, using medium-sized

FPGAs with custom-designed interconnects linked between

them.1 Although it improves performance, this approach increases

the system complexity and design integration cost, while still sup-

porting only a single application on the acceleration fabric.

Multicontext reconfigurable fabrics4 can support multitenancy

sharing by allowing rapid runtime switch between multiple designs

(contexts) that are all mapped onto a single fabric, similar to hard-

ware-supported thread switching in multithreaded processors. Such

fabrics store all context configurations on chip, either in specialized

lookup tables5 or in separate global backup memories.6 Both

approaches consume significant on-chip area for the additional stor-

age, greatly reducing the single-context logic capacity. In addition,

loading the configuration from the backup memories can result in

long context switch latency. Because of their large overheads, multi-

context FPGAs have not been widely adopted by industry.
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the destructive nature of DRAM accesses
requires explicit activation and precharge
operations with precise timing. Without care-
ful management and coordination between
lookup tables, the lookup table contents
would be destroyed if accessed with an unsta-
ble input. Finally, DRAM requires periodic
refresh operations, which could negatively
impact system power consumption and appli-
cation performance.

DRAF Architecture
DRAF leverages DRAM technology to imple-
ment a reconfigurable fabric with higher logic
capacity and lower power consumption than
conventional FPGAs. Table 1 summarizes the
key features of DRAF as compared to a con-
ventional FPGA.

DRAF implements several key architec-
tural optimizations to overcome the challenges
discussed in the previous section. First, it uses
a specialized DRAM lookup table design that
achieves both high density and high utiliza-
tion by using a narrower output width and
flexible column logic. Second, it uses a simple
phase-based solution to specify the correct
timing for each lookup table, and a three-way
delay overlapping technique to significantly
reduce the impact of DRAM operation
latencies. Third, DRAF coordinates DRAM
refresh in the device driver to reduce its power
and latency impact. Finally, DRAF provides
efficient multicontext support, which opens
up the opportunity for sharing the accelera-
tion fabric between multiple applications,
greatly decreasing the overall system cost.

Overview
Similar to an FPGA, DRAF uses three types
of logic blocks. The configurable logic block

(CLB) contains lookup tables made with
DRAM cell arrays and conventional flip-
flops. The lookup table supports multiple
on-chip configurations, each stored in one of
the contexts. The digital signal processing
(DSP) block is used for complex arithmetic
operations, and the block RAM (BRAM) is
for on-chip data storage. They are similar to
those in FPGAs, but implemented in DRAM
technology, which makes their latency and
area worse than the corresponding imple-
mentation in a logic process. However, as
we will show, the DRAM-based lookup
table will also have much higher latency
than an SRAM-based lookup table; there-
fore, the increased latencies of DSP and
BRAM are not critical and do not dominate
the overall design critical path. In addition,
the combinational DSP logic does not
need to be replicated across contexts, thus
offsetting its area overhead. The DRAM
array in the BRAM block is similar to the
lookup tables, but with larger capacity, and
is used for data storage rather than design
configurations.

The blocks in DRAF are organized in a
2D grid layout similar to that of conventional
FPGAs (see Figure 1a). The DRAF intercon-
nect uses a simple and static time-multiplexing
scheme to support multiple contexts.5

Configurable Logic Block
Figure 1b shows the structure of the CLB in
DRAF. The density advantage of DRAM
technology allows a DRAF CLB to provide
10 times the logic capacity over an FPGA
CLB within the same area. The CLB con-
tains a few DRAM-based lookup tables and
the associated flip-flops and auxiliary multi-
plexers. The inputs of the lookup table are

Table 1. Comparison of the DRAM-Based Reconfigurable Acceleration Fabric

(DRAF) and a conventional field-programmable gate array (FPGA).

Features Conventional FPGA DRAF

Lookup table technology Static RAM (SRAM) DRAM

Lookup table delay Short (0.1 to 1 ns) Long (1 to 10 ns)

Lookup table output width Single bit Multiple bits

Logic capacity Moderate Very high

No. of configurations Single Multiple (4 to 8)

Power consumption Moderate Low
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split into two parts and connected to the row
and column address ports of the DRAM
array, respectively. To support multicontext,
each lookup table is divided into four to eight
contexts, leveraging the hierarchical structure
in modern DRAM chips, in which the array
is divided into DRAM MATs. Each context
in DRAF is a modified DRAM MAT (see
Figure 1c). The decoded row address will acti-
vate a single local wordline, which connects
the cells in that row to the bitlines. The data
are then transferred to the sense-amplifiers
and augmented to full-swing signals.

