
Automatic Generation of Efficient Accelerators for Reconfigurable Hardware

David Koeplinger
Stanford University

dkoeplin@stanford.edu

Christina Delimitrou
Stanford University
Cornell University
cdel@stanford.edu

Raghu Prabhakar
Stanford University

raghup17@stanford.edu

Christos Kozyrakis
Stanford University

EPFL
kozyraki@stanford.edu

Yaqi Zhang
Stanford University
yaqiz@stanford.edu

Kunle Olukotun
Stanford University
kunle@stanford.edu

Abstract—Acceleration in the form of customized datapaths
offer large performance and energy improvements over general
purpose processors. Reconfigurable fabrics such as FPGAs are
gaining popularity for use in implementing application-specific
accelerators, thereby increasing the importance of having
good high-level FPGA design tools. However, current tools
for targeting FPGAs offer inadequate support for high-level
programming, resource estimation, and rapid and automatic
design space exploration.

We describe a design framework that addresses these chal-
lenges. We introduce a new representation of hardware using
parameterized templates that captures locality and parallelism
information at multiple levels of nesting. This representation
is designed to be automatically generated from high-level
languages based on parallel patterns. We describe a hybrid
area estimation technique which uses template-level models
and design-level artificial neural networks to account for
effects from hardware place-and-route tools, including routing
overheads, register and block RAM duplication, and LUT
packing. Our runtime estimation accounts for off-chip memory
accesses. We use our estimation capabilities to rapidly explore a
large space of designs across tile sizes, parallelization factors,
and optional coarse-grained pipelining, all at multiple loop
levels. We show that estimates average 4.8% error for logic
resources, 6.1% error for runtimes, and are 279 to 6533 times
faster than a commercial high-level synthesis tool. We compare
the best-performing designs to optimized CPU code running
on a server-grade 6 core processor and show speedups of up
to 16.7×.

I. INTRODUCTION

Over the past few years, the computing landscape has
seen a paradigm shift towards specialized architectures [1, 2,
3, 4]. Customized accelerators, implemented as application
specific integrated circuits (ASICs) efficiently perform key
kernel computations within larger applications to achieve
orders of magnitude improvements in performance and en-
ergy efficiency compared to programmable processors [5].
However, such improvements typically require sacrificing
flexibility. Once fabricated, an ASIC’s custom datapath can
no longer be modified to meet new requirements. ASICs also
have high non-recurring engineering (NRE) costs associated
with manufacturing,

Reconfigurable fabrics such as field-programmable gate
arrays (FPGAs) offer a promising alternative to ASIC-based
accelerators due to their reconfigurability and customizabil-
ity, even if these benefits come at a price [6]. FPGAs are
increasingly gaining traction in the industry as mainstream
accelerators. Microsoft [7] and Baidu [8] have successfully
deployed FPGA-based accelerators in a commercial setting
to accelerate web search and deep neural networks. Intel [9]
is actively working on integrating an FPGA with a processor
on a heterogeneous motherboard. The acquisition of Altera
by Intel, and new startups [10] working on using FPGAs
as accelerators for datacenters suggest that future systems
will incorporate reconfigurable logic into their design. As
a result, FPGAs will play a crucial role in the space of
customizable accelerators over the next few years. This
places a greater importance on FPGA programmability and
automated tools to generate efficient designs that maximize
application performance on a given reconfigurable substrate.

Designing an efficient accelerator architecture involves
balancing compute with on-chip and off-chip memory band-
width requirements to avoid resource bottlenecks. This is
irrespective of whether the accelerator is implemented as an
ASIC or on an FPGA. This process involves navigating a
large multi-dimensional design space with application-level,
architectural and microarchitectural parameters. The optimal
set of parameters depends on the inherent parallelism and
data locality in the application, as well as the available
hardware resources. The design space for FPGAs is fur-
ther complicated by the heterogeneous nature of available
FPGA resources, which include units such as look-up tables
(LUTs), block RAMs (BRAMs), flip flops (FFs) and dig-
ital signal processing units (DSPs). As a result, hardware
accelerator design is an inherently iterative process which
involves exploring a large design space for even moderately
complex accelerators. Exhaustive or manual exploration of
this space would be impractical for all but the simplest of
designs, suggesting that efficient FPGA accelerator design
requires support from high-level tools for rapid modeling
and design space exploration.

Unfortunately, current FPGA design tools support rela-
tively primitive programming interfaces that require exten-
sive manual effort [11]. Designing an FPGA accelerator
typically involves an architecture description in RTL or
a C-based high-level language coupled with ad-hoc tools
to explore the design space, potentially involving multiple
logic synthesis runs. The long turn-around times from logic
synthesis tools, which are on the order of several hours per
design, makes it infeasible for them to be included in the iter-
ative design process. High-level synthesis tools [12, 13, 14]
raise the level of abstraction and provide some support for
pre-place-and-route analysis. However, high-level synthesis
tools do not capture many important design points, such
as coarse-grained pipelining and nested parallelism, and
generally use simple memory models that do not involve
modeling off-chip memory accesses [15].

This paper presents a practical framework for automatic
generation of efficient FPGA accelerators. Figure 1 describes
our overall system architecture. The input to our system
is an application described in a high-level language using
high-level parallel patterns like map, reduce, filter, and
groupBy [16]. Parallel patterns serve the dual purpose of
raising the level of abstraction for the programmer [17, 19],
and providing richer semantic information to the com-
piler [20]. These constructs are then automatically lowered
into our hardware definition language (HDL) that explicitly
captures information on parallelism, locality, and memory
access pattern at all levels of nesting using parameterizable
architectural templates (Step 1 in Figure 1). Step 1 performs
high-level optimizations like loop fusion and tiling transfor-
mations. The output of step 1 is a tiled representation of the
input design expressed in our HDL. Note that tiling here
includes both loop and data tiling.

We characterize each template and construct resource
models to provide quick and accurate estimates of cycle
count and FPGA resource utilization for a given set of design
parameters, including modeling off-chip memory transfers.
The estimators guide a design space exploration phase (Steps
2–4 in Figure 1) which navigates a large space to produce a
set of optimized parameters. Finally, we integrate hardware
generation into the design flow so that optimized designs can
be automatically generated, synthesized and run on a real
FPGA (Steps 5–7 in Figure 1). We synthesize hardware by
automatically generating MaxJ, a low-level Java-based hard-
ware generation language from Maxeler Technologies [21].
Step 1 in Figure 1 has been described in previous work [22].
Steps 2–7 are the focus of this paper.

We make the following contributions in this paper:
• We define an intermediate representation called Delite

Hardware Definition Language, or DHDL. DHDL de-
fines a set of parameterizable architectural templates
to describe hardware. Templates capture specific types
of memory accesses and parallel compute patterns,
and can be composed to naturally express parallelism

at multiple levels in the design. The templates are
designed such that applications expressed using high-
level parallel patterns can be mapped to these templates
in a straightforward way.

• We provide quick estimates of cycle count and FPGA
area usage for designs expressed in DHDL. Estimates
take into account available off-chip memory bandwidth
and on-chip resources for datapath and routing, as
well as effects from low-level optimizations like LUT
packing and logic duplication.

