HCloud: Resource-Efficient Provisioning
in Shared Cloud Systems

Christina Delimitrou

Stanford University & Cornell University
cdel@stanford.edu

Abstract

Cloud computing promises flexibility and high performance
for users and cost efficiency for operators. To achieve this,
cloud providers offer instances of different sizes, both as
long-term reservations and short-term, on-demand alloca-
tions. Unfortunately, determining the best provisioning strat-
egy is a complex, multi-dimensional problem that depends
on the load fluctuation and duration of incoming jobs, and
the performance unpredictability and cost of resources.

We first compare the two main provisioning strategies (re-
served and on-demand resources) on Google Compute En-
gine (GCE) using three representative workload scenarios
with batch and latency-critical applications. We show that
either approach is suboptimal for performance or cost. We
then present HCloud, a hybrid provisioning system that uses
both reserved and on-demand resources. HCloud determines
which jobs should be mapped to reserved versus on-demand
resources based on overall load, and resource unpredictabil-
ity. It also determines the optimal instance size an applica-
tion needs to satisfy its Quality of Service (QoS) constraints.
We demonstrate that hybrid configurations improve perfor-
mance by 2.1x compared to fully on-demand provisioning,
and reduce cost by 46% compared to fully reserved systems.
We also show that hybrid strategies are robust to variation in
system and job parameters, such as cost and system load.

Categories and Subject Descriptors: Computer systems
organization [Distributed architectures]: Cloud computing

Keywords: datacenter; provisioning; QoS; latency; resource
efficiency; hybrid; cloud computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASPLOS ’16, April 02 - 06, 2016, Atlanta, GA, USA
(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4091-5/16/04. .. $15.00

DOL: http://dx.doi.org/10.1145/2872362.2872365

Christos Kozyrakis

Stanford University & EPFL
kozyraki@stanford.edu

1. Introduction

An increasing amount of computing is now hosted in public
clouds, such as Amazon’s EC2 [1], Windows Azure [65] and
Google Compute Engine [24]. Cloud platforms provide two
major advantages for end-users and cloud operators: flexibil-
ity and cost efficiency [7,8,29]. Users can quickly launch jobs
without the overhead of setting up a new infrastructure ev-
ery time. Cloud operators can achieve economies of scale by
building large-scale datacenters (DCs) and by sharing their
resources between multiple users and workloads.

Users need to provision resources along two dimensions;
first they must decide between reserved and on-demand re-
sources. Reserved resources are dedicated for long periods
of time (typically 1-3 years [1]) and offer consistent service,
but come at a significant upfront cost. In the other extreme
are on-demand resources, which are progressively obtained
as they become necessary. The user pays only for resources
used at each point, however, the per hour cost is 2-3x higher
compared to reserved resources, and acquiring new instances
induces instantiation overheads. Second, users must deter-
mine the amount of resources (instance size) an application
needs. While dedicated machines provide more predictable
performance they come at a high cost. On the other hand,
smaller instances are prone to external interference, resulting
in unpredictable quality of service. In this paper we present
a provisioning system that navigates these trade-offs.

Since provisioning must determine the necessary re-
sources, it is important to understand the extent of this unpre-
dictability. Performance varies both across instances of the
same type (spatial variability), and within a single instance
over time (temporal variability) [6,23,32,34,38,42,50,51,
53, 56, 64]. Figure 1 shows the variability in performance
for a Hadoop job running a recommender system using Ma-
hout [41] on various instance types on Amazon EC2 [1] and
on Google Compute Engine (GCE) [24]. Analytics such as
Hadoop and Spark [67] are throughput-bound applications,
therefore performance here corresponds to the completion
time of the job. The instances are ordered from smallest
to largest, with respect to the number of virtual CPUs and
memory allocations they provide. We show 1 vCPU micro,
1-8 vCPU standard (stX) and 16 vCPU memory-optimized

http://dx.doi.org/10.1145/2872362.2872365

Hadoop
~300 . EC2
£250 GCE
£ 200
'~ 150 L
il
5 100 .
3 -
= 50 & .
L
- - L .
micro st1 st2 st8 m16 micro sti st2 st8 mi6

Figure 1: Performance unpredictability on Amazon EC2 and
Google Compute Engine for a Hadoop job.

memcached

< 1400
@ .2
3/1200 GCE
> 1000
& 800 4
S 600
= 400
b -
£ 200 - . S
3
0 micro st1 st2 st8 m16 micro sti st2 st8 mi6