The typical MAT width and height in
commodity DRAM devices are 512 to 1,024
cells. This implies a 9-bit-input, 512-bit-
output lookup table, whereas a typical FPGA
lookup table has a 6-bit input and 1-bit
output. To bring the DRAF lookup table
granularity close to the needs of real-world
applications to increase the logic utilization,
we make each MAT narrower, reducing its
width to 8 to 16 bits. This offers a good
tradeoff between utilization and density.
The aggregated row size of all contexts is still
in the order of hundreds of bits, sufficiently

amortizing the area overheads of the shared
peripheral logic (such as the row decoder).

To further increase the logic utilization
and flexibility, we apply a specialized column
logic to allow for each output bit to be inde-
pendently selected from the corresponding set
of bitlines. As Figure 1c shows, rather than
sharing the same column address for all bits as
in conventional DRAM, we organize the 16
bitlines into four groups, and provide each
group a separate set of 2 bits to select one out-
put from the 4 bits. This additional level of
multiplexing further reduces the output width
to 4 bits, while allowing each bit to have parti-
ally different input bits, increasing the flexibil-
ity of the lookup table functionality.

Multicontext Support
DRAF seamlessly supports multicontext
operations by storing each design configura-
tion in one MAT and allowing for single-
MAT access. Effectively, each MAT forms
one context across all lookup tables. The
multiple contexts in one device can be used
for different independent logic designs, each
of which accelerates one application running
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Figure 1. The DRAF architecture. (a) The block layout of DRAF, similar to an FPGA. Block sizes and numbers can vary across

devices. (b) The configurable logic block (CLB) in DRAF. As a typical example, a CLB contains two DRAM-based lookup tables

and associated flip-flops (FFs) organized into eight contexts. Each lookup table has an 8-bit (6 bits for row and 2 bits for

column) input and a 4-bit output. (c) Detailed view of one context in a DRAF lookup table with the context enable gate and

specialized column logic.
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on the shared system. Alternatively, we can
split a single large and complicated design,
such as websearch in Microsoft Catapult,3

and map each part to one context in order to
fit the entire design on a single device instead
of using a multi-FPGA network.

We leverage the hierarchical wordline
structure in DRAM to decouple the accesses
to each MAT by adding an enable AND gate
to each local wordline driver,6 as shown in
Figure 1c. This lets us access only a single
MAT corresponding to the current selected
context, while disabling the other MATs. A
context output multiplexer selects the enabled
context for the lookup table output port.

The multicontext support in DRAF is par-
ticularly efficient. First, the area overhead is
negligible, because the peripheral logic (for
example, the row decoder) is shared between
contexts. Second, the idle contexts (MATs) are
not accessed, introducing little dynamic power
overhead, and they can be further power-gated
to reduce static power. Third, because the
design configurations are stored in-place in

each lookup table, the context switch is instant
by simply updating a context index counter
(CTX SEL in Figure 1b) and the new context
is ready to use in the next cycle.

Timing Management and Optimization
DRAM access is destructive. Therefore,
modern DRAM array organization introdu-
ces a two-step access protocol. First, an entire
DRAM row is activated and copied into the
sense-amplifiers according to the row address
(activation); next, a subset of the sense-ampli-
fiers are read or written on the basis of the
column address. Because the original charge
of the cells in the DRAM row is destroyed
after the activation, the cells must be recharged
or discharged to restore to the original values
(restoration).7 Finally, we must precharge the
bitlines and sense-amplifiers to prepare for the
next activation (precharging). The explicit
activation, restoration, and precharging cre-
ate two major challenges for using DRAM in
a reconfigurable fabric.

First, when multiple DRAM-based lookup
tables are chained together for a large logic
function, we must enforce a specific order for
each lookup table access and the correspond-
ing timing constraints, to avoid loss of con-
figuration data. DRAF uses a phase-based
timing solution. We divide the accelerator
design (user) cycle into multiple phases and
assign a specific phase for each lookup table
in the design (see Figure 2). By requiring the
phase of a lookup table to be greater than the
phases of all lookup tables producing its
input signals, we can guarantee the correct
access order. We also delay the precharge
operation into the next user cycle, ensuring
that the lookup table output is valid across
different phases (for example, from LUT-2
and LUT-3 to LUT-4 in Figure 2). The
phase assignment can be implemented by a
CAD tool using techniques similar to critical
path finding. The phase information is
stored in a small local controller per lookup
table. There is no need for global coordina-
tion at runtime.

