DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric

Christina Delimitrou®¥
Bob Brennan®

Mingyu Gaof

Stanford University'

Dimin Niu®

Samsung Semiconductor Inc.?

Krishna T. Malladi®
Christos Kozyrakis'

Hongzhong Zheng?

Cornell University! ~ EPFL?

{mgao12, cdel, kozyraki}@stanford.edu
{dimin.niu, k.tej, hz.zheng, bob.brennan}@ssi.samsung.com

Abstract—FPGAs are a popular target for application-
specific accelerators because they lead to a good balance be-
tween flexibility and energy efficiency. However, FPGA lookup
tables introduce significant area and power overheads, making
it difficult to use FPGA devices in environments with tight cost
and power constraints. This is the case for datacenter servers,
where a modestly-sized FPGA cannot accommodate the large
number of diverse accelerators that datacenter applications
need.

This paper introduces DRAF, an architecture for bit-level
reconfigurable logic that uses DRAM subarrays to implement
dense lookup tables. DRAF overlaps DRAM operations like
bitline precharge and charge restoration with routing within
the reconfigurable routing fabric to minimize the impact
of DRAM latency. It also supports multiple configuration
contexts that can be used to quickly switch between different
accelerators with minimal latency. Overall, DRAF trades off
some of the performance of FPGAs for significant gains in area
and power. DRAF improves area density by 10x over FPGAs
and power consumption by more than 3x, enabling DRAF to
satisfy demanding applications within strict power and cost
constraints. While accelerators mapped to DRAF are 2-3x
slower than those in FPGAs, they still deliver a 13x speedup
and an 11x reduction in power consumption over a Xeon core
for a wide range of datacenter tasks, including analytics and
interactive services like speech recognition.

Keywords-DRAM; reconfigurable logic; FPGA; low-power

I. INTRODUCTION

The end of Dennard scaling is motivating the use of
application or domain specific accelerators as an energy
efficient way to improve performance [1]-[3]. For high
volume and relatively stable applications, it is cost ef-
fective to design accelerators using full-custom (ASIC)
techniques. For instance, all smartphone chips integrate
programmable cores with specialized accelerators for video
and image transcoding. For most other applications, it is
better to map the accelerators on a configurable substrate
like field programmable gate arrays (FPGAs) to achieve a
balance between flexibility (programmability) and energy
efficiency [4], [5]. The flexibility and efficiency of FPGAs
have recently enabled a number of accelerators for datacen-
ter applications, a domain where servers are shared between
multiple types of applications and key algorithms change
quite often [6]—[9].

FPGAs can realize arbitrary logic functions through the
use of lookup tables (LUTs) linked with an interconnect,
both of which are configurable at the bit-level [10]. Un-
fortunately, this approach has significant area and power
overheads, making it difficult to use FPGAs in constrained
environments. For example, datacenter servers are optimized
for total cost of ownership (TCO) and have tight budgets for
power consumption and cooling [11]. This makes it problem-
atic to deploy large, power-hungry FPGA devices that have
sufficient logic capacity to support powerful accelerators for
multiple tasks and applications [6].

This paper presents a DRAM-based Reconfigurable Ac-
celeration Fabric (DRAF), a substrate for bit-level recon-
figurable logic that trades off some of the performance of
FPGA devices for major improvements in area efficiency
and power consumption. DRAF uses commodity DRAM
technology to implement dense LUTs with wide inputs and
outputs (e.g., 6 to 9-bit inputs, 2 to 4-bit outputs). Moreover,
each LUT can store multiple contexts, allowing for several
accelerator designs to be stored within a DRAF device.
Applications can switch between accelerators without the
overhead of reconfiguring an FPGA from off-chip memory.

While the use of DRAM technology provides density
and power efficiency, it also introduces significant latency
overheads compared to SRAM-based FPGAs. We carefully
engineer DRAF arrays and their timing to overlap the
DRAM latency with the latency of the interconnect fabric.
We also implement a timing scheme that avoids the loss of
design data due to the destructive nature of DRAM reads as
signals propagate through the reconfigurable fabric.

We compare DRAF to FPGA devices and programmable
cores across a wide set of accelerator designs for datacenter
workloads, including machine learning and analytics. An 8-
context DRAF array requires 19% lower area than a single-
context FPGA array, which represents a 10x improvement
in area efficiency. DRAF consumes less than 1/3 of the
power of an FPGA array. For the accelerators examined,
the maximum power (TDP) of DRAF is 3.57 W, compared
to 15.89 W for an FPGA. While the clock frequency of
accelerators mapped to DRAF is 2-3x lower than when
mapped to FPGAs, DRAF is still able to achieve a 13x

LB

BRAM|

LB LB LB
BRAM|

LB LB LB

BRAM|

CLB CLB CLB

Figure 1. The FPGA array organization. Block sizes and numbers may
vary in each specific device.

LB

LB

BRAM|

o) o) o
&

o o o
=] & & &

o ||l o |l ©
(&) (] [=]) [&]

¢ Gl @

average speedup at 11x lower power consumption over a
high-end, programmable core. Even if we assume ideal
multi-core scaling, DRAF provides a significant energy
advantage over programmable cores. Overall, these results
establish DRAF as an attractive and flexible acceleration
fabric in cost (area) and power constrained environments.

II. BACKGROUND
A. Reconfigurable Logic and FPGAs

By leveraging spatial programmability to target
application-specific optimizations, reconfigurable fabrics
can provide significant performance and energy efficiency
improvements over programmable cores. Moreover,
the post-fabrication reconfigurability greatly shortens
the long development time of ASIC hardware and
allows specialization for low volume applications. These
advantages make reconfigurable fabrics the most popular
target for accelerator designs for numerous domains,
including image processing, financial analysis, security,
bioengineering, and network processing [4].

FPGAs represent the most successful and widely used
reconfigurable fabric thus far. FPGAs use lookup tables
(LUTs) and flip-flops (FFs) as the basic primitives. A LUT
is a small memory unit that can realize an arbitrary combi-
national logic function by storing all potential output values.
Given a set of input bits as the address, the LUT returns the
corresponding output value. Modern FPGAs typically use
LUTs with 6-bit inputs and 1-bit outputs, with the ability
to be split (i.e., fracture) into multiple smaller ones, as
well as special support for carry logic. A LUT is usually
implemented with an SRAM array or with individual SRAM
cells and a multiplexer tree. The FFs allow for data retiming
and storage for sequential logic. Multiple LUTs and FFs
are grouped into configurable logic blocks (CLBs). Modern
FPGAs also have dedicated DSP blocks for multiplication
and other complex operations, and block RAMs (BRAMs)
for on-chip high-capacity data storage.

The different types of blocks in FPGAs are typically
organized in a 2D grid using the “island layout” shown in
Figure 1 [12]. The interconnect between blocks contains
wire segments (called tracks) with different lengths, and
configurable multiplexers and switch boxes (not shown in the

figure). The number of tracks is pre-set during fabrication,
usually on the order of several hundreds for moderate and
large FPGAs [12], [13]. By writing different configurations
into the SRAM cells that control the multiplexer select bits,
we can connect different sources (tracks or block output
ports) to a certain sink (the input port of a block or another
track). Note that the interconnect configuration in most
FPGAs is static, i.e., decided at synthesis time, and never
changes once loaded to the device [14], [15].

FPGAs in datacenters: FPGAs have recently been used
to accelerate datacenter applications [6]-[9]. This is a
challenging domain for FPGA use. First, it is difficult to
introduce an accelerator device that consumes more than 10
to 20 W in a server without significant rework of its power
provisioning and cooling design [6]. Second, datacenters are
optimized for total cost of ownership (TCO), which makes
it difficult to introduce expensive devices in each server.
Third, datacenter servers often host multiple applications,
each of which may need a separate accelerator. Finally,
many datacenter workloads require fairly large accelerators
that can consume a large number of FPGA primitives.
The first two requirements push towards the use of small
FPGAs that are cost and power efficient. The latter two
requirements push towards the use of large FPGAs that
can fit multiple, potentially large accelerators, without long
reconfiguration delays as different applications frequently
start and end on the server (high churn). One approach to
manage this tradeoff is to use a medium-sized FPGA in
each server with a separate, custom-designed interconnect
between FPGAs that allows requests from each server to be
served by several of these devices [6]. Our work aims to
build a new reconfigurable device that provides a significant
improvement in logic density and power consumption over
existing FPGAs, addressing the tradeoff directly. Multiple
such devices can still be linked together if needed.