Figure 2: Performance unpredictability on Amazon EC2 and
Google Compute Engine for memcached.

l Configuration H Cost \ Perf. unpredictability \ Spin-up \ Flexibility H Typical usage ‘
Reserved High upfront, low per hour no no no long-term
On-demand No upfront, high per hour yes yes yes short-term
Hybrid s yes long-term

Table 1: Comparison of system configurations with respect to: cost, performance unpredictability, overhead and flexibility.

instances (mX) [1,24]. Each graph is the violin plot of com-
pletion time of the Hadoop job over 40 instances of the
corresponding type. The dot shows the mean performance
for each instance type. It becomes clear that especially for
instances with less than 8 vCPUs unpredictability is signif-
icant, while for the micro instances in EC2 several jobs fail
to complete due to the internal EC2 scheduler terminating
the VM. For the larger instances (m16), performance is more
predictable, primarily due to the fact that these instances typ-
ically occupy a large fraction of the server, hence they have a
much lower probability of suffering from interference from
co-scheduled workloads, excluding potential network inter-
ference. Between the two cloud providers, EC2 achieves
higher average performance than GCE, but exhibits worse
tail performance (higher unpredictability).

Figure 2 shows a similar experiment for a latency-critical
service (memcached) on the same instance types. Note that
the number of memcached clients is scaled by the number
of vCPUs of each instance type, to ensure that all instances
operate at a similar system load. Unpredictability is even
more pronounced now, as memcached needs to satisfy tail
latency guarantees [14], as opposed to average performance.
The results from above hold, with the smaller instances
(Iess than 8 vCPUs) experiencing significant variability in
their tail latency. Performance jitter decreases again for the
8-16 vCPU VMs, especially in the case of the memory-
optimized instances (m16). Additionally GCE now achieves
better average and tail performance compared to EC2.

The goal of this work is to optimize performance over
cost for cloud systems, similarly to the way work on sys-
tem design and resource management optimized perfor-
mance per Watt for small- and large-scale systems [36,
37,60, 61,71]. We first explore the implications of the two
main provisioning approaches (reserved and on-demand re-

sources), with respect to performance variability and cost
efficiency. We perform this analysis on Google Compute
Engine (GCE) [24] using three representative workload sce-
narios with batch and latency-critical applications, and in-
creasing levels of load variability. We assume no a priori
knowledge of the applications in each scenario, except for
the minimum and maximum aggregate load, which is needed
for a comparison with an idealized statically-reserved pro-
visioning strategy. Our study reveals that while reserved re-
sources are superior with respect to performance (2.2x on
average over on-demand), they require a long-term commit-
ment, and are therefore suitable for use cases over extended
periods of time. Fully on-demand resources, on the other
hand, are more cost-efficient for short-term use cases (2.5x
on average), but are prone to performance unpredictabil-
ity, because of instantiation overheads and external inter-
ference. We show that to achieve reasonable performance
predictability with either strategy, it is crucial to under-
stand the resource preferences and sensitivity to interfer-
ence of individual applications [21, 43, 54]. Recent work
has shown that a combination of lightweight profiling and
classification-based analysis can provide accurate estima-
tions of job preferences with respect to the different instance
types, the sensitivity to interference in shared resources, and
the amount of resources needed to satisfy a job’s perfor-
mance constraints [21].

Next, we design HCloud, a hybrid provisioning system
that uses both reserved (long-term) and on-demand (short-
term) resources. Hybrid provisioning strategies can offer the
best of both worlds by leveraging reserved resources for the
steady long-term load, and on-demand resources for short-
term resource needs. The main challenge with hybrid provi-
sioning is determining how many/what resources to obtain
and how to schedule jobs between reserved and on-demand

resources. Table 1 shows the differences between the three
provisioning strategies with respect to cost, performance un-
predictability, instantiation overheads and provisioning flex-
ibility.

We demonstrate that by quickly determining the resource
preferences of new jobs, and accounting for system load and
instance characteristics, hybrid provisioning strategies im-
prove both resource efficiency and QoS-awareness. They
maximize the usage of the already-provisioned reserved
resources, while ensuring that applications that can toler-
ate some performance unpredictability will not delay the
scheduling of interference-sensitive workloads. We also
compare the performance, cost and provisioning needs of
hybrid systems against fully reserved and fully on-demand
strategies over a wide spectrum of workload scenarios. Hy-
brid strategies achieve within 8% of the performance of fully
reserved systems (and 2.1x better than on-demand systems),
while improving their cost efficiency by 46%. Reserved re-
sources are utilized at 80% on average in steady-state. Fi-
nally, we perform a detailed sensitivity analysis of perfor-
mance and cost with job parameters, such as duration, and
system parameters, such as pricing, and load.