• We study the space of designs described by tiling sizes,
parallelization factors, and coarse-grained pipelining.
This space is larger than previous work because we
study more design dimensions than what is possible
using state-of-the-art HLS tools. This in turn allows
our system to find better design points in terms of
performance and performance-per-area than previously
possible.

• We evaluate the quality of our estimators and generated
designs on a variety of compute-bound and memory-
bound benchmarks from the machine learning and data
analytics domain. We show that our run time estimates
are within 6.1% and area estimates are within 4.8%
of post place-and-route reports provided by FPGA
vendor tools, making this a useful tool for design space
exploration. We evaluate the performance of the gen-
erated designs compared to optimized multi-core CPU
implementations running on a server-grade processor
and achieve speedups of up to 16.7×.

The remainder of this paper is structured as follows.
Section II outlines the requirements of good automated
FPGA design tools and reviews related work in this domain.
Section III describes the DHDL language and provides
insights into how this representation enables larger design
space exploration and accurate estimation. Section IV de-
scribes our modeling methodology for DHDL templates.
Section V discusses the evaluation of our approach for abso-
lute accuracy, design exploration efficiency, and performance
of generated designs compared to a multi-core processor.

II. BACKGROUND AND RELATED WORK

A primary requirement for good accelerator design tools
is the ability to capture and represent design points along
all important dimensions. Specifically, design tools must be
able to capture application-level parameters (e.g., input sizes,
bitwidth, data layout), architectural parameters (parallelism
factors, buffer sizes, banking factors pipelining levels, off-
chip memory streams) and microarchitectural parameters
(e.g., on-chip memory word width). Having a representation
rich in parallelism information allows for more accurate
estimations, thorough design space exploration, and efficient
code generation.

In addition to application characteristics, both hetero-
geneity within FPGAs and low-level optimizations done by

2

FPGA
ConfigurationMaxJ

DSE Estimator

Code
Generation

Bitstream
Generation FPGAParallel

Patterns DHDL Transformed
DHDL

DHDL
Compiler

High-Level
Optimizations

Parameter List

Parameters

Estimates

1 2

34

5 6 7

Figure 1. System Overview

logic synthesis tools have significant impact on required
design resources. FPGA resource utilization does not just
depend on the compute and memory operations in a given
design; a non-trivial amount of resources are typically used
to establish static routing connections to move data between
two points, often rendering them unavailable for “real”
operations. In addition, low-level logic synthesis tools often
perform optimizations like LUT-packing or logic duplication
for signal fanout reduction that alter resource usage. Off-
chip memory communication requires FPGA resources to
implement various queues and control logic. Such effects
from low-level tools must be factored into the design tools to
provide accurate estimates of design resource requirements.

A good FPGA design tool should have the following
features:

• Representation: The tool must internally represent hard-
ware using a general and parameterizable represen-
tation. This representation must preserve information
regarding data locality, memory access pattern and
parallelism in the input at all levels of nesting. Such
a representation must be target-agnostic and should be
targetable from high-level language constructs.

• Estimation: The tool must quickly analyze a design in
the above representation and estimate metrics such as
cycle counts and FPGA resource requirements for a
target FPGA.

• DSE: The tool must be able to leverage the estimators
to prune the large design search space, walk the space
of designs, and find the Pareto-optimal surface.

• Generation: The tool must be able to automatically
generate hardware which can then be synthesized and
run on the target FPGA. Without this feature, hardware
would typically be generated using separate toolchains
for estimation and generation, which makes accurate
estimation much harder.

Previous work on generating FPGA accelerators has fo-
cused on various aspects of the points mentioned above.
Here we provide an overview of this work.

High-level synthesis (HLS) tools such as LegUp [13]
and Vivado HLS [23] (previously AutoPilot) [12] synthesize
hardware from C. These tools provide estimates of the cycle
count, area and power consumption along with hardware

generation. However, imperative design descriptions place
greater burden on the compiler to discover parallelism,
pipeline structure and memory access patterns. The absence
of explicit parallelism often leads to conservative compiler
analyses producing sub-optimal designs. While some tools
allow users to provide compiler hints in the form of di-
rectives or pragmas in the source code, this approach fails
to capture key points in the design space. For example,

L1: for (int i=0; i<R; i++) {
#pragma HLS PIPELINE II=1
L11: for (int j=0; j<C; j++) {
sub[j] = y[i] ? x[i][j]-mu0[j] : x[i][j]-mu1[j];

}
L121: for (int j1=0; j1<C; j1++) {
L122: for (int j2=0; j2<C; j2++) {
sigma[j1][j2] += sub[j1]*sub[j2];

}
}

Figure 2. GDA for high-level synthesis.

consider Figure 2 which represents the gaussian discriminant
analysis (GDA) kernel. All loops in this kernel are parallel
loops. One set of valid design points would be to implement
L1 as a coarse-grained pipeline with L11 and L121 as
its stages. Commercial HLS tools support limited coarse-
grained pipelining, but with serveral restrictions. For exam-
ple, the DATAFLOW directive in Vivado HLS enables users
to describe coarse-grained pipelines. However, the directive
does not support arbitrarily nested coarse-grained pipelines,
multiple producers and consumers between stages, or coarse-
grain pipelining within a finite loop scope [24], as required
in the outer loop in Figure 2. In addition, compile times for
HLS can be long for large designs due to the complications
that arise during scheduling. Previous studies [15] point out
other similar issues. Such limitations restrict the capability
of HLS tools to explore more complex design spaces.

Pouchet et al. [25] explore combining HLS with polyhe-
dral analysis to optimize input designs for locality and use
estimates from HLS tools to drive design space exploration.
While this captures a larger design space than previous
work by including tile sizes, this approach is limited to
the capabilities of the HLS tools and to benchmarks that
have strictly affine data accesses. This paper improves upon
previous work by modeling tiling parameters in addition

3

to other design points like coarse-grained pipelining of
imperfectly nested loops which are not supported by HLS
tools, as well as data-dependent accesses which are not
supported by polyhedral analysis. Chen et al. [26] describe a
simultaneous resource allocation and binding algorithm and
perform design space exploration using a high-level power
estimator. They characterize area usage of primitives and
fit linear models to derive estimation functions. However,
this study does not consider higher level design parameters
or nested parallelism as part of the design space. We
perform characterization of primitive operations as well as
other coarse-grained templates, which enables us to esti-
mate resource usage for much more complex accelerators.
CMOST [18] is a C-to-FPGA framework that uses task-level
modeling to exploit multi-level parallelism. While CMOST
uses simple analytical models, this paper uses a mixture of
analytical and machine learning models that enables much
more fine-grained and accurate estimation of FPGA resource
utilization.

Aladdin[15] is a pre-RTL estimation tool for ASIC ac-
celerator design. Aladdin uses a dynamic data dependence
graph (DDDG) as input and estimates the latency, area, and
power for a variety of designs. However, using a DDDG
limits the tool’s ability to discover nested parallelism and
infer coarse-grained pipeline structures that require double
buffering, especially with complex memory accesses in
patterns like filters or groupBys. Also, Aladdin is focused on
ASIC designs while our work focuses on FPGA accelerators
which have a different set of challenges, as outlined above.