Multi-context reconfigurable fabric: Multi-context FP-
GAs address the slow reconfiguration of switching be-
tween designs mapped on the fabric [16]-[18]. Each con-
text supports the configuration for a separate accelerator
design. Multi-context FPGAs store multiple configurations
for LUTs and interconnect control on chip, and can rapidly
switch between them at runtime. This is similar to coarse-
grained thread switching in multi-threaded processors that
can quickly switch between threads but at each point in time
only a single thread uses the processor resources. Tabula’s
3PLD is a recent commercial example of an FPGA with
multi-context support [18].

The primary disadvantage of multi-context FPGAs is the
space and time overheads of the additional configuration
storage. Previous multi-context proposals stored the con-
figurations in separate backup memory units, either in a
per-LUT fashion [16] or together in a global configuration
memory [17]. This backup memory occupied significant area
that could be used to implement additional normal LUTs to

increase the capacity for a single context instead. Moreover,
when switching between contexts, loading the configuration
from backup memory to the logic blocks introduced non-
negligible latency and power overheads. Since FPGAs have
been mostly used for single accelerator or control logic
design, multi-context FPGAs were largely abandoned by the
industry and research community. Nevertheless, the use of
FPGAs in shared datacenters makes multi-context FPGAs
an attractive approach once again.

B. DRAM Basics

DRAM is used as the main memory technology in most
computing systems. It offers high density (low cost per bit),
relatively low access latency, and infinite endurance. In a
typical memory system for DDRx DRAM, 8-16 memory
chips with a narrow interface are packed into a wide in-
terface, DIMM module, and are accessed in lock-step [19].
The processor chip connects to DIMMs through memory
channels. Each channel is managed by an independent
controller and can host a small number of DIMM:s.

For this work, it is important to understand the internals
of a single DRAM chip. The DRAF devices presented in
Section IIT and IV are implemented using DRAM technol-
ogy, but used as FPGA devices connected to the processor
through a PCle channel, not a memory channel. To maximize
access parallelism, the memory cells are organized into
multiple banks, as shown in Figure 2(a). Banks can operate
independently but share the central I/O interface. Each bank
is composed of smaller arrays called MATs. The width
and height of a MAT are typically 512 to 1024 cells. A
group of 8 to 16 MATs in a row, called the subarray,
shares the row decoding logic!. The horizontal wordline
output of the row decoder is hierarchical [24], [25]. The
decoder directly drives only the master wordlines (routed in
metal layers), and the local wordline drivers between MATSs
connect them to local wordlines (routed in gate poly) to the
access transistor of each DRAM cell. This greatly reduces
access latency; alternatively the load of a single wordline
would be too large for fast signal propagation. The vertical
bitlines are connected to the bitline sense amplifiers (BLSAs,
or sense-amps). From there, output data is routed to the
central chip I/O interface through local and global datalines.

DRAM subarray operation: A DRAM cell includes
a capacitor to store the bit value (0 or 1) and an access
transistor. The access is destructive and the cells need to be
recharged/discharged afterwards. Figure 2(b) shows the tim-
ing of a DRAM subarray read with the chip-level commands
and data bus states omitted [26], [27]. The decoded row
address drives the master and local wordlines in the subarray
which conduct the access transistors and allow DRAM cells

IDRAM terminology varies with respect to MATs and subarrays. Our
terminology is consistent with [20], [21]. Others use subarray to refer to a
basic tile, i.e., the MAT [22], [23].

Local wordllne Master wordline

driver Local wordline
o
~
= s
gl W | | | e
S 5 Bitlind Local
C B =" dataline
£ & TN
o (=] \
2 iz [I R [I, M
] o) |
o F MAT |
E BLSA Subarray,'
C P\ e, Y Y e
[}
o

Bank 7

(a) DRAM bank organization.

. tRAS >e—tRP—>

Subarray —[ACT I RST PRE ACT
I I
le—tRCD—>' |

Local I tRC [I/—O]
data line | —
(b) Access timing for DDRx DRAM.
Figure 2. Layout and access timing for DDRx DRAM.

to share their charge (if any) with the bitlines. The sense-
amps amplify the small voltage change in the bitlines to full
swing signals of Vpp or 0. The charge sharing and sensing
together are called activating (ACT).

When the bitline voltage has been amplified sufficiently,
it is safe to read from the sense-amps without flipping their
values. The selected columns are connected to the local
datalines (I/O). In the background, the cell capacitors need to
be fully recharged/discharged to restore (RST) to the original
values. After the restoration, the cells are disconnected from
the bitlines. Now, the bitlines and sense-amps can prepare
for the next access by being precharged (PRE) to V.. Note
that PRE does not need to follow right after RST. Under an
open-page policy we can keep the data in the sense-amps in
case the next access goes to the same row.

At the subarray level, the DRAM latencies depend heavily
on its size [26], [27]. For smaller MATs, the bitline capaci-
tance is small, making sensing and precharging fast, hence
reducing the ACT and PRE latencies. The number of MATs
per subarray has a smaller impact on timing due to the
hierarchical wordline structure, but the local wordline drivers
consume non-negligible area compared to the typical MAT
size. At the chip level, the DRAM latency is also affected
by the various parameters of the central I/O block and the
command/data latencies of the memory channel.

C. Challenges for DRAM-Based FPGAs

The goal of this paper is to use DRAM subarrays to
implement a new reconfigurable fabric with high logic
density and low power consumption that also provides multi-
context support. These features make this new fabric highly
suitable for a number of constrained applications, including
those hosted in shared datacenters.

Table I
COMPARISON OF DRAF TO CONVENTIONAL FPGAS.

[[FPGA | DRAF |
LUT technology SRAM-based DRAM-based
LUT delay Short (sub-ns) | Long (ns)

LUT output width* | 1-bit Multi-bit
Logic capacity Moderate Very high
Configurations Single Multiple
Power consumption | Moderate Low
Cost High Low

*: Without fracturing.

The naive approach is to use the high-density DRAM
subarrays to replace the SRAM LUTs in FPGAs. However,
this simple substitution would run against several challenges.
First, DRAM has much higher access latency than SRAM.
Even for a single subarray without the chip-level delays,
the access latency is about 10 ns. Using a smaller subarray
can drop latency down to 2-3 ns, which is still 30x to
50x slower than a SRAM-based LUT [28]. Without careful
optimization, DRAM-based reconfigurable logic can hardly
provide any speedup over a programmable core. Second,
DRAM accesses are destructive and require explicit activate
and precharge operations. The timing of accesses to DRAM-
based LUTs must be carefully managed to avoid destroying
the LUT contents while its inputs are still not stable.

Finally, DRAM subarrays are optimized for area and cost
efficiency. As a result, their capacity is fairly large (e.g.,
8 Mbits), and their inputs and outputs are wide (e.g., 17-
bit address and 64-bit data outputs). This is significantly
larger than the capacity and the number of input/output
bits of the typical FPGA LUT (6-bit input, 1-bit output).
If we simply present each DRAM subarray as a single 17-
bit input, 64-bit output LUT, most of these LUTs will be
greatly underutilized when mapping real-world accelerators
on them. Ideally, we want to use DRAM resources to support
LUTs with a smaller number of input (6-10) and output bits
(2-4), which can be highly utilized by most designs.

III. THE DRAF ARCHITECTURE

DRAF leverages DRAM technology to implement a re-
configurable fabric with higher logic capacity and lower
power consumption than conventional FPGAs, such as the
Altera Stratix and Xilinx Virtex series [29], [30]. DRAF sup-
ports multiple contexts with fast context switching, enabling
lightweight device sharing across multiple accelerators for
one or more applications. Table I summarizes the key
features of DRAF. Since DRAF is optimized for low cost and
power consumption, we can introduce accelerators without
a significant increase in the overall TCO or power budget.