2. Cloud Workloads and Systems
2.1 Workload Scenarios

We examine the three scenarios shown in Figure 3 and sum-
marized in Table 2. Each scenario consists of a mix of batch
(Hadoop workloads running over Mahout [41] and Spark
jobs) and latency-critical workloads (memcached). This mix
corresponds to what most online services consist of today,
by servicing user requests and analyzing data in the back-
ground. The batch jobs are machine learning and data min-
ing applications, including recommender systems, support
vector machines, and matrix factorization. memcached is
driven with loads that differ with respect to the read:write
request ratio, the size of requests, the inter-arrival time dis-
tribution, the client fanout and the dataset size.

The first scenario has minimal load variability (Static).
In steady-state the aggregate resource requirements are 854
cores. Approximately 55% of cores service batch jobs and
the remaining 45% latency-critical services. The difference
between maximum and minimum load is 10% and most jobs
last several minutes to a few tens of minutes.

Second, we examine a scenario with mild, long-term load
variability (Low Variability). The steady-state minimum load
requires on average 605 cores, while in the middle of the
scenario the load increases to 900 cores. The surge is mostly
caused by an increase in the load of the latency-critical
applications. On average 55% of cores are needed for batch
jobs and the remaining 45% for the latency-critical services.

Finally, we examine a scenario with large, short-term load
changes (High Variability). The minimum load drops at 210
cores, while the maximum load reaches up to 1226 cores for
short time periods. Approximately 60% of cores are needed

1400[[— static
» 1200 = Low Variability
5 1000} | ==~ High Variability

Required Core
[o2}
8

0 20 40 60 80 100 120
Time (min)

Figure 3: The three workload scenarios.

Workload Scenarios
Static [Low Var | High Var
max:min resources ratio 1.1x 1.5x 6.2x
batch:low-latency — in jobs 4.2x 3.6x 4.1x
—in cores 1.4x 1.4x 1.5x
inter-arrival times (sec) 1.0 1.0 1.0
ideal completion time (hr) 2.1 2.0 2.0

Table 2: Workload scenario characteristics.

for batch jobs and 40% for the latency-critical services.
Because of the increased load variability, each individual job
is shorter (8.1 min duration on average).

The ideal duration for each scenario, with no scheduling
delays or degradation due to interference, is 2 hours.

2.2 Cloud Instances

We use servers on Google Compute Engine (GCE) for all
experiments. For provisioning strategies that require smaller
instances we start with the largest instances (16 vCPUs) and
partition them using Linux containers [5, 13]. The reason for
constructing smaller instances as server slices as opposed
to directly requesting various instance types is to introduce
controlled external interference which corresponds to typical
load patterns seen in cloud environments, rather than the
random interference patterns present at the specific time we
ran each experiment. This ensures repeatable experiments
and consistent comparisons between provisioning strategies.

We model interference by imposing external load that
fluctuates +10% around a 25% utilization [8,21]. The load
is generated by both batch and latency-critical workloads.
Section 5.1 includes a sensitivity study to the external load.

We only partition servers at the granularity of existing
GCE instances, e.g., 1,2,4,8 and 16 vCPUs. Whenever we
refer to the cost of an on-demand instance, we quote the cost
of the instance that would be used in the real environment,
e.g., a 2 vCPU instance. Similarly, we account for the spin-
up overhead of the instance of the desired size, wherever
applicable. Finally, all scheduling actions, such as autoscale
and VM migration performed by GCE are disabled.

2.3 Cloud Pricing

Google Compute Engine currently only offers on-demand
instances. To encourage high instance usage, it provides sus-
tained usage monthly discounts [24]. Although discounts

reduce the prices of on-demand instances, they do not ap-
proximate the price of long-term reserved resources. The
most popular alternative pricing model is the one used by
AWS, which includes both long-term resource reservations
and short-term on-demand instances. Because this pricing
model offers more provisioning flexibility and captures the
largest fraction of the cloud market today, we use it to evalu-
ate the different provisioning strategies. Specifically, we ap-
proximate the cost of reserved resources on GCE based on
the reserved to on-demand price ratio for EC2, adjusted to
the prices of GCE. In Section 5.3 we discuss how our results
translate to different pricing models, such as the default GCE
model and the pricing model used by Windows Azure.