Other related work [27, 28, 29, 30, 31] explore various
ideas from analytical to empirical models for estimating
latency and area of designs in high-level languages. How-
ever, these approaches do not consider complex applications
with nested parallelism. Also, previous work either ignores
memory or has a relatively simple model for memory. This
paper handles both on-chip and off-chip memory accesses
with varying, data-dependent memory access patterns.

III. DHDL

In this section, we describe the Delite Hardware Definition
Language, or DHDL. DHDL is an intermediate language for
describing hardware datapaths. A DHDL program describes
a dataflow graph consisting of various kinds of nodes
connected to each other by data dependencies. Each node in
a DHDL program corresponds to one of the supported ar-
chitectural templates listed in Table I. DHDL is represented
in-memory as a parameterized, hierarchical dataflow graph.

DHDL is a good hardware representation to aid in design
space exploration for the following reasons:

• Templates in DHDL capture parallelism, locality, and
access pattern information at multiple levels. This
dramatically simplifies coarse-grained pipelining and
enables us to explicitly capture and represent a large

space of designs which other tools cannot capture, as
shown in Figure 2.

• Every template is parameterized. A specific hardware
design point is instantiated from a DHDL description
by instantiating all the templates in the design with con-
crete parameter values passed to the program. DHDL
heavily uses metaprogramming, so these values are
passed in as arguments to the DHDL program. The
generated design instance is represented internally as
a graph that can be analyzed to provide estimates of
metrics such as area and cycle count. The parameters
used to create the design instance can be automatically
generated by a design space exploration tool.

DHDL is implemented as an embedded domain-specific lan-
guage in Scala, thereby leveraging Scala’s language features
and type system.

A. Generating DHDL from parallel patterns

A fundamental design goal of DHDL is that it should
be automatically generated from high-level languages which
express the computation using parallel patterns such as
map, reduce, zip, groupBy and filter. Previous work has
shown that parallel patterns can be used to improve both
productivity and performance by using patterns as a basis
for high-level languages [16, 19] and sophisticated compiler
frameworks [20]. The templates in DHDL are inspired from
these well-known parallel patterns. This makes it possible
to define explicit rules to generate DHDL for each parallel
pattern mentioned above. Previous work [22] has proposed
compilation techniques to automatically generate hardware
designs from parallel patterns using a similar template-based
approach. We use these techniques to automatically generate
DHDL from parallel patterns.

B. Language constructs

A hardware datapath is described in DHDL using various
nodes connected to each other by their data dependencies.
DHDL also supports variable bit-width fixed-point types,
variable precision floating point types, and associated type
checking. Every node that either produces or stores data has
an associated type. Table I describes the hardware templates
and associated parameters supported in DHDL. There are
four types of nodes:

1) Primitive Nodes: Primitive nodes correspond to basic
operations, such as arithmetic and logic tasks, and multi-
plexers. Some complex multi-cycle operations such as abs,
sqrt and log are also supported as primitive nodes. Every
primitive node represents a vector computation; a “vector
width" parameter defines the number of parallel instances
of each node. Scalar operations are thus special cases where
the associated vector width is 1.

2) Memories: DHDL distinguishes between on-chip
buffers and off-chip memory regions by representing them
explicitly using separate nodes. This is used to capture

4

Template Description Design Parameters

Primitive
Nodes

+, -, *, /, <. >, mux Basic arithmetic, logic, and control operations Vector width, Type
Ld, St Load and store from on-chip memory Vector width, Bank stride

Memories

OffChipMem N-dimensional off-chip memory array Dimensions, Type

BRAM On-chip scratchpad memory
Dimensions, Word width, Double
buffering, Vector width, Banks,
Interleaving scheme, Type

Priority Queue Hardware sorting queue Double buffering, Depth, Type
Reg Non-pipeline register Double buffering, Vector width

Controllers

Counter Counter chain used to produce loop iterators Vector width

Pipe Hardware pipeline of primitive operations. Typically used to
represent bodies of innermost loops. Parallelization factor, Pattern

Sequential Non-pipelined, sequential execution of multiple stages. Parallelization factor, Pattern
Parallel Fork-join style parallel container with synchronizing barrier.

MetaPipe Coarse-grained pipeline with asynchronous handshaking sig-
nals across stages. Parallelization factor, Pattern

Memory
Command
Generators

TileLd Load a tile of data from an off-chip array Tile dimensions, Word width, Paral-
lelization factor

TileSt Store a tile of data to an off-chip array Tile dimensions, Word width, Paral-
lelization factor

Table I
DESCRIPTION OF TEMPLATES IN DHDL AND SUPPORTED PARAMETERS FOR EACH TEMPLATE

on-chip and off-chip accesses which have different access
times resource requirements. OffChipMem represents an N-
dimensional region of memory stored on off-chip DRAM.
BRAM, Priority Queue and Reg correspond to different
types of on-chip buffers specialized for different kinds of
computation. OffChipMems are accessed using nodes called
memory command generators, while on-chip buffers are
accessed using primitive Ld (load) and St (store) nodes. The
banking factor for a BRAM node is automatically calculated
using the vector widths and access patterns of all the Ld
and St nodes accessing it such that the required memory
bandwidth can be met.

3) Controllers: Several controller templates are supported
in DHDL to capture imperfectly nested loops and parallelism
at multiple nesting levels. Parallel patterns in input designs
are represented using one of the Pipe, MetaPipe, or Sequen-
tial controllers with an associated Counter node. Each of
these controllers is associated with a parallelization factor
and the parallel pattern from which it was generated, which
is used in replicating the nodes for parallelization. For ex-
ample, nodes associated with the map pattern are replicated
and connected in parallel, whereas nodes associated with the
reduce pattern are replicated and connected as a balanced
tree. Pipe is a dataflow pipeline which consists of purely
primitive nodes. This typically represents innermost bodies
of parallel loops that are traditionally converted to pipelines
using software pipelining techniques. MetaPipe represents a
coarse-grained pipeline where each of its stages are other
controller nodes. MetaPipe orchestrates the execution of its
stages in a pipelined fashion using asynchronous handshak-
ing signals, thereby being able to tolerate variations in the

execution times of each stage. Communication buffers used
in between stages are converted to double buffers. Sequential
represents unpipelined execution of a chain of controller
nodes. Parallel is a container to execute multiple controller
nodes in parallel with an implicit barrier at the end of
execution. Counter is a simple chain of counters required
to generate loop iterators. Counter has an associated vector
width so that multiple successive iterators can be produced
in parallel. This vector width is typically equal to the
parallelization factor of the Pipe, MetaPipe, or Sequential
it is associated with.

4) Memory Command Generators: OffChipMems in
DHDL are accessed at the granularity of tiles, where tile
is an regular N-dimensional region of memory. Previous
work [25, 22] has shown the importance of tiling transforma-
tions to maximize locality and generate efficient hardware.
Accesses to OffChipMems are explicitly captured in DHDL
using special TileLd (tile load) and TileSt (tile store) con-
trollers. Each TileLd and TileSt node instantiates data and
command queues to interface with the memory controller,
and contains control logic to generate memory commands.