DRAF has several similarities to conventional FPGAs.
It uses LUTs to support programmable logic but imple-
ments them with DRAM subarrays (see Section III-A and
Section III-B). LUTs and flip-flops (FFs) are grouped into
configurable logic blocks (CLBs). DRAF uses DSP blocks

Master wordline
E
<} Local wordline
- U .
hel
64 3
o L
Input « 4—% ses s
5| MAT
14
Sense-amp
L - L Subarray
Col |
J e a2
Ctx . FFs
3 —l' — a 7
Context output multiplexer
4 . Output

Figure 3. The basic logic element (BLE) in DRAF. As a typical example,
the size of the LUT is 8-bit (6 + 2) input and 4-bit output, with 8 contexts.

for complex arithmetic operations, as well as BRAM blocks
for embedded memory implemented with DRAM instead of
SRAM (Section III-C). For simplicity, DRAF also uses the
common array layout shown in Figure 1. The interconnect
between logic blocks is a statically configured fabric similar
to those in FPGAs, but with low-cost time-multiplexing
support (Section III-D). The rest of this section focuses on
the design challenges specific to the use of DRAM and the
DRAF features that are different from conventional FPGAs.

A. The Basic Logic Element

Figure 3 shows the basic logic element (BLE) in DRAF
that includes a multi-context LUT, one or more FFs, and
auxiliary multiplexers. Similar to FPGAs, a CLB contains
multiple independent BLEs with local interconnect. The
DRAM subarray in the shaded portion of Figure 3 im-
plements the LUT. The LUT inputs are fed as the row
and column address to the DRAM subarray and a memory
access produces the LUT output. The DRAF LUT has 6-
10 input bits and 2-4 outputs bits, slightly wider than those
in a conventional FPGAs. The density of DRAM subarrays
allows a DRAF CLB to provide 10x logic capacity over an
FPGA CLB of the same area. We study in depth LUT sizing
in Section VI-A. The FFs in the BLE allow for the output
signals to be optionally registered (retimed) for subsequent
use in sequential logic. The different MATSs in the subarray
provide the configuration storage for different contexts.

In conventional DRAM design, the column logic multi-
plexes the sense-amps to the subarray outputs. For instance,
this logic may pick the output of every 64th sense-amp.
To improve logic flexibility for our multi-output LUT, we
change the column logic to allow for each output bit to be
independently selected from the corresponding set of sense-
amps. In Figure 3 for example, the multiplexer for each of
the 4 output bits in one MAT uses a separate 2-bit control
signal. Each LUT output now uses a partially different set of
the input signals (different column address). The additional

flexibility enables higher LUT utilization while amortizing
the cost of the row decoder across all LUT outputs. It also
allows us to easily support fracturable LUTs in DRAF, i.e.,
dividing the LUT into two or more smaller LUTs.

Multi-context support: In conventional DRAM, we con-
currently access all MATs in a DRAM subarray and read
a wide sequential output that is gradually transmitted off-
chip. For reconfigurable logic, such a wide LUT output is
practically useless, as we rarely need to calculate tens of
functions on the same set of inputs. Moreover, even though
we only care about 2-4 outputs from one MAT at a time,
activating and amplifying a row across all MATs (8 Kbits)
lead to substantial energy overheads.

To address these issues, we reduce the width of each MAT,
and further decouple the MAT access in the subarray to
limit each LUT to a single MAT access, which allows us
to implement fine-grained functions with 6-10 inputs and
2-4 outputs. We use the remaining MATSs for multi-context
support. Each MAT implements the LUT for an independent
FPGA configuration. Each configuration can support a dif-
ferent accelerator design. The cost of each configuration is
sublinear as the MAT's share the row decoding logic. All the
input and output ports are also shared among all contexts.

We leverage the commonly-used hierarchical wordline
structure of DRAM subarrays to implement the single MAT
access [24], [25]. We add an AND gate to each local
wordline driver to combine the master wordline signal with
the context enable signal decoded from a global context
counter (see Figure 3). This allows us to only activate and
precharge a single MAT corresponding to the currently-
selected context [23]. A context output MUX multiplexes
the selected context to the output port. Note that the context
output MUX is after the FFs. Storage logic, such as FFs,
cannot be shared and must be replicated for each context to
avoid one context overwriting other contexts’ data [17].

Compared to previous multi-context FPGAs [16]-[18], the
multi-context support in DRAF has several advantages. First,
the area overheads due to the AND gates are negligible as
hierarchical wordline structure is already used in DRAM.
Second, there is little dynamic power overhead as we only
access a single MAT. If some contexts are not used at all, we
can fully power gate them to avoid static leakage. Third, in
addition to storing all the contexts on chip, the configurations
are already loaded in the LUTs. Context switches are as fast
as a simple update to the context counter. The new context
will be ready to use in the next clock cycle. There is no
need to pause and load configurations from on-chip or off-
chip structures, introducing no downtime for the upper-level
applications. Hence, if we use multiple contexts to support
multiple accelerators for one or more applications, we can
quickly switch between accelerators on demand.

The multi-context BLE can also support inter-context
chaining (also known as “temporal pipelining” [31]), where
the BLE output for one context becomes the BLE input

Reg LUT-1 LUT-2 Reg

Physical
el |

| | I I
User I I —|_
Cok—] | 1 L1 |
| | I I

|

r-1 — (R pre
| | |
I A = max(tere, 1I'Rsr. troute)

| |
|
w2 —| g

I
Phase 0 I Phase 1

Figure 4. Timing diagram of DRAF LUT operations, where LUT-1
produces an signal used as the input of LUT-2. A is the overlapping of
restoration, precharging, and routing delays.

for another context. This allows for accelerator designs
that exceed the capacity of a single context in a DRAF
array. To support inter-context chaining, we must add a
configurable crossbar between the LUT and FFs or make the
select signal of the context output MUX fully configurable.
Either approach introduces non-negligible area and energy
overheads. Inter-context chaining also requires support from
the CAD flow to properly split a design across contexts.
Our current DRAF design does not support inter-context
chaining; we leave the exploration of its implementation and
benefits to future work.

In summary, the DRAF BLE supports multi-context re-
configurable logic with very fast switching time, low power
overheads, and high area efficiency.

B. Timing Optimization

Accessing a DRAM subarray to read data or evaluate a
LUT function requires explicit precharge, activation, and
subsequent restoration due to the destructive nature of
DRAM accesses. This makes our DRAM-based LUT sig-
nificantly slower than the conventional SRAM-based LUT.
We must also be careful with ordering events in the DRAM-
based LUT. Specifically, each LUT must evaluate its func-
tion (i.e., activate its subarray) only after all its input signals
are valid (i.e., all previous LUTs have safely generated these
signals). This is not an issue with the SRAM-based LUTs
since SRAM reads are not destructive.

To manage timing and ordering constraints, DRAF divides
each user design cycle into multiple phases’. We assign a
specific phase for the activation of each LUT in the design,
as shown in Figure 4. The phase of a LUT must be greater
than the phase of all LUTs producing its input signals. If
all the inputs are from registers (FFs), its phase is 0. We
delay the precharge needed for the next user cycle until
right before the next activation (similar to open-page policy)

2 A user cycle is the clock cycle at which the design mapped on DRAF
operates. It is an integer multiple of the internal clock cycle at which the
DRAM peripheral logic operates.

to ensure that the LUT outputs are valid for the remainder
of the current cycle. This is necessary if the inputs of a
LUT come from different phases. Each LUT has a simple
logic shared across all contexts that executes the fixed PRE-
ACT-RST sequence on its subarray according to the phase
configuration. No commands are transferred across the chip.
Given these constraints, DRAF LUTs can be chained to
evaluate arbitrary large logic functions in each user cycle.

The phase for each LUT is part of the configuration stored
in each LUT, and is statically assigned by CAD tools during
synthesis and mapping. The assignment can be combined
with the algorithm that finds the critical path. The number
of phases in the cycle is equal to the number of DRAF LUTs
on the critical path. Hence, to minimize the user clock cycle,
we should minimize the number of phases.

We hide the timing overheads of DRAM restoration and
precharging by overlapping them with the routing delay
within the DRAF array. Specifically, we overlap the restora-
tion of a LUT that produces a signal, with the time for
precharging the destination LUT of this signal, and the time
for routing this signal between the two LUTs, as shown in
Figure 4. This three-way overlapping is possible because
the output of a LUT is preserved during restoration, and no
stable inputs are needed for a LUT during precharging.

Overlapping routing delay with DRAM timing overheads
is a critical optimization for DRAF. The raw access delay
of a DRAF LUT is 30x to 50x longer than the delay of a
SRAM LUT (see Section II-C). However, routing latency
is typically the dominant user cycle component in conven-
tional FPGAs [32]. Hence, the overlapping allows DRAF’s
critical path delay to be only 2x to 4x longer than that
of conventional FPGAs. Hence, DRAF provides reasonable
performance while achieving significant improvements in
power consumption and density (see Section VI).