Second, the restoration and precharging of
DRAM arrays introduce high latency over-
heads7 that limit the design frequency to no
more than 20 MHz. To hide these overheads,
DRAF applies a three-way latency overlapping
without violating the timing constraints. As

Physical

path

User

clock

LUT-1

LUT-2

LUT-3

LUT-4

Phase 0 Phase 1 Phase 2

PRE ACT RST

PRE ACT RST

PRE ACT RST

PRE ACT RST

Δ = max(tPRE, tRST, troute)

LUT-3

LUT-1 LUT-2

LUT-4 RegReg

Figure 2. The timing diagram and critical path for a chain of four DRAF

lookup tables. Each clock cycle is decomposed into three phases. LUT-1 and

LUT-3 are in phase 0, LUT-2 is in phase 1, and LUT-4 is in phase 2. D

represents the three-way overlapping of restoration, precharging, and

routing delays.
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Figure 2 shows, we overlap the charge restora-
tion of the source lookup table that produces
a signal, with the time for precharging the des-
tination lookup table of this signal, and the
time for routing this signal between the two
lookup tables. Because routing delay is typi-
cally the dominant latency component in
FPGAs,8 this critical optimization lets DRAF
be only two to three times slower than an
FPGA and provides reasonable performance
speedup over programmable cores.

DRAM Refresh
DRAM requires periodic refresh due to cell
leakage. We refresh all lookup tables in a
DRAF chip concurrently using a shared row
address counter in each CLB and BRAM
block. This is easier for DRAF than for com-
modity DRAM chips in terms of power
consumption, because the arrays are much
smaller in DRAF. All utilized contexts are
refreshed simultaneously, and unused contexts
are skipped. The DRAF device driver coordi-
nates the refresh, by holding on to new
requests, ignoring output data, and pausing
ongoing operations similar to processor pipe-
line stalls. The internal states in the DRAF
design are held in the flip-flops and are not
affected. The pause period is less than 1 ls per
64 ms, which is negligible even for latency-
critical applications in datacenters that require
millisecond-level tail latency.

Design Flow
The success of a reconfigurable fabric relies
heavily on the CAD toolchain support.
Because DRAF uses the same primitives
(lookup tables, flip-flops, DSPs, and BRAMs)
as modern FPGAs, its design flow is similar
to that of FPGAs with some mild tuning.
First, the tool now needs to pack more logic
per lookup table to utilize the larger lookup
tables. Second, the primary optimization
goal should be latency, because area is not a
scarce resource anymore. Third, the tool
must enforce all timing requirements, includ-
ing the phases and DRAM timing constraints.
Finally, the tool should take advantage of the
multicontext support.

Use of DRAF for Datacenter Accelerators
DRAF trades off some of the potential per-
formance of FPGAs to achieve high logic

density, multiple contexts, and low power
consumption. These features make DRAF
devices appropriate for both mobile and server
applications, in which one wants to introduce
an FPGA device for acceleration without sig-
nificantly impacting existing systems’ power
budget, airflow, and cooling constraints.

In datacenters that host public and private
clouds, servers are routinely shared by multi-
ple, diverse applications to increase utiliza-
tion. Different applications and different
portions of each application (for example,
RPC communication versus security versus
main algorithm) require different accelera-
tors. The long reconfiguration latency of
conventional FPGAs leads to nonnegligible
application downtime,3 decreasing the sys-
tem availability and making it expensive to
share the acceleration fabrics.

In contrast, DRAF provides a shared fabric
that supports multiple accelerators by using
different contexts, which can be viewed as
multiple independent FPGA instances that
need to be used in a time-multiplexed fashion.
The high logic density ensures that each indi-
vidual context has sufficient capacity for the
different accelerator designs. The instantane-
ous context switch ensures that the desired
accelerator becomes immediately available to
use when needed, with negligible overhead in
energy and no application downtime. Being
able to share the acceleration fabric can
greatly reduce the overall system cost while
still enjoying the benefits of special-purpose
acceleration.