3. Provisioning Strategies

The two main cloud resource offerings are reserved and on-
demand resources. Reserved instances require a high up-
front investment, but have 2-3x lower per-hour cost than on-
demand resources, offer better availability, and consistent
performance. On-demand resources are charged in a pay-
as-you-go manner, but incur spin-up overheads and perfor-
mance unpredictability due to external load. We ignore spot
instances for this work, since they do not provide any avail-
ability guarantees. Both with reserved and on-demand re-
sources, the user must also determine the size and number of
acquired instances.

Ideally, a provisioning strategy achieves three goals: (1)
high workload performance, (2) high resource utilization
(minimal overprovisioning), and (3) minimal provisioning
and scheduling overheads. We initially study the three left-
most provisioning strategies described in Table 3.

3.1 Statically Reserved Resources (SR)

This strategy statically provisions reserved resources for 1
year, the shortest contract for reserved resources on EC2.
Reserved resources are readily available as jobs arrive, elim-
inating the overhead of spinning up new VMs. Because SR
only reserves large instances (16 vCPUs), there is limited
interference from external load, except potentially for some
network interference. Because of its static nature, SR must
provision resources for the peak requirements of each sce-
nario, plus a small amount of overprovisioning. Overpro-
visioning is needed because all scenarios contain latency-
critical jobs that experience tail latency spikes when using
nearly-saturated resources [7, 8, 14, 35]. We explain the in-
sight behind the amount of overprovisioning in Section 3.3.
Peak requirements can be easily estimated for static scenar-
ios. For scenarios with load variability, static provisioning
results in significant resource underutilization.

3.2 Dynamic On-Demand Resources (OdF, OdM)

We now examine two strategies that acquire resources as
they become necessary. On-demand Full (OdF) only uses
large instances (16 vCPUs), which are less prone to exter-
nal interference (see Section 1). On-demand Mixed (OdM)

| [SR]| OdF [OdM][HF [HM |
Reserved Yes No No Yes Yes
resources
On-demand No Yes (full Yes Yes (full Yes
resources Servers) Servers)

Table 3: Resource provisioning strategies.

acquires instances of any size, including smaller instances
with 1-8 vCPUs. While OdM offers more flexibility, it suf-
fers from substantial external interference in the smaller
instances. There are ways to improve predictability in on-
demand provisioning strategies, e.g., by sampling multi-
ple instances for each required instance and only keeping
the well-behaved ones [23]. Although this addresses perfor-
mance variability across instances, it is still prone to tempo-
ral variation within a single instance. Additionally, it is only
beneficial for long-running jobs that can afford the overhead
of sampling multiple instances. Short jobs, such as real-time
analytics (100msec-10sec) cannot tolerate long scheduling
delays and must rely on the initial resource assignment.

Moreover, each new instance incurs overheads to spin up
the new VMs. This is typically 12-19 seconds for GCE, al-
though the 95" percentile of spin-up overheads is 2 minutes.
Smaller instances tend to incur higher overheads. Therefore
provisioning strategies must also decide how long to retain
resources after a job completes. If a workload scenario has
no or little load variability, instances should be retained to
amortize spin-up overheads. We determine retention time by
drawing from work on processor power management. The
challenge there is to determine when to switch to low power
modes that enable power savings but incur overheads to re-
vert to an active mode [40, 45, 59]. Given that the job inter-
arrival time in our scenarios is 1 second, we set the reten-
tion time to 10x the spin-up overhead. ! Section 5.1 shows
a sensitivity analysis to retention time. Only instances that
provide predictably high performance are retained past the
completion of their jobs.

3.3 The Importance of Resource Preferences

Traditionally, end-users have to specify how many resources
each job should use; unfortunately this is known to be error-
prone and to lead to resource overprovisioning [8, 11,21,
39, 54]. Moreover, it offers no insight on the sensitivity of
each job to interference from other jobs, external or not,
running on the same physical server. This is suboptimal
for both statically-reserved and on-demand strategies, which
may acquire more/fewer resources than needed. SR may
colocate jobs that interfere negatively on the same instance.
OdF and OdM may acquire instance types that are prone to
higher interference than what certain jobs can tolerate.

I'The benefit of longer retention time varies across instance sizes due to
differences in spin-up overheads.