DRAM sense amplifiers as user registers: In the DRAF
BLE, we could potentially eliminate the separate FFs, which
are replicated for each context and introduce significant area
and energy overheads [17]. Instead, we could use the sense-
amps, which already latch the output data and maintain them
until the subarray is precharged in the next user cycle.

Using the sense-amps as user registers introduces two
timing constraints. First, the phase of a LUT that consumes
the registered data in the next user cycle must be smaller
than the phase of the LUT that produces the data. Otherwise,
the data will be lost due to precharge before the next LUT
consumes it. Second, all outputs of a LUT must be managed
with the same EN signals. In contrast, the separate FF for
each output can be managed independently. Since it is not
always feasible to fulfill these constraints, we opt to maintain
the separate FFs in DRAF, but use them selectively only
when needed. If these two constraints are met, we can bypass
the FFs and eliminate their power overheads. Note that,
for proper use of the sense-amps as user registers, we also
preserve the column address necessary to select the proper

subset of these bits in the subsequent user cycle.

DRAM refresh: Since cell capacitors leak, DRAM re-
quires periodical refresh. We refresh all subarrays on a
DRAF chip concurrently using a shared row address counter
in each CLB and BRAM block. Concurrent refresh is already
practical in terms of power consumption in commodity
DRAM [33], [34] and much easier with DRAF as the
subarray is much smaller. All used contexts are refreshed
simultaneously, but we skip refreshing unused LUT contexts
and BRAM blocks. We discuss the thermal impact of refresh
in Section VI-C. Since we refresh all blocks in parallel and
subarrays are small (see Section VI-A), the time required
for refresh is no more than 256 ACT+PRE cycles. This
translates to roughly 1 us refresh pause every 64 ms. This is
negligible overhead for both throughput and latency critical
applications in datacenters.

Refresh is coordinated by the DRAF device driver. During
refresh, the driver pauses operations on DRAF in a manner
similar to how one stalls a processor pipelines. The driver
does not provide new requests or inputs to the device and
ignores any output, as if the device is busy. Within the
device, the internal FFs hold the current data until refresh
finishes. Since all the registers are preserved, the states of
the system before and after refresh are identical. Note that if
a user register uses DRAM sense-amps as described before,
the data must be stored into the normal FFs before refresh
and restored after, handled by the device driver as extra
operations with the refresh commands.

C. Other Logic Blocks

In addition to CLBs that contain LUTs and FFs, the
DRAF array includes dedicated arithmetic blocks and em-
bedded memory blocks. All the logic blocks in DRAF are
implemented in DRAM technology. Future designs could
utilize 3D integration technology to tightly integrate blocks
implemented in different processes.

The DSP blocks with dedicated multipliers support
efficient, wide-word multiplication operations commonly-
present in accelerator designs. We used a 25 x 18 multiplier
similar to the DSP48EI1 slice in Virtex-6 FPGAs [28]. Since
DRAF uses DRAM technology, the multiplier blocks are
slower compared to those in conventional FPGAs. Never-
theless, the multiplier latency is not critical as the dominant
factor for DRAF performance is the LUT access latency.
The area overhead of multiplier blocks is low since they do
not need to be replicated across contexts.

Conventional FPGAs use SRAM arrays for memory
blocks. For DRAF, it is natural to use DRAM arrays to
implement high density memory. Their structure is similar
to DRAM-based LUT, but with different input and output
widths. We use 36 Kbit BRAM blocks with configurable
input and output widths to provide identical functionality to
the RAMB36E1 blocks in Virtex-6 FPGAs [28]. Due to the
larger capacity, the RAM block has slightly higher delay

than the DRAF LUT, but the gap is much smaller than that
for conventional FPGAs which can be more than 20x. Note
that, since RAM blocks provide data storage, we need to
share their capacity across all active contexts. Nevertheless,
we do not need to sacrifice a higher percentage of area for
RAM blocks in DRAF compared to conventional FPGAs.
First, DRAM cells have a much higher density than SRAM
cells. Second, we can minimize memory requirements by
carefully sharing buffer space between accelerators [35].

D. Interconnect Fabric

DRAF uses a fully static interconnect fabric as it is
the case with conventional FPGAs. Similarly to the logic
blocks, the interconnect supports multiple contexts. Since
the CLBs are DRAM-based and not particularly fast, it
is sufficient to use a simple and static, time-multiplexing
scheme to share the DRAF routing across contexts [14].
We replace each routing configuration bit in the connection
boxes and switches with multiple bits, one for each context,
using SRAM cells. Context switches activate the proper
configuration bits in the fabric.

Since DRAF LUTSs support wider inputs and outputs than
FPGA LUTs, DRAF can pack more logic into each CLB and
result in fewer CLBs. This reduces the pressure on global
routing resources. Hence, the number of routing tracks
needed for DRAF is smaller than that in FPGAs, which
leads to further area savings as the interconnect accounts for
a significant portion of area in FPGAs (see Section VI-B).

Note that the DRAF time-multiplexed interconnect is
different from the proposed network-on-chip-based intercon-
nects for FPGAs that use dynamic packet switching and
overlay networks [36], [37]. The configuration of the in-
terconnect in DRAF is statically determined and loaded into
the fabric. There are no routing decisions during runtime.
The static approach leads to significant power savings over
packet-switched networks [15]. While there may be other
benefits from using NoC-based interconnects in DRAF, we
leave this topic to future work.

IV. SYSTEM DESIGN WITH DRAF
A. DRAF Design Flow

Since DRAF has the same primitives (LUTs, FFs, multi-
pliers, BRAMS) as modern FPGAs, its design flow is very
similar to that of FPGAs. Designers can develop accelerators
using a hardware description language, such as Verilog or
VHDL, or a high-level synthesis flow, such as the Xilinx
Vivado HLS and the Altera OpenCL SDK [38], [39]. The
CAD flow for these languages can process the design (code
elaborate, synthesize, pack, place, and route) and map it to
a DRAF device.

However, since DRAF differs in key architectural and
timing characteristics, CAD tools need to be tuned to
produce optimized designs for it. First, DRAF implements
LUTs with wider inputs and outputs. The packing algorithm

needs to pack more logic per LUT and to use the wider
inputs and outputs. Second, because the logic density of
DRAF is much higher than that of an FPGA, area is
not a scarce resource anymore. In contrast, latency is a
much more important commodity and should be the primary
focus of optimization. Nevertheless, routing delay is easier
to deal with as it overlaps with DRAM operations (see
Section III-B). Third, CAD tools need to ensure that all the
timing requirements of DRAF are satisfied after synthesis
and encode the additional information, such as the phase
for each LUT, into the configuration stream. As previously
mentioned, this algorithm is similar to critical path finding.
Finally, the CAD tools should be aware of the multi-context
features, which is described below.

In this study, we use open-source synthesis tools that
allow us to map Verilog-based designs to different recon-
figurable fabrics [13], [40]. See Section V for the details.

B. Multi-context Operation

Similar to prior multi-context FPGAs [17], DRAF sup-
ports multiple operation modes. In the independent mode,
the different contexts are completely independent of each
other and implement separate accelerators for one or more
applications in the system. When an accelerator is needed,
it is enabled by updating the global context counter for the
CLBs and the DRAF interconnect. The desired accelerator
becomes instantly available to use. In this mode, a DRAF
device can be virtually viewed as multiple FPGA instances
that have no connection between them, but need to be used
in a time-shared fashion. The CAD tools can also synthesize
each context independently, and combine the configuration
streams before loading them into DRAF.

The only important issue about the independent mode
is BRAM space management between designs. If context
switches happen in a coarse-grained manner and no data
from the previous accelerator is left on the DRAF device,
each context can assume that it has access to all BRAM
resources. In contrast, if switches happen in a fine-grained
manner and multiple accelerators store data in the device
at any point in time, it is best to statically partition the
available space. This can be achieved by embedding the
context counter value in the higher bits of the address
ports. Since the interconnect is statically routed, there is no
security concern about one accelerator accessing the BRAMs
assigned to another design.

Alternatively, a DRAF design can operate in the parti-
tioned mode, where a large design is split into multiple
partitions, each mapped to a different context (see inter-
context chaining in Section III-A). The partitioned mode
is quite powerful but much more complex to manage. The
CAD tools need to automatically split the design into parti-
tions and figure out the data flow between them. A runtime
scheduler is also required to switch between partitions when
signals flow from one partition to the next one. The Tabula

Area (mm?)