Evaluation
We evaluate DRAF as a reconfigurable fabric
for datacenter applications using a wide set of
accelerator designs for representative compu-
tation kernels commonly used in large-scale
production services, including both latency-
critical online services and batch data analytics.
We use seven-input, two-output, eight-context
lookup tables in DRAF, because they achieve
a good tradeoff between efficiency and logic
utilization and flexibility. We compare DRAF
to an FPGA similar to a Xilinx Virtex-6 device
and a programmable processor (Intel Xeon
E5-2630 at 2.3 GHz). For a fair comparison,
the accelerator designs are synthesized using
the same open-source CAD tools for both the
conventional FPGA and DRAF. The DRAF
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results are conservative compared to the
programmable core baselines, because highly
optimized commercial tools are likely to gen-
erate more efficient mappings of accelerator
designs on the DRAF fabric. Our full paper
contains a complete description of our
methodology.9

Area and Power
Figures 3a and 3b compare the area and peak
power consumption of DRAF and FPGA
devices with different logic capacities meas-
ured in 6-bit-input lookup table equivalents
for 45-nm technology. For a fixed logic
capacity, an eight-context DRAF provides
more than 10 times area improvement and
roughly 50 times power consumption reduc-
tion. If we target a cost-effective device size
of 75 mm2, an FPGA can pack roughly
200,000 lookup tables, whereas DRAF can
have more than 1.5 million lookup tables,
a logic capacity comparable to that of the

state-of-the-art Virtex-UltraScaleþ FPGAs
that use a much more recent 16-nm tech-
nology. The power consumption advantage is
also remarkable. Although the FPGA power
can easily exceed 10 W, DRAF consumes
only about 1 to 2 W.

Figures 3c and 3d further compare DRAF
to FPGA using real accelerator designs. We
map each accelerator to one of the eight avail-
able contexts in DRAF. The other unused
contexts still contribute to the area, consume
leakage power, and introduce a slight access
latency penalty in the DRAF lookup tables.
On average, each accelerator design occupies
19 percent less area on DRAF than on the
FPGA, roughly matching the 10-times area
advantage if we consider the seven additional
contexts available within the area occupied
in DRAF. DRAF’s area advantage stems pri-
marily from using lookup tables with wider
inputs and outputs; these lookup tables
can realize larger functions and also reduce
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Figure 3. Area and power comparison between DRAF and a conventional FPGA. (a, b)

Device-level comparison. (c, d) Comparison after real application mapping.
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pressure on the configurable interconnect.
The gmm design uses more area in DRAF
than the FPGA, because it requires exponen-
tial and logarithmic functions that are not
currently supported in our DSP blocks.

Regarding power, the FPGA power con-
sumption is dominated by the routing fabric,
especially for larger designs. DRAF provides
a 3.2 times power improvement on average,
resulting from both the more efficient
DRAM-based lookup tables and the savings
on routing due to denser packing.

Performance
Finally, we compare the performance of
accelerator designs mapped onto DRAF and
FPGA devices to that of optimized software
running on general-purpose programmable
cores. For the programmable cores, we opti-
mistically assume ideal linear scaling to four
cores, owing to the abundant request-level
parallelism in datacenter services. The chip
size for FPGA and DRAF is fixed at 75 mm2.

Figure 4 shows that both FPGA and
DRAF outperform the single-core baseline,
on average by 37 and 13 times, respectively.
When compared to four cores with ideal
speedup, DRAF still exhibits significant
speedup of 3.4 times while consuming just
0.63 W, compared to 7 to 10 W of a single
core in Xeon-class processors. Overall, these
results establish DRAF as an attractive and
flexible acceleration fabric for cost (area) and
power constrained environments.

D RAF is the first complete design to use
dense, commodity DRAM technology

to implement a reconfigurable fabric with
significant logic density and power improve-
ments over conventional FPGAs. DRAF
provides a low-cost solution for multicontext
acceleration fabrics, which are expected to
become widely used in future multitenant
cloud and mobile systems. Looking forward,
it is important to tune CAD tools and run-
time management systems to efficiently map
accelerator designs on DRAF, taking full
advantage of its high-density and multicon-
text features.

The techniques that allow DRAF to turn
dense storage technology to cost-effective
reconfigurable fabrics are also applicable to
memory technologies beyond DRAM. The

upcoming dense nonvolatile memory tech-
nologies, such as spin-transfer torque RAM,
exhibit good density scaling and have better
static power characteristics compared to
DRAM. An exciting research direction is to
extend DRAF to exploit the advantages and
address the shortcomings of new memory
technologies in order to produce acceleration
fabrics with low area and power cost. MICRO
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