C. Code Example: GDA in DHDL

Figure 4 shows GDA written in DHDL, complete with off-
chip memory transfers. The hardware described is depicted
pictorially in Figure 3. Note that the design captures nested
parallelism with two levels of MetaPipes with stages sepa-
rated by double buffers. Each bubble denotes parameters that
apply to the template it points to. Some of the parameters,
like number of banks for BRAM, is omitted as they are
automatically inferred based on parallelization factors. The
design is parameterized using three kinds of parameters:

5

TileLdmu0

mu1 TileLd

TileSt
y

x

TileLd

TileLd

- sigma

 MetaPipe M1
MetaPipe C2

inTileSize

Pipe P1 Pipe P2

muSize

inTileSize

muSize
muSize*muSize

x
+

P1Par

M2Par
M2toggle

P2Par

M1Par
M1toggle

mu0T

mu1T

yT

xT

subT sigT

Parallelism factors : M1Par, M2Par, P1Par, P2Par
Tile sizes : muSize, inTileSize
MetaPipe toggle : M1toggle, M2toggle

Figure 3. Parameterized GDA design described in Figure 4. Bubbles denote parameters that apply to the template it points to. Note that some parameters
(e.g. M1toggle) apply to more than one template (e.g. M1, xT, and yT) but have been not been shown for clarity.

1 val x = OffChipMem[Float](R, C)
2 val y = OffChipMem[Bit](R)
3 val mu0 = OffChipMem[Float](C)
4 val mu1 = OffChipMem[Float](C)
5 val sigma = OffChipMem[Float](C, C)
6
7 Sequential {
8 val mu0T = BRAM[Float](muSize)
9 val mu1T = BRAM[Float](muSize)

10 Parallel {
11 mu0T := mu0(0::muSize) // Load mu0
12 mu1T := mu1(0::muSize) // Load mu1
13 }
14
15 val sigT = BRAM[Float](muSize, muSize)
16 MetaPipe(rows by inTileSize, sigT) { r =>
17 val yT = BRAM[Bit](inTileSize)
18 val xT = BRAM[Float](inTileSize, muSize)
19 Parallel {
20 // Load one tile of x and y
21 xT := x(r::r+inTileSize, 0::muSize)
22 yT := y(r::r+inTileSize)
23 }
24
25 val sigmaBlk = BRAM[Float](muSize, muSize)
26 MetaPipe(inTileSize by 1, sigmaBlk) { rr =>
27 val subT = BRAM[Float](muSize)
28 val sigmaTile = BRAM[Float](muSize, muSize)
29 Pipe(muSize by 1){ cc =>
30 val sub = yT(rr) ? mu1T(cc) :: mu0T(cc)
31 sigmaTile(cc) = xT(rr,cc) - sub
32 }
33 Pipe(muSize by 1, muSize by 1) { (ii,jj) =>
34 sigmaTile(ii,jj) = subT(ii) * subT(jj)
35 }
36 sigmaTile
37 }{_+_}
38 sigmaBlk
39 }{_+_}
40
41 sigma(0::muSize, 0::muSize) := sigT
42 }

Figure 4. GDA in DHDL

parallelism factors controlling number of parallel iterations,
tile sizes corresponding to on-chip buffer sizes and MetaPipe
toggles which controls whether an outer loop should be
implemented as a Sequential or a MetaPipe. The MetaPipe
toggle parameters also control whether the buffers internal
to the MetaPipe should be double-buffered. Note that by

supplying different parameters, different design points im-
plementing GDA can be automatically generated from the
same DHDL source code. In comparison to the design in
Figure 3, the high-level synthesis specification in Figure 2
cannot capture the design points where either M1toggle or
M2toggle are set to true. Also, it is challenging to generate
multiple design points using the input in Figure 2 without
extensively modifying the source code. We explore these
design spaces with various parallelism factors, tile sizes, and
toggles in detail in Section V. We generate parameters to
the design in Figure 3 automatically using a design-space
exploration tool, and each proposed design is analyzed to
estimate FPGA resource utiliztion and cycle counts.

IV. MODELING AND ESTIMATION

In this section, we describe our modeling methodology.
Our models account for the various design parameters for
each DHDL template, as listed in Table I, as well as
optimizations done by low-level logic synthesis tools in
order to accurately estimate resource usage.

A. Modeling Considerations

The resource requirements of a given application im-
plemented on an FPGA depend both on the target device
and on the toolchain. Heterogeneity in the FPGA fabric,
use of FPGA resources for routing, and other low-level
optimizations performed by logic synthesis tools often have
a significant impact on the total resource consumption of
a design. Since these factors reflect the physical layout of
computation on the device after placement and routing, they
are not captured directly in the application’s dataflow graph.
We identify and account for the following factors:

LUT and register packing: Basic compute units in
FPGAs are typically composed of a lookup table (LUT),
and a small number of single bit multiplexers, registers,
and full adders. Modern FPGA LUTs support up to 8-
input binary functions but are often implemented using a
pair of smaller LUTs [32, 33]. When these LUTs can be
configured and used independently, vendor placement tools

6

attempt to “pack” multiple small functions into a single 8-
input unit. LUT packing can have a significant impact on
design resource requirements. In our experiments, we are
able to pack about 80% of the functions in each design in
pairs, decreasing the number of used LUTs by about 40%.

Routing Resources: Logic synthesis tools require a
significant amount of resources to establish static routing
connections between two design points (e.g., a multiplier and
a block RAM) which fit in the path’s clock period. While
FPGAs have dedicated routing resources, logic synthesis
tools may have the option to use LUTs for routing. These
LUTs may then be unavailable to be used for “real” compute.
In our designs, “route-through” LUTs typically account for
about 10% of the total number of used LUTs.

Logic duplication: Logic synthesis tools often duplicate
resources such as block RAMs and registers to avoid routing
congestion and to decrease fan out. While duplicated regis-
ters typically encompass around 5% of the total number of
registers required in our designs, we found that block RAM
duplication can increase RAM utilization by 10 to 100%,
depending on the complexity of the design.

Unavailable resources: FPGA resources are typically
organized in a hierarchy, such as Altera’s Logic Array Block
structure (10 LUTs) and Xilinx’s Slice structure (4 LUTs).
Such organizations impose mapping constraints which can
lead to resources that are rendered unusable. In our exper-
iments, the number of unusable LUTs made up only about
4% of the design’s total LUT usage.

B. Methodology

In order to model runtime and resource requirements of
DHDL designs, we first need an estimate of the area require-
ments and propagation delay of every DHDL template. Area
requirements include the number of digital signal processing
units (DSPs), device block RAMs, LUTs, and registers that
each template requires. To facilitate LUT packing estima-
tion, we split template LUT resource requirements into the
number of “packable” and “unpackable” LUTs required.
We obtain characterization data by synthesizing multiple
instances of each template instantiated for combinations of
its parameters as given in Table I. Using this data, we
create analytical models of each DHDL template’s resource
requirements and cycle counts for a predefined fabric clock.
The area and cycle count of controller templates are modeled
as functions of the latencies of the nodes contained within
them. The total cycle count for a MetaPipe, for example, is
modeled using the recursive function

(N−1)max(cycles(n)|n ∈ nodes)+ ∑
n∈nodes

cycles(n)

where N is the number of iterations of the MetaPipe and
nodes is the set of nodes contained in the MetaPipe.