: .
0.0 0.5 1.0 1.5

Logic Capacity
(in million 6-LUT equivalents)

Logic Capacity
(in million 6-LUT equivalents)

= FPGA (45 nm) = = FPGA (22 nm) DRAF (45 nm) DRAF (22 nm)

Figure 5. Area and maximum power comparison of FPGA and DRAF
devices with different logic capacities for 45 nm and 22 nm technologies.

3PLD [18] is a commercial system that supports this mode.
The partitioned mode can be combined with the independent
mode. For instance, one large design may take 4 contexts
while four other designs use the remaining 4 contexts.

Even though inter-context chaining and the partitioned
mode are interesting, they are challenging to implement.
Therefore in this paper we mostly focus on the independent
mode and leave the partitioned mode to future work. As we
will see in Section IV-D, the independent mode provides
a shared fabric that can consolidate multiple accelerator
designs used by different applications.

C. Devices & System Integration

A DRAF device consists of CLBs, DSP blocks, and
BRAM blocks, as well as other peripheral and interface
components. Similar to conventional FPGAs, we can create
DRAF devices of various sizes. Figure 5 compares the area
and maximum power consumption of DRAF and FPGA
devices with different logic capacities measured in 6-LUT
equivalents for 45 nm technology and also scaled down to
22 nm. See Section V for the detailed methodology. For a
fixed logic capacity, DRAF devices provide a more than 10x
area improvement and roughly a 50x power consumption im-
provement (the logic capacity accounts for all eight contexts
in DRAF, but only one context can be used at a time). If
we target a cost effective device size of 75 mm? at 45 nm,
an FPGA can pack roughly 200k LUTs (as is the case for
Virtex-6 FPGAs [28]). On the other hand, DRAF can store
more than 1.5 million LUTs, a logic capacity comparable
to that of the state-of-the-art Virtex-UltraScale+ FPGAs that
use the much more recent 16 nm technology [41]. The power
consumption advantage is also remarkable. While the FPGA
power can easily exceed 10 W, DRAF only consumes about
1 or 2 W at very high capacity.

The most straightforward way to integrate a DRAF device
into a computer is by directly connecting it to a multi-
core processor through a high performance I/O link like
PCle. Alternatively, DRAF devices can be integrated to a
processor chip using 2.5D and 3D integration. The low
power consumption of DRAF is an advantage in this case,
as heat removal is a major challenge for 3D integration.

Moreover, DRAF devices can be 3D integrated with ordinary
memory chips to support near-data processing (NDP) [42].
Reconfigurable logic is a promising substrate for NDP logic
as it can provide the high processing throughput needed in
a 3D stack, while maintaining programmability [43], [44].
DRAF is a particularly promising candidate for the logic
layer of NDP stack. First, the high logic density allows
DRAF to offer adequate processing functionality within the
small logic die area to take the best advantage of the high
memory bandwidth and parallelism. Second, DRAF has
lower power consumption compared to traditional recon-
figurable logic fabrics, thus can better satisfy the thermal
constraints in 3D stacking. Third, the low clock frequency
of DRAF due to longer LUT access latency is less critical
in an NDP scenario, since the data access latency from
DRAM dies is the major performance bottleneck. Processing
throughput is the key requirement and can be achieved
through high logic density and parallelism.

D. Using DRAF in Datacenter Servers

DRAF trades off some of the potential performance of
FPGAs to achieve high logic density, multiple contexts, and
low power consumption. These features make DRAF devices
appropriate for both mobile and server applications, where
one wants to introduce an FPGA device for acceleration
without significantly impacting the power budget, airflow
and cooling constraints of existing systems [45]. For mobile
devices, it is difficult to accommodate an accelerator that
consumes more than 0.1 to 1 W. For server systems, it is
difficult to accommodate an accelerator that consumes more
than 10 to 20 W [6], which is the typical power consumption
of many PCle-based devices like NIC and SSD controllers.
The lower the power of a high density reconfigurable fabric
is, the easier it is to introduce in systems of all types.

In datacenters that host public and private clouds, servers
are routinely shared by multiple, diverse applications to
increase overall utilization. Different applications and dif-
ferent portions of each application (e.g., RPC communi-
cation vs. security vs. main algorithm) require different
accelerators. For example, a server may be shared by text
analytics and video decoding tasks [7]. Both can benefit from
application-specific accelerators. To serve a large number
of applications with a conventional FPGA, we either need
a large, expensive, and power-hungry FPGA that can fit
all accelerators or use a small FPGA and deal with the
latency of reconfiguration. The application downtime during
the FPGA’s reconfiguration is an additional vulnerability in
system resilience [6]. In contrast, DRAF provides a shared
fabric that supports multiple accelerators using different
contexts. The high logic density ensures that each individual
context has sufficient capacity for the different accelerator
designs. Switching between the designs has little overheads
in timing or energy. It also introduces no downtime since
the new context is instantly ready to use in the next cycle.

Table II
THE ACCELERATOR DESIGN BENCHMARKS.

[Number [Name [Source | Domain |
1 aes MachSuite [46] Cryptography
2 backprop MachSuite [46] Neural network
3 bfs MachSuite [46] Graph
4 fast Vivado HLS [38] | Image/video
5 gemm MachSuite [46] Dense linear algebra
6 gmm Sirius [7] Voice processing
7 harris Vivado HLS [38] Image/video
8 kmp MachSuite [46] Text processing
9 mergesort MachSuite [46] Analytics utility
10 spmv MachSuite [46] Sparse linear algebra
11 stemmer Sirius [7] Text processing
12 stencil MachSuite [46] Image/video
13 viterbi MachSuite [46] Voice processing
14 blobmerge | VTR [13] Image/video
15 editdist V. Kundeti [47] Text processing
16 openrisc VTR [13] Soft core
17 sha VTR [13] Cryptography
18 vision VTR [13] Image/video

V. METHODOLOGY

Workloads: We evaluate DRAF as a reconfigurable fabric
for datacenter applications by selecting a wide set of ac-
celerator designs from several benchmark suites, including
MachSuite [46], Sirius [7], Vivado HLS Video Library [38],
and VTR benchmark suite [13]. These designs, summarized
in Table II, capture a representative set of performance-
critical kernels commonly used in large-scale production
services which are not currently publicly available [6]-[9].
Most of them apply arithmetically intensive algorithms on
streams of data and several of them include non-trivial
control flows. The first 13 benchmarks have corresponding
C/C++ implementations so we also evaluate their perfor-
mance against CPUs in Section VI-C.

CAD tools: The benchmarks from [46] and [7] are
written in C/C++. We use Xilinx Vivado High-Level Syn-
thesis (HLS) to generate Verilog implementation from the
C code [38]. To ensure that the generated designs are well
optimized, we tuned the HLS flow by applying HLS pragmas
and targeted the operations that are significantly different
between FPGAs and programmable cores (exp, log, and
sigmoid functions).

Once the Verilog code is available, we use Yosys 0.5 [40]
and Verilog-To-Routing (VTR) 7.0 [13] as our logic synthe-
sis tool chain. Yosys provides support for Verilog-2005. We
use the same tools to synthesize, pack, place, and route the
accelerator designs on both conventional FPGA and DRAF
to ensure fairness. In addition to mapping the designs on re-
configurable architectures, VTR also reports design metrics,
including block utilization, critical path delay, and overall
area and power consumption, based on low-level component
models (discussed below). Related work has showed that
the maximum frequencies reported by VTR are about 2x
lower than highly-optimized commercial tools [13], [48].

S 1400f

S 1200} A L E[

© 1000 T Sl

[R ad I s ° o=

2 a00f- = I

B 200

=4 0 I I I I I 0 I I I I I
32 64 128 256 512 32 64 128 256 512

rows # rows
e—e 6 Inputs 7 Inputs =—a § Inputs 9 Inputs

Figure 6. Impact of subarray structure on LUT area and latency: 6 to 9
input bits, 2 output bits, and 8 contexts.

Hence the DRAF results are conservative compared to the
programmable core baseline, but the relative performance
between DRAF and FPGA remains accurate.

System models: We assume a 45 nm technology process
for both baseline FPGA and DRAF. The FPGA is modeled
based on Xilinx Virtex-6 devices. We extract the timing
and area parameters for each block type from the device
datasheet [28] and public literature [32], [48]. Power num-
bers are extracted from Xilinx Power Estimator (XPE) [49].

For DRAF, we use CACTI-3DD [50] to model the
DRAM subarrays. CACTI-3DD models the actual physical
structures in commodity DRAM chips using hierarchical
wordlines and datalines spanning the array to optimize
area [23]. We exclude the global and local bus structures,
and only use the subarray model for DRAF LUT. We model
the other auxiliary components (FFs, MUXs) in the DRAF
BLE similarly to those in FPGAs [32], and rely on VTR for
the interconnect fabric modeling.

VI. EVALUATION
A. DRAF Design Exploration

As discussed in Section II-C, a key challenge for DRAF is
sizing the DRAM LUT, including the number of input/output
bits, the number of contexts, and the exact structure of the
DRAM subarray. Unlike conventional DRAM that optimizes
mostly for cost, a reconfigurable fabric should be optimized
for both performance and cost for its target applications.

We start by tuning the physical subarray in the LUT. Fig-
ure 6 shows the area and latency tradeoff when using DRAM
subarrays with different numbers of rows and columns. Due
to space constraints, we only show results for a LUT with
6 to 9 input bits, 2 output bits (fracturable to 4 bits),
and 8 contexts. The number of columns is automatically
determined when the numbers of inputs and rows are set.
For a fixed number of inputs, as the number of rows
increases, the row logic becomes larger while the column
logic area decreases. The smallest area is usually with 1- or
2-bit column address. Furthermore, as the number of rows
increases, the LUT delay (ACT plus the maximum of PRE
and RST, see Figure 4) increases dramatically, primarily due
to the dominant bitline latency. This suggests that we should
use no more than 128 rows for the LUT.

ol L L L L L 0.0~ L L L L L

Area per Context (um?)

1 2 4 8 16 3 1 2 4 8 16 3

Number of Contexts Number of Contexts
e—e 6 Inputs 7 Inputs =—=u 8 Inputs 9 Inputs

Figure 7. Impact of context number on LUT area and latency. With 6 to
9 input bits, 2 output bits.

Area (um®)

4
10 L L L ! L L ! ! ! L ! ! L L L L

N
oS o

[~
(=}

o
==

! ! ! ! ! ! ! ! ! ! ! ! ! ! !

|
6/1 6/2 6/4 6/8 7/1 7/2 7/4 7/8 8/1 8/2 8/4 8/8 9/1 9/2 9/4 9/:

Critical Path Delay (ns)
w
S

LUT Input/Output Size
Individual Benchmark @@ Arithmetic Mean

Figure 8. Accelerator design area and critical path latency comparison for
different LUT input/output sizes with 8 contexts.

The area and latency impact of the number of contexts
(i.e., number of MATs in the subarray) is shown in Figure 7.
As the MATs share the row decoder, having more MATs
amortizes the large row logic area, resulting in smaller area
per context. With more than 8 contexts, the area savings
flatten as the MAT area itself dominates. On the other hand,
the delay increase is insignificant, as the local wordline
drivers isolate the MATSs from the master wordline [24], [25].
The 9-input LUT exhibits higher delays because it uses 128
rows while other LUT sizes can use 64 rows (see Figure 6).
Overall, 8 to 16 contexts is a good compromise between
area efficiency and performance of each context.

Finally, we determine the number of LUT input/output
bits. Larger LUTs use larger subarrays which have better
area efficiency, but their latencies are longer. Moreover,
accelerator designs may not be able to fully utilize all
input/output bits of larger LUTSs, wasting area. Figure 8
shows the total area and critical path latency for each accel-
erator design, as well as their arithmetic means, when using
different LUT input/output sizes. For area, small designs
hardly benefit from the larger LUT size so the number
of LUTs needed remains the same, causing the total area
to increase. Large designs exhibit slight area savings with
larger LUTSs. The critical path delays increase for all circuits

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

I Normalized Total Area

FPGA Logic [FPGA Routing HEE DRAF Logic [0 DRAF Routing

Figure 9. Total area for the accelerator designs on FPGA and DRAF.

when the LUT size increases, mainly due to the use of a
larger DRAM subarray. Overall, 7 to 8 inputs with 1 or 2
outputs represent a sweet spot. Unless otherwise specified,
in the rest of the paper, we evaluate DRAF with 7-input, 2-
output LUTs (fracturable to 4-bit outputs), and 8 contexts.
This requires a 2048-bit DRAM subarray for each LUT.

It is worth noting that even though the designs we map to
DRAF generally use coarse-grained arithmetic operations,
the wider LUT outputs have minimal benefits. This is likely
because the current packing algorithm in VTR is not efficient
with wide data types. Improving the CAD flow may motivate
larger LUTs for DRAF, further improving efficiency.

B. DRAF vs. FPGA

Using the 7-input, 2-output, 8-context LUT for DRAF,
we now compare its overall area, performance, and power
consumption for all accelerator designs against FPGA. We
assume the same ratio of DSP blocks and BRAM blocks
in FPGA and DRAF, which are similar to the numbers
used in Virtex-6 FPGAs [28]. We map each accelerator to
just one of the 8 available contexts in DRAF, and leave
the other 7 contexts unused. While unused, the other 7
contexts still contribute to the area, consume leakage power,
and introduce a slight access latency penalty in the DRAF
LUT. The number of routing tracks used in the arrays is
the minimum needed, plus 30% margin which reduces the
routing pressure for a better critical path delay [13]. As
discussed in Section III-D, the number of routing tracks
needed for DRAF is smaller, and for our benchmarks DRAF
only requires about half of the tracks of an FPGA.

Figure 9 shows the normalized minimum bounding box
area for each benchmark on the two arrays. On average, the
area of DRAF is 19% less than that of the FPGA. Note that
this means that an 8-context DRAM fabric occupies slightly
less area than a single-context FPGA. For the same silicon
cost, DRAF can pack 8 designs within the area budget of
a single design for an FPGA. This cost advantage makes
DRAF a promising shared fabric for accelerator designs.

To compare performance, we show in Figure 10 the
synthesized minimum clock period for each accelerator on
the FPGA and DRAF. Since the same Verilog design is
mapped to both fabrics, the clock period ratio is the ratio
of throughput and latency of the accelerator using the two

N W s
oS © © o

Critical Path Delay (ns)
-
o o

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10#11#12#13 #14 #15#16 #17 #18
@O FPGA I DRAF

Figure 10. Critical path delay (clock period) for the accelerator designs
on FPGA and DRAF.

Normalized Power

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

I FPGA Logic 3 FPGA Routing I DRAF Logic [DRAF Routing

Figure 11. Power consumption for accelerators on FPGA and DRAF.

fabrics. Due to the slow DRAM cell access, DRAF has a
2.74x slower clock frequency than FPGA on average. This
slowdown limits the performance gain for DRAF, but as we
will see in Section VI-C, DRAF can still provide more than
13x speedup over programmable processors. Benchmark #6
(gmm) has a particularly long critical path in both FPGA
and DRAF, because it requires 1og and exp operations [7],
which VTR currently does not support in the DSP blocks.
Finally, we compare the power consumption of FPGA and
DRAF arrays in Figure 11. The FPGA power is dominated
by the routing fabric, especially for large designs. DRAF
not only reduces the power consumption of logic blocks
by using more efficient larger DRAM subarrays as LUTs,
but also saves routing power as it requires fewer routing
tracks due to denser packing. DRAF’s power consumption
is only 31% of the FPGA on average. Combined with the
performance results, the energy of DRAF is 15% lower than
that of an FPGA. Overall, compared to FPGA, DRAF trades
off a factor of 2-3x in performance for a 10x improvement
in cost (area) and a 3x improvement in power consumption.

C. System Comparison

The fact that DRAF provides power and cost advantages
over an FPGA fabric is only significant if it can also provide
acceleration over programmable cores. To establish that,
we compare the FPGA and DRAF accelerator designs to
optimized code running on a single- or multi-core system.
We use the C/C++ programs in MachSuite and Sirius and
the corresponding OpenCV implementation of the video
algorithms for Vivado HLS Video Library. This allows a
comparison using the first 13 accelerators in Table II. We
run these programs on a single core of a 2.3 GHz Intel Xeon

i
(=}
w

[uN
(=}
™

G

Normalized Throughput
-
(=)

(instances per second)
-
o

H
ov

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

[CPU mm 4CPUs [0 FPGA HEE DRAF

Figure 12. Performance comparison between single-core, multi-core,
FPGA, and DRAF.