Most templates require about six synthesized designs to
characterize their resource and area usage as a function of

their parameters. Note that these models include estimates of
off-chip memory access latency as a function of the number
and length of memory commands, as well as contention
due to competing accessors. Since template models are
application-independent, each needs only be characterized
once for a given target device and logic synthesis toolchain.
The synthesis times required to model templates can there-
fore be amortized over many applications.

Using these models, we run a pair of analysis passes
over the application’s DHDL intermediate representation to
estimate design cycle counts and area requirements.

1) Cycle Count Estimation: In the first analysis pass,
we estimate the total runtime of the design on the FPGA.
Since the DHDL intermediate representation is hierarchical
in nature, this pass is done recursively. The total runtime
of MetaPipe and Sequential nodes is calculated first by
determining the runtime of all controller nodes contained
within them. The total propagation delay of a single iteration
of a Pipe is the length of the body’s critical path, calculated
using a depth first search of the body’s subgraph and the
propagation delay of all primitive nodes within the graph.
Input dataset sizes, given as user annotations in the high-
level program, are used by the analysis pass along with tiling
factors to determine the iteration counts for each controller
template. Iteration counts are then used to calculate the total
runtime of the respective controller nodes.

2) Area Estimation: Since the FPGA resource utilization
of a design is sensitive to factors that are not directly
captured in the design’s dataflow graph, we adopt a hybrid
approach in our area analysis.

We first estimate the area of the DHDL design by counting
the resource requirements of each node using their pre-
characterized area models. In Pipe bodies, we also estimate
the resources required for delaying signals. This is done
by recursively calculating the propagation delay of every
path to each node using depth first search. Paths with slack
relative to the critical path to that node require their width
(in bits) multiplied by the slack delay resources. Delays
over a synthesis tool-specific threshold are modeled as block
RAMs. Otherwise, they are modeled as registers. Note that
this estimation assumes ASAP scheduling.

We model LUT routing usage, register duplication, and
unavailable LUTs using a set of small artificial neural
networks implemented using the Encog machine learning
library [34]. Each network has three fully connected layers
with eleven input nodes, six hidden layer nodes, and a
single output node. We chose to use three layer neural
networks as they have been proven to be capable of fitting a
wide number of function classes with arbitrary precision,
including polynomial functions of any order [35]. One
network is trained for each factor on a common set of 200
design samples with varying levels of resource usage to
give a representative sampling of the space. Choosing the
correct network parameters to obtain the lowest model error

7

is typically challenging, but in our experiments we found
that above four nodes in the hidden layer, the exact number
of hidden layer nodes made little difference. Duplicated
block RAMs are estimated as a linear function of the
number of routing LUTs, as we found that this gave the
best estimate of design routing complexity in practice. This
linear function was fit using the same data used to train
the neural networks. Like the template models, these neural
networks are application independent and only need to be
trained once for a given target device and toolchain.

We use the raw resource counts as an input to each of our
neural networks to obtain global estimates for routing LUTs,
duplicated registers, and unavailable LUTs. We estimate the
number of duplicated block RAMs using the routing LUTs.
These estimates are then added to the raw resource counts to
obtain a pre-packing resource estimate. For the purposes of
LUT packing, we assume routing LUTs are always packable.

Lastly, we model LUT packing using the simple assump-
tion that all packable LUTs will be packed. The target
device in our experiments supports pairwise LUT packing,
so we estimate the number of compute units used for
logic as the number of unpackable LUTs plus the number
of packable LUTs divided by two. We assume that each
compute unit will use two registers on average. We model
any registers unaccounted for by logic compute units as
requiring compute units with two registers each. This gives
us the final estimation for LUTs, DSPs, and BRAM.

C. Design space exploration

Our design space exploration tool uses the resource and
cycle count estimates to explore the space of designs de-
scribed by the parameters in Table I. As we are dealing
with large design spaces on the order of millions of points
even for small benchmarks, we prune invalid and suboptimal
points in the search space using a few simple heuristics:
• Parallelization factors considered are integer divisors

of the respective iteration counts. We use this pruning
strategy because non-divisor factors create edge cases
which require additional modulus operations. These
operations can significantly increase the latency and
area of address calculation, typically making them poor
design parameter choices [36].

• Tile sizes considered are divisors of the dimensions
of the annotated data size. Similar to parallelization
factors, tile sizes with edge cases are usually suboptimal
as they increase load and store area and latency with
additional indexing logic.

• Automatic banking of on-chip memories eliminates the
memory banks as an independent variable. This prunes
a large set of suboptimal design points where on-
chip memory bandwidth requirements do not match the
amount of parallelization.

• The total size of each local memory is limited to a fixed
maximum value.

Benchmark Description Dataset Size

dotproduct Vector dot product 187,200,000

outerprod Vector outer product 38,400 38,400

gemm Tiled matrix multiplication 1536×1536

tpchq6 TPC-H Query 6 N=18,720,000

blackscholes Black-Scholes-Merton model N=9,995,328

gda Gaussian discriminant analysis R=360,000 D=96

kmeans k-Means clustering #points=960,000,
k=8, dim=384

Table II
EVALUATION BENCHMARKS.

These heuristics defines a “legal” subspace of the total
design space. In our experiments, we randomly generate es-
timates for up to 75,000 legal points to give a representative
view of the entire design space. We immediately discard
illegal points.

V. EVALUATION

We evaluate the accuracy of the estimations described in
Section IV. We use our models to study the space of designs
on benchmarks from the data analytics, machine learning,
and financial analytics domains. We then evaluate the speed
of our design space exploration against a commercial high-
level synthesis tool. Finally, we evaluate the performance
of our Pareto-optimal points by comparing the execution
times with an optimized multi-core CPU implementation on
a server-grade processor.

A. Experimental Setup

Table II lists the benchmarks we use in our evaluation
along with the corresponding input dataset sizes used. Dot-
product, outerprod, and gemm are common linear algebra
kernels. Tpchq6 is a data analytics application that streams
through a collection of records and performs a reduction on
records filtered by a condition. BlackScholes is a financial
analytics application that implements Black-Scholes option
pricing. Gda and kmeans are commonly used machine
learning kernels used for data classification and clustering,
respectively. All benchmarks operate on single-precision
floating point numbers, except in certain cases where the
benchmark requires integer or boolean values as inputs. For
the purposes of this paper, all benchmarks were written in
DHDL by hand but are equivalent to what could be generated
automatically from higher level DSLs.