E5-2630 processor. We optimistically assume that a 4-core
implementation would achieve perfect speedup of 4 over the
single core results by exploiting request-level parallelism
in datacenter workloads. The die area for the FPGA and
DRAF devices is assumed to be 75 mm?2, and we fit as
many instances of the accelerators as the area allows us to.

Figure 12 compares performance between the four plat-
forms. Both the FPGA and DRAF outperform a single core
for all accelerator tasks. The average speedup for the FPGA
is 37.13x and for DRAF is 13.45x. #7 harris shows drastic
speedup (676x for FPGA and 374x for DRAF) due to the
efficient use of hardware line buffers for the image kernels.
Even if we assume perfect speedup with 4 cores, FPGA
and DRAF still exhibit significant improvements (9.28x for
FPGA and 3.36 for DRAF). DRAF is outperformed by
the 4-core design for two accelerators: #6 (gmm) is 1.68x
slower due to the use of exp and log (see Figure 10); #9
(mergesort) is only 8% slower since the in-place sorting is
bounded by the number of BRAM memory ports.

To understand how power consumption compares across
platforms, we estimate the maximum power consumption for
an FPGA and a DRAF device with 75 mm? die size. We
assume full resource utilization for both devices. The FPGA
clock frequency is set to 400 MHz and 135 MHz for DRAF.
Under these conditions, the FPGA power consumption is
15.89 W, while DRAF consumes just 3.57 W. The normal-
case operation power is even smaller. For instance, with the
benchmarks above, the average FPGA power is 2.16 W and
DRAF power is 0.63 W. Hence, DRAF-based accelerators
of various sizes can be easily added to servers without
significantly affecting their power budgets. In comparison, a
single core in a Xeon-class server chip normally consumes
7 to 10 W with TDP as high as 15 W [51], and a 4-core
solution would consume 4 times more.

In terms of thermal issues, DRAF’s power consumption
is higher than that of conventional DRAM chips, which is
usually about 0.5 W (based on Ipp7). This can potentially
increase the die temperature, and may require higher refresh
rate for DRAM arrays. However, just as in the case of
FPGAs, we can apply an active heat sink to help keep
the temperature within 85 °C. XPE suggests even with the
maximum traditional FPGA power density a normal fan can

maintain the temperature at 72 °C [49], thus a low-end fan
is sufficient for DRAF, given its much lower power.

VII. RELATED WORK

FPGAs as datacenter accelerators: FPGAs are becom-
ing popular as accelerators for important online and analytics
services. Microsoft designed large-scale, reconfigurable fab-
ric where each application can use FPGAs across multiple
servers connected using dedicated interconnect [6]. This
platform has been used thus far to accelerate websearch
and deep neural network processing [52]. Baidu proposed
an FPGA-based accelerator for large-scale deep neural net-
works [9]. IBM recently developed a reconfigurable platform
for fast text analytics [8]. Convey and Micron used their
hybrid threading toolset to accelerate image processing and
memcached with FPGAs [53]. In addition to industrial
designs, numerous FPGA-based accelerators for datacenter
workloads have been proposed by research efforts [7], [47],
[54], [55]. DRAF offers a high density (low cost), low power,
reconfigurable fabric for such datacenter accelerators.

Enhancing FPGA reconfigurability: Several techniques
have been proposed to enhance FPGAs, including coarse-
grained blocks like DSP units which are already in use.
Coarse-Grained Reconfigurable Arrays (CGRAs) deviate
from bit-level reconfigurability and use a large number of
wide functional units as their basic elements [56]-[59].
CGRAs provide good efficiency for analytics applications
that mostly perform wide arithmetic operations. The current
design for DRAF focuses on fine-grained programmability
to cover a wider set of workloads.

Among prior multi-context FPGAs [16]-[18], DPGA used
DRAM technology but only as the backup configuration
storage [16]. In contrast, DRAF uses DRAM subarrays
directly as LUTs, avoiding the energy and latency overheads
of switching contexts. DPGA also used 3T DRAM cells and
smaller DRAM arrays, while DRAF uses the 1T cells and
dense subarrays common in commercial DRAM.

As FPGAs grow in size, the interconnect complexity
increases significantly. Dynamic packet-switched and time-
multiplexing routing protocols have been explored to replace
the fully-static routing schemes in modern FPGAs [14], [15],
[36], [37]. While dynamic routing leads to modest area
savings, it introduces high latency and power overheads and
requires complicated scheduling algorithms. DRAF provides
significant area and power savings at the device level. Hence
the routing complexity of DRAF devices is similar to a
moderate sized FPGAs; dynamic routing is not necessary.

The closest proposal to DRAF is the Micron’s Automata
Processor (AP) [60]. AP uses DRAM technology to realize
a reconfigurable architecture, but does so quite differently
from DRAF. First, AP has a different and limited program-
ming model, where applications must be expressed as an in-
stance of automata processing, which is difficult for general
algorithms. Second, AP is state-machine-oriented; while this

is extremely efficient for large-scale state-machines, such as
regular expressions [60], the general logic required for many
of the applications we consider is difficult. AP also does not
provide multi-context support, lowering the capabilities of
the device in terms of reconfiguration.

DRAM optimizations: There is significant work on im-
proving the latency, throughput, area, and energy of DRAM.
The hierarchical array structures have been historically
employed in DRAM chips to reduce access latency [24],
[25], and were recently leveraged to also reduce energy
consumption for multi-core applications [23]. The subarray
size introduces a well-known tradeoff between latency and
area. CHARM [26] and tiered-latency DRAM [27] leveraged
heterogeneity to provide different sizes of subarrays in the
same DRAM chip to achieve the best of both worlds. Others
have also modified the subarray organization to expose
subarray-level parallelism (SALP) and increase through-
put [20]. DRAF builds upon these techniques to implement
an efficient LUT with DRAM. Our focus in DRAM engi-
neering is mostly on delay and power consumption, instead
of area, which leads us to slightly different design decisions.

Processing-In-Memory or Near-Data Processing: PIM
and NDP proposed integrating processing logic and DRAM
arrays in the same silicon die [43], [61]-[63] or through
3D stacking [44], [64]-[66]. Some of these proposals used
reconfigurable logic [43], [44]. However, DRAM was exclu-
sively used for data storage. In DRAF, DRAM arrays are the
processing elements. We refer to this pattern as Processing-
Using-Memory in contrast to PIM and NDP.

VIII. CONCLUSION

This paper proposed DRAF, a bit-level reconfigurable fab-
ric based on dense DRAM subarrays. DRAF trades off some
of the performance of an FPGA for significant improvements
in area density and power consumption. It also provides
support for multiple contexts, allowing multiple applications
and tasks to share a DRAF device for multiple accelerators
without significant context switch overheads. We demon-
strate that DRAF provides a 10x area density and a 3.2x
power improvement over FPGA. A modestly-sized DRAF
device in terms of area and power provides a 13x speedup
and a 11x power improvement over a programmable core for
acceleration tasks common to datacenter workloads. These
features make DRAF a great reconfigurable substrate for
acceleration for power and cost constrained environments,
where a large number of accelerators may be necessary
across a wide range of workloads.

ACKNOWLEDGMENT

The authors want to thank the anonymous reviewers for
their insightful comments. This work was supported by the
Stanford Pervasive Parallelism Lab, the Stanford Platform
Lab, the Center for Future Architectures Research (C-FAR),
Samsung, and NSF grant SHF-1408911.

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]
[9]
[10]

(11]

[12]

[13]
[14]
[15]
[16]

[17]
(18]

[19]
[20]

[21]

(22]
[23]
[24]

[25]

[26]
[27]
[28]
[29]
(30]

[31]
(32]

(33]

REFERENCES

H. Esmaeilzadeh et al., “Dark silicon and the end of multicore
scaling,” in ISCA 11, 2011.

M. Horowitz, “Computing’s energy problem (and what we can do
about it),” in ISSCC ’14, 2014.

M. B. Taylor, “Is dark silicon useful? harnessing the four horesemen
of the coming dark silicon apocalypse,” in DAC ’12, 2012.

R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable Computing
Architectures,” Proceedings of the IEEE, vol. 103, March 2015.

A. DeHon, “Fundamental Underpinnings of Reconfigurable Comput-
ing Architectures,” Proceedings of the IEEE, vol. 103, March 2015.
A. Putnam er al., “A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services,” in ISCA 14, 2014.

J. Hauswald et al., “Sirius: An Open End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse Scale
Computers,” in ASPLOS 15, 2015.

R. Polig et al., “Giving Text Analytics a Boost,” Micro, IEEE, vol. 34,
no. 4, pp. 614, July 2014.

J. Ouyang, “SDA: Software-Defined Accelerator for Large-Scale
DNN Systems,” in HotChips, 2014.

S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the
First Thirty Years of FPGA Technology,” Proceedings of the IEEE,
vol. 103, no. 3, pp. 318-331, March 2015.

U. Holzle and L. A. Barroso, The Datacenter As a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed.
Morgan and Claypool Publishers, 2009.

I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and
Challenges,” Foundations and Trends in Electronic Design Automa-
tion, 2008.

J. Luu et al.,, “VTR 7.0: Next Generation Architecture and CAD
System for FPGAs,” vol. 7, no. 2, June 2014, pp. 6:1-6:30.

B. Van Essen et al., “Static versus scheduled interconnect in Coarse-
Grained Reconfigurable Arrays,” in FPL ’09, 2009.

N. Kapre et al., “Packet Switched vs. Time Multiplexed FPGA
Overlay Networks,” in FCCM ’06, 2006.

E. Tau et al., “A First Generation DPGA Implementation,” in FPD,
1995.

S. Trimberger et al., “A time-multiplexed FPGA,” in FCCM, 1997.
T. R. Halfhill, “Tabula’s Time Machine,” Microprocessor Report, vol.
131, 2010.

JEDEC Standard, “DDR3 SDRAM Standard,” JESD79-3, 2012.

Y. Kim et al,, “A Case for Exploiting Subarray-level Parallelism
(SALP) in DRAM,” in ISCA ’12, 2012.

T. Yamauchi et al., “The Hierarchical Multi-Bank DRAM: A High-
Performance Architecture for Memory Integrated with Processors,”
in ARVLSI ’97, 1997.

T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in MICRO 43, 2010.

A. N. Udipi et al., “Rethinking DRAM Design and Organization for
Energy-constrained Multi-cores,” in ISCA ’10, 2010.

M. Nakamura et al., “A 29 ns 64 Mb DRAM with Hierarchical Array
Architecture,” in ISSCC 95, 1995.

Y. Nitta et al., “A 1.6 GB/s Data-Rate 1 Gb Synchronous DRAM with
Hierarchical Square-Shaped Memory Block and Distributed Bank
Architecture,” in ISSCC ’96, 1996.

Y. H. Son et al., “Reducing Memory Access Latency with Asymmet-
ric DRAM Bank Organizations,” in ISCA ’13, 2013.

D. Lee et al., “Tiered-latency DRAM: A Low Latency and Low Cost
DRAM Architecture,” in HPCA 13, 2013.

Xilinx Inc., “DS152: Virtex-6 FPGA Data Sheet: DC and Switching
Characteristics,” March 2014, v3.6.

Altera Corporation, “Stratix Series FPGAs & SoCs,” https://www.
altera.com/products/fpga/stratix-series.html.

Xilinx Inc., “Virtex-7 FPGAs Products,” http://www.xilinx.com/
products/silicon-devices/fpga/virtex-7.html.

A. DeHon, “DPGA Utilization and Application,” in FPGA, 1996.
V. Betz et al., Eds., Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, 1999.

R. Balasubramonian, M. Shevgoor, and J.-S. Kim, “A
DRAM Refresh Tutorial,” http://utaharch.blogspot.com/2013/
11/a-dram-refresh-tutorial.html, November 2013.

[40]
[41]

[42]
[43]
[44]
[45]
[46]

(471

[48]
[49]
[50]

[51]

[52]
[53]

[54]

[55]
[56]
[57]

[58]

[59]
[60]
[61]
[62]
[63]
[64]
[65]

[66]

X. Dong and J. Suh, “DRAM sub-array level refresh,” March 2015,
uS Patent 8,982,654.

M. J. Lyons et al., “The Accelerator Store: A Shared Memory
Framework for Accelerator-based Systems,” TACO, vol. 8, no. 4, pp.
48:1-48:22, Jan. 2012.

R. Gindin, I. Cidon, and I. Keidar, “NoC-Based FPGA: Architecture
and Routing,” in NOCS, 2007.

R. Francis and S. Moore, “Exploring Hard and Soft Networks-on-
Chip for FPGAs,” in FPT, 2008.

Xilinx Inc., “Vivado High-Level Synthesis (HLS),” http://www.xilinx.
com/products/design-tools/vivado/integration/esl-design.html, 2014.
Altera Corporation, “Altera SDK for Open Computing Lan-
guage (OpenCL),” https://www.altera.com/products/design-software/
embedded- software-developers/opencl/overview.html.

C. Wolf, “Yosys Open Synthesis Suite,” http://www.clifford.at/yosys/.
Xilinx Inc., “UltraScale Architecture and Product Overview,” October
2015, v2.4.

R. Balasubramonian ef al., “Near-Data Processing: Insights from a
MICRO-46 Workshop,” Micro, IEEE, July 2014.

M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: A Compu-
tation Model for Intelligent Memory,” in ISCA, 1998.

M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfig-
urable Logic for Near-Data Processing,” in HPCA, 2016.

J. Hamilton, “Internet-scale service infrastructure efficiency,” in ISCA,
2009.

B. Reagen et al., “MachSuite: Benchmarks for accelerator design and
customized architectures,” in IISWC, 2014.

V. K. Kundeti, “Synthesizable, Space and Time Efficient Algorithms
for String Editing Problem,” Master’s thesis, University of Connecti-
cut, 2008.

E. Hung, F. Eslami, and S. Wilton, “Escaping the Academic Sandbox:
Realizing VPR Circuits on Xilinx Devices,” in FCCM, 2013.
Xilinx Inc., “Xilinx Power Estimator (XPE),” http://www.xilinx.com/
products/technology/power/xpe.html, 2012, v14.3.

K. Chen et al., “CACTI-3DD: Architecture-Level Modeling for 3D
Die-stacked DRAM Main Memory,” in DATE ’12, 2012.
Intel, “Measuring Processor Power: TDP vs.
http://www.intel.com/content/dam/doc/white-paper/
resources- xeon-measuring- processor-power-paper.pdf, 2011.
K. Ovtcharov et al., “Accelerating Deep Convolutional Neural Net-
works Using Specialized Hardware,” White paper, February 2015.
T. Brewer, “Convey’s Acceleration of the Memcached and Imagemag-
ick Applications,” in CARL, 2015.

E. C. Lin et al., “A 1000-word Vocabulary, Speaker-independent,
Continuous Live-mode Speech Recognizer Implemented in a Single
FPGA,” in FPGA, 2007.

Y. Sun et al., “Accelerating Frequent Item Counting with FPGA,” in
FPGA, 2014.

K. Choi, “Coarse-Grained Reconfigurable Array: Architecture and
Application Mapping,” IPSJ, vol. 4, pp. 31-46, 2011.

B. Mei et al., “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix,” in FPL, 2003.
H. Singh et al., “MorphoSys: An Integrated Reconfigurable System
for Data-Parallel and Computation-Intensive Applications,” IEEE
Trans. Comput., vol. 49, no. 5, pp. 465—481, May 2000.

V. Govindaraju et al., “Dynamically Specialized Datapaths for Energy
Efficient Computing,” in HPCA, 2011.

P. Dlugosch et al., “An Efficient and Scalable Semiconductor Archi-
tecture for Parallel Automata Processing,” TPDS, Dec 2014.

D. Patterson et al., “A Case for Intelligent RAM,” Micro, IEEE,
vol. 17, no. 2, pp. 34-44, Mar 1997.

M. Hall et al., “Mapping Irregular Applications to DIVA, a PIM-
based Data-Intensive Architecture,” in SC, 1999.

Y. Kang et al., “FlexRAM: Toward an Advanced Intelligent Memory
System,” in /CCD, 2012.

S. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-
ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.

J. Ahn et al., “A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing,” in ISCA, 2015.

M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data Processing
for In-memory Analytics Frameworks,” in PACT, 2015.

ACP.”