We implement the DHDL compiler framework in Scala.
The DHDL compiler generates hardware by emitting MaxJ,
which is a low-level Java-based hardware generation lan-
guage. Each generated design is synthesized and run on
an Altera 28nm Stratix V FPGA on a Max4 MAIA board
at a fabric clock frequency of 150MHz. The MAIA board

8

Benchmark ALMs DSPs BRAM Runtime

dotproduct 1.7% 0.0% 13.1% 2.8%

outerprod 4.4% 29.7% 12.8% 1.3%

gemm 12.7% 11.4% 17.4% 18.4%

tpchq6 2.3% 0.0% 5.4% 3.1%

blackscholes 5.3% 5.3% 7.0% 3.4%

gda 5.2% 6.2% 8.4% 6.7%

kmeans 2.0% 0.0% 21.9% 7.0%

Average 4.8% 7.5% 12.3% 6.1%

Table III
AVERAGE ABSOLUTE ERROR FOR RESOURCE USAGE AND RUNTIME.

interfaces with an Intel CPU via PCIe. The board has
48GB of dedicated off-chip DDR3 DRAM with a peak
bandwidth of 76.8GB/s. In practice, our maximum memory
bandwidth is 37.5 GB/s, as our on-chip memory clock
is limited to 400MHz. We leverage Maxeler’s runtime to
manage communication and data movement between the
host CPU and the MAIA board. Execution time is measured
starting from when the FPGA design is started (after input
has been copied to FPGA DRAM) and stopped after the
design finishes execution (before output is copied to CPU
DRAM). We report execution time as the average of 20
runs to eliminate noise from design initialization time and
off-chip memory latencies. The FPGA resource utilization
numbers reported are from the post place-and-route report
generated by Altera’s logic synthesis tools.

B. Evaluation of estimator

We first evaluate the absolute accuracy of our modeling
approach. We select five Pareto points generated from our
design space exploration for each of our benchmarks. We
then generate and synthesize hardware for each design and
run it on the FPGA. We compare our area estimates to post
place-and-route reports generated by Altera’s toolchain. We
then run the design on the FPGA and compare the estimated
runtime to observed runtime. Note that runtime includes
off-chip memory accesses from the FPGA to its DRAM.
Table III summarizes the errors averaged across all selected
Pareto points for each benchmark.

Our area estimates have an average error of 4.8% for
ALMs, 7.5% for DSPs, and 12.3% for BRAMs, while our
runtime estimation error averages 6.1%. Our highest error
occurs in predicting DSPs for outerprod, where we over-
predict by 29.7% DSP usage on average. However, we found
that errors above 10% for DSP usage only occur for designs
which use less than 2% of the total DSPs available on the
device. As our benchmarks are limited by other resources
(typically ALMs or BRAM), the relative error for DSPs
is more sensitive to low-level fluctuations and noise. We
observe that our DSP estimates preserve absolute ordering

of resource utilization. Hence, this error does not affect the
quality of the designs found during design space exploration,
and improves with increased resource utilization.

Of our estimated metrics, BRAM estimates have the
highest average error over all benchmarks. These errors are
primarily from block RAM duplication done by the place-
ment and routing tool. In designing our models, we found
that BRAM duplication is inherently noisy, as more complex
machine learning models failed to achieve better estimates
than a simple linear fit. Our linear model provides a rough
estimate of design complexity and routing requirements, but
it does not provide a complete picture for when and how
often the synthesis tool will decide to duplicate BRAMs.
However, like DSPs, we find that our BRAM estimates track
actual usage and preserve ordering across designs, making
it usable for design space exploration and relative design
comparisons.

Gemm has the highest overall error of any benchmark. We
found that this is due to low-level hardware optimizations
like floating point multiply-add fusion, fusion of floating
point reduction trees, and BRAM coalescing that Maxeler’s
compiler performs automatically and that we use heuristics
to predict. Since we do not have explicit control over these
optimizations, it is possible to mispredict when they will
occur. The gemm benchmark is exceptionally sensitive to
these errors. However, as with the other errors, we found
that this error does not detract from the model’s ability to
guide design space exploration as long as the possibility of
this error is accounted for.

C. Design space exploration

1) Pareto-optimality analysis: In this section we show
the Pareto-optimal curves of each benchmark derived from
estimators. Figure 5 shows the design space scatter plots for
all benchmarks in Table II. A design point is considered
invalid if its resource requirement for at least one type of
resource exceeds the maximum available amount on the
target device. Pareto-optimal designs along the dimensions
of execution time and ALM utilization are highlighted for
each benchmark through all three resource plots. We now
analyze each benchmark in detail.

Dotproduct (Figure 5 A,B,C) is a memory-bound bench-
mark. Peak execution time is reached by balancing tile
loads and computation. Inner and outer loop parallelization
allows us to quickly reach close to the input bandwidth.
Runtimes of designs with MetaPipes then slowly decrease
as parallelization increases once the dominant stage becomes
the dot product reduction tree. In dotproduct, designs with
MetaPipe consume less resources than those with Sequential
for the same performance. Sequentials require larger tile
sizes and more parallelism to match MetaPipe performance.

Outprod (Figure 5 D,E,F) represents both a BRAM and
memory bound benchmark. For 2N inputs, the total BRAM
requirement is 2N +N2 to store the input and output tiles,

9

6

7

8

9

10

D
o
tP

ro
d
u
ct

A B C

Invalid design

Valid design

Pareto point

Synthesized design

7

8

9

10

O
u
te

rP
ro

d
u
ct D E F

6

7

8

9

10

11

G
E
M

M

G H I

5

6

7

8

T
P
C

H
Q

6

J K L

6

7

8

9

B
la

ck
S
ch

o
le

s M N O

6

7

8

9

10

11

G
D

A

P Q R

0 20 40 60 80 100 120

ALM

7

8

9

10

K
m

e
a
n
s

S

0 20 40 60 80 100 120

DSP

T

0 20 40 60 80 100 120

BRAM

U

Usage (% of maximum)

C
y
cl

e
s

(L
o
g
 S

ca
le

)

Figure 5. Results of design space exploration. Horizontal axis shows estimated ALM, DSP, and BRAM usages. Vertical axis shows runtime in cycles,
given in log scale (base 10).

10

meaning the BRAM requirement increases quadratically
with increases in input tile size. The highest performing
designs for outer product do not use MetaPipes to overlap
loading and storing of tiles. This is because the overhead
due to main memory contention from overlapping tile loads
and stores turns out to be higher than the cost of executing
each stage sequentially.

Gemm (Figure 5 G,H,I) contains a lot of temporal and
spatial locality. From Figure 5(I), Pareto-optimal designs for
gemm occupy almost all BRAM resources on the board.
Intuitively, this is because good designs for gemm maximize
locality by retaining large, two dimensional chunks of data
in on-chip memory.

Tpchq6 (Figure 5 J,K,L) exhibits behavior typical of
memory intensive applications. Performance reaches a max-
imum threshold with increased tile size because of overlap-
ping memory access and compute.

Blackscholes (Figure 5 M,N,O) streams through multiple
large arrays and performs complex floating point computa-
tions on the input data. Points along the same vertical bar
in Figure 5(M) share the same inner loop parallelization
factor. Increasing parallelization improves performance by
increasing utilization of the available off-chip memory band-
width. Our model suggests that increasing the inner loop
parallelization would continue to scale performance until a
parallelization of 16, around which point blackscholes would
be memory bound. Because there are not enough compute
resources are available to implement a parallelization factor
of 16, blackscholes is ALM bound.

Gda (Figure 5 P,Q,R) posseses higher degrees of spatial
locality. Because of this, gda exhibits compute-bound behav-
ior, where execution time decreases steadily with increased
resource utilization, as seen in Figure 5(P). The critical
resource is again BRAM. This is because BRAM usage
increases with parallelization due to the creation of more
banks with fewer words per bank, which can cause under-
utilization of the capacity of individual BRAMs.

Kmeans (Figure 5 S,T,U) is bound by the number of
ALMs. The critical path in this application is the distance
computation done comparing an input point to each centroid.
The number of floating point operations to be done to keep
up with main memory bandwidth is therefore proportional
to K ×D, where D is the number of dimensions in one
point. The performance of kmeans is therefore limited by the
number of ALMs on the FPGA, as not enough are available
to perform all K ×D operations in parallel. Like GDA,
kmeans is also limited by BRAMs due to under-utilization
of BRAM capacity with increased banking factors.

From our experiments, we observe that capturing par-
allelism at multiple levels using MetaPipes enables us to
generate efficient designs. In addition, effective management
of on-chip BRAM resources is critical to good designs as
BRAM resources are the limiting factor for performance
scaling in most of our benchmarks.

Our approach Vivado HLS restricted† Vivado HLS full

0.017s / design 4.75s / design 111.06s / design
†Vivado HLS restricted design space ignores outer loop pipelining

Table IV
AVERAGE ESTIMATION TIME PER DESIGN POINT.

2) Speed of exploration: We compare the speed of
our estimation and design space exploration with Vivado
HLS [23], a commercial high-level synthesis tool from
Xilinx. Our evaluation uses the GDA example in Figure 2 as
input to the high-level synthesis tool, and the GDA design
in Figure 3 as input to our design space exploration tool.
Design parameters for the high-level synthesis tool are the
unrolling factors. We also include a pipeline directive toggle
for each loop in the design. For DHDL, we vary all design
parameters specified in Figure 4. Speed is measured by
comparing the average estimation speed per point for 250
design points for each tool. In our experiments, our analysis
takes 5 to 29 milliseconds per design depending on the size
of the application’s intermediate representation.Analysis of
GDA also takes 17 milliseconds per design.

Table IV shows a comparison between estimation speeds
from our toolchain and Vivado HLS. The “restricted” col-
umn refers to the average time spent per design over points
whose outer loop (L1, in Figure 2) is not pipelined with
a pipeline directive. The “full” version refers to all design
points where 30 of the 250 points have a pipeline directive
to enable outer loop pipelining. We observe the following:
• Our estimation tool is 279× faster than the “restricted”

space exploration, and 6533× faster than the “full”
space exploration.

• Compared to Vivado HLS, our estimation time is not
sensitive to design parameter inputs. Estimation time
for Vivado HLS increases dramatically when the outer
loop is pipelined in GDA because the tool completely
unrolls all inner loops before pipelining the outer loop.
This creates a large graph that complicates scheduling.
Our approach does not suffer from this limitation be-
cause we explicitly capture pipelines in parameterized
templates such as Pipe and MetaPipe, thereby capturing
outer loop pipelining more naturally.

D. Comparison with CPU

To evaluate the quality of the generated Pareto-optimal
designs, we compare the best FPGA execution times with
optimized CPU implementations of all benchmarks. CPU
comparison numbers were obtained by running C++ versions
of benchmarks in Table II on a 6 core Intel(R) 32nm
Xeon(R) CPU E5-2630 processor clocked at 2.30GHz, with
a 15MB LLC and a maximum main memory bandwidth
of 42.6 GB/s. Each CPU benchmark is run with 6 threads.
For gemm, we compare to multi-threaded OpenBLAS [37].

11

The rest of the CPU implementations were generated from
OptiML [16], a machine learning DSL which generates high
performance, multi-threaded C++ comparable to, or better
than, manually optimized code. CPU execution times are
obtained by measuring the core computation kernel averaged
over 10 runs. Figure 6 shows the the speedups of all our
benchmarks normalized to the execution time on the CPU.

Both dotproduct and outerprod are streaming, memory-
intensive benchmarks. For dotproduct, we see a speedup of
1.07×, roughly the same performance as the CPU. In outer-
prod, we see a speedup of 2.4×. We associate this speedup
with overhead of multithreaded setup and synchronization.
However, the CPU outerprod implementation can likely
be improved further to match the FPGA’s performance.
Ultimately, we would not expect a significant difference in
performance on either of the benchmarks as the memory
bandwidth of the two architectures is roughly the same. In
the case of outerprod, both architectures should be equally
capable of exploiting spatial locality as the vector sizes are
far smaller than local memory sizes.

We observe a significant slowdown by about 10× for
gemm. By taking advantage of architecture-specific tiling
techniques at multiple memories of the memory hierarchy
and by vectorizing floating point operations, the OpenBLAS
implementation can achieve a total of about 89 GFLOPs.
Our FPGA does not have enough resources to achieve
that performance on single precision floating point values.
However, larger FPGAs with more compute capacity or,
more recently, direct hardware support for floating point
operations have been shown to be capable of much higher
floating point performance than this.

The tpchq6 benchmark achieves a speedup of 1.11×
in spite of having an access pattern that streams through
multiple large arrays. This is because tpchq6 consists of
data-dependent branches which cause frequent stalls in the
frontend of the processor’s pipeline. On the FPGA, such
branches are implemented using simple multiplexers which
do not create stalls or bubbles in the dataflow pipeline.
Given the appropriate tile sizes, this shows that memory-
intensive benchmarks like tpchq6 that have branches can be
accelerated on an FPGA.

Blackscholes achieves a speedup of 16.7×. The core com-
pute kernel of blackscholes is amenable to deep pipelining.
While the blackscholes benchmark is compute bound on the
CPU [38], FPGAs can exploit higher levels of instruction-
level parallelism than CPUs via deep pipelines. Our blacksc-
holes design benefits from this pipeline parallelism.

The gda and kmeans achieve speedups of 4.5× and 1.15×,
respectively. Both benchmarks have nested levels of paral-
lelism which is captured using MetaPipes. By exploiting
pipeline parallelism and taking advantage of locality within
these two applications, our generated designs are able to
achieve a modest speedup over the multi-core CPU.

1.07
2.42

1.11

16.73

4.55

1.15
0.1

0

5

10

15

20

Sp
e

e
d

u
p

Figure 6. Normalized speedups of most performant FPGA design points
over multi-core CPU implementations.

VI. CONCLUSION

In this paper, we describe a practical framework that can
generate efficient FPGA designs automatically from a high-
level description based on parallel patterns. We introduce
DHDL, a new parameterizable hardware definition language
that describes designs using templates such as MetaPipe
with which we capture a larger design space than previous
work. We describe our hybrid area estimation technique and
evaluate our approach extensively on various benchmarks
from the data analytics, financial analytics and machine
learning domains. We show an average area estimation
error of 4.8% and average runtime estimation error of 6.1%
over all the benchmarks. We perform a detailed study for
each benchmark on the space of designs described by tile
sizes, parallelism factors, and coarse-grained pipelining and
measure their effects on the utilization of different types
of FPGA resources. We show that our exploration tool
is 279 to 6533 times faster than a commercial high-level
synthesis tool. Finally, we show that the Pareto-optimal
designs we discover can achieve a speedup of up to 16.7×
over optimized multi-core CPU implementations running on
a commodity server processor.

ACKNOWLEDGMENTS

The authors thank Maxeler Technologies for their assis-
tance with this paper, and the reviewers for their suggestions.
This work is supported by DARPA Contract-Air Force
FA8750-12-2-0335; Army Contract AHPCRC W911NF-07-
2-0027-1; NSF Grants IIS-1247701, CCF-1111943, CCF-
1337375, and SHF-1408911; Stanford PPL affiliates pro-
gram, Pervasive Parallelism Lab: Oracle, AMD, Huawei,
Intel, NVIDIA, SAP Labs. Authors acknowledge additional
support from Oracle. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S.
Government.

12

REFERENCES
[1] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,

and M. A. Horowitz, “Convolution engine: Balancing efficiency &
flexibility in specialized computing,” in Proceedings of the 40th An-
nual International Symposium on Computer Architecture, ser. ISCA,
2013, pp. 24–35.

[2] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine learning
accelerator,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS, 2015, pp. 369–381.

[3] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS, 2014, pp. 255–268.

[4] J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” in ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, ser. FPGA, 2014, pp. 151–160.

[5] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
ser. ISCA, 2010, pp. 37–47.

[6] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” in
Proceedings of the 2006 ACM/SIGDA 14th International Symposium
on Field Programmable Gate Arrays, ser. FPGA, 2006, pp. 21–30.

[7] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA, 2014, pp. 13–24.

[8] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang, “Sda:
Software-defined accelerator for largescale dnn systems,” ser. Hot
Chips 26, 2014.

[9] P. K. Gupta, “Xeon+fpga platform for the data center,”
http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-
gupta.pdf, 2015.

[10] “Falcon computing,” http://falcon-computing.com/, 2015.
[11] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming for the

masses,” Queue, vol. 11, no. 2, Feb. 2013.
[12] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and

Z. Zhang, “High-level synthesis for fpgas: From prototyping to
deployment,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 30, no. 4, pp. 473–491, 2011.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Cza-
jkowski, S. D. Brown, and J. H. Anderson, “Legup: An open-
source high-level synthesis tool for fpga-based processor/accelerator
systems,” TECS, vol. 13, no. 2, p. 24, 2013.

[14] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: A
java-compatible and synthesizable language for heterogeneous archi-
tectures,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA, 2010, pp. 89–108.

[15] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on. IEEE,
2014, pp. 97–108.

[16] A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Wu, A. R. Atreya,
K. Olukotun, T. Rompf, and M. Odersky, “Optiml: an implicitly
parallel domain specific language for machine learning,” in ICML,
2011.

[17] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic,
M. Wu, A. Prokopec, V. Jovanovic, M. Odersky, and K. Olukotun,
“Composition and reuse with compiled domain-specific languages,”
in European Conference on Object Oriented Programming, 2013.

[18] P. Zhang, M. Huang, B. Xiao, H. Huang, and J. Cong. “CMOST: A
System-level FPGA Compilation Framework,” DAC, 2015.

[19] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI,
2013, pp. 519–530.

[20] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “Delite: A compiler architecture for performance-
oriented embedded domain-specific languages,” in TECS’14: ACM
Transactions on Embedded Computing Systems, July 2014.

[21] Maxeler Technologies, “MaxCompiler white paper,” 2011.
[22] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. De Sa,

C. Kozyrakis, and K. Olukotun, “Generating configurable hardware
from parallel patterns,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS, 2016, pp. 651–665.

[23] “Vivado high-level synthesis,” http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html.

[24] “Vivado design suite 2015.1 user guide: High-level synthesis.”
[25] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-

based data reuse optimization for configurable computing,” in Pro-
ceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA, 2013, pp. 29–38.

[26] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power estima-
tion and low-power design space exploration for fpgas,” in Design
Automation Conference, 2007. ASP-DAC ’07. Asia and South Pacific,
Jan 2007, pp. 529–534.

[27] L. Deng, K. Sobti, Y. Zhang, and C. Chakrabarti, “Accurate area,
time and power models for fpga-based implementations,” J. Signal
Process. Syst., vol. 63, no. 1, pp. 39–50, Apr. 2011.

[28] S. Bilavarn, G. Gogniat, J.-L. Philippe, and L. Bossuet, “Design space
pruning through early estimations of area/delay tradeoffs for fpga
implementations,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 25, no. 10, pp. 1950–1968, 2006.

[29] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate area
and delay estimators for fpgas,” in Design, Automation and Test in
Europe Conference and Exhibition, Proceedings, 2002, pp. 862–869.

[30] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, “High-level area
and performance estimation of hardware building blocks on fpgas,”
in Field-Programmable Logic and Applications: The Roadmap to
Reconfigurable Computing. Springer, 2000, pp. 525–534.

[31] P. Bjuréus, M. Millberg, and A. Jantsch, “Fpga resource and timing
estimation from matlab execution traces,” in Proceedings of the tenth
international symposium on Hardware/software codesign, 2002.

[32] “Stratix device handbook,” https://www.altera.com/content/dam/
altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf.

[33] “Xilinx 7 series fpgas configurable logic block user guide,”
http://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf, 2014.

[34] J. Heaton, “Encog: Library of interchangeable machine learning
models for java and c#,” Journal of Machine Learning Research,
vol. 16, pp. 1243–1247, 2015. [Online]. Available: http://jmlr.org/
papers/v16/heaton15a.html

[35] F. Scarselli and A. C. Tsoi, “Universal approximation using
feedforward neural networks: A survey of some existing methods,
and some new results,” Neural Networks, vol. 11, no. 1, pp. 15 –
37, 1998. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S089360809700097X

[36] J. Cong, B. Liu, R. Prabhakar, and P. Zhang, “A study on
the impact of compiler optimizations on high-level synthesis,” in
Languages and Compilers for Parallel Computing, ser. Lecture Notes
in Computer Science, H. Kasahara and K. Kimura, Eds. Springer
Berlin Heidelberg, 2013, vol. 7760, pp. 143–157. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37658-0_10

[37] “Openblas,” http://www.openblas.net/, 2016.
[38] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disserta-

tion, Princeton University, January 2011.

13

http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
http://falcon-computing.com/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://jmlr.org/papers/v16/heaton15a.html
http://jmlr.org/papers/v16/heaton15a.html
http://www.sciencedirect.com/science/article/pii/S089360809700097X
http://www.sciencedirect.com/science/article/pii/S089360809700097X
http://dx.doi.org/10.1007/978-3-642-37658-0_10
http://www.openblas.net/