I with profiling info

B without profiling info

Static Scenario

Low Variability Scenario

High Variability Scenario

140 200

a
=]

Execution Time (min)
g

Execution Time (min)
=]
o

S
~ 250
£
= 200
& 150
3 100
53
w 50

350

S 300

0

SR OdF OdM SR

2500 Static Scenario 2500

OdF OdM
(a) Performance of batch applications for the three scenarios.

Low Variability Scenario

OdF OdM

High Variability Scenario

Request Latency (usec)
g 2 8 &
S 8 8 8

Request Latency (usec)
(4] 8
S 8

o

T ’g T
2000 g s000 |
4000
1500
3000
o= E = %

5962 ° 7501 15564 15980 19611 20213
T T

Request Latenc
s 38
o o
o o

=)

SR OdF OdM SR

OdF OdM

SR OdF OdM

(b) Performance of latency-critical applications for the three scenarios.

Figure 4: Performance of jobs of the three scenarios with the three provisioning strategies. The boundaries of the boxplots
depict the 25th and 75th percentiles, the whiskers the 5th and 95th, and the horizontal line in each boxplot shows the mean.

35 Static Scenario

Low Variability Scenario

SR OdF OdM : . OdF OdM

Figure 5: Cost of fully reserved and on-demand systems.

The recently-proposed Quasar cluster manager provides a
methodology to quickly determine the resource preferences
of new, unknown jobs [21]. When a job is submitted, it is
first profiled on two instance types, while injecting inter-
ference in two shared resources, e.g., last level cache and
network bandwidth. This signal is used by a set of classi-
fication techniques which find similarities between the new
and previously-scheduled jobs with respect to instance type
preferences and sensitivity to interference. A job’s sensi-
tivity to interference in resource ¢ is denoted by c¢;, where
i € [1,N], and N = 10 the number of examined re-
sources [21]. Large c; values mean that the job puts a lot
of pressure in resource ¢. To capture the fact that certain
jobs are more sensitive to specific resources we rearrange
vector C' = [c1, ¢a,...,cn] by order of decreasing magni-
tude of ¢;, C' = |[¢j, ¢k, ..., ¢p). Finally, to obtain a sin-
gle value for C’, we use the order preserving encoding:
Q=cj- 10@WV=1) 4 ¢, .10 (N=2) 4 4 ¢, and nor-
malize @ in [0, 1]. @ denotes the resource quality a job needs
to satisfy its QoS constraints. High @ denotes a resource-
demanding job, while low @ a job that can tolerate some
resource interference.

We use Quasar’s estimations of resource preferences and
interference sensitivity to improve provisioning. For SR, we
use these estimations to find the most suitable reserved re-
sources available with respect to size and interference using
a simple greedy search [21]. Accounting for resource pref-
erences reduces overprovisioning to 10-15%. For OdF, the
estimations are used to select the minimum amount of re-
sources for a job, and to match the resource capabilities of
instances to the interference requirements of a job. For OdM,
this additionally involves requesting an appropriate instance
size and type (standard, compute- or memory-optimized).
Note that because smaller instances are prone to external in-
terference, provisioning decisions may have lower accuracy.

Finally, we detect suboptimal application performance
and revisit the allocation decisions at runtime [3, 4, 12, 21,
55]. Once a job is scheduled its performance is monitored
and compared against its expected QoS. If performance
drops below QoS the cluster manager takes action [21]. Ata
high level, we first try to restore performance through local
actions, e.g., increasing the resource allocation on the server
where the application already resides, and then through
rescheduling. The latter is unlikely in practice.

3.4 Provisioning Strategies Comparison

Performance: We first compare the performance impact of
the three provisioning strategies, with and without Quasar’s
information on job preferences. Figure 4 shows the perfor-
mance achieved by each of the three strategies for the three
workload scenarios. We separate batch (Hadoop, Spark)
from latency-critical applications (memcached), since their
critical performance metric is different: completion time for

P2: Q> 80% to reserved

P1: Random
P6: Reserved load < 70%

P5: Reserved load < 50%

P3: Q > 50% to reserved
P7: Reserved load < 90%

P4: Q > 20% to reserved
P8: Dynamic Policy

Reserved Resources

2100

= HE E = LT
S 95 E

kS

8 90 !

[e]

g 8

S

< 87 mHF
£ 75 = HM
o P P2 P3 P4 P5 P6 P7 P8

On-Demand Resources

—
o
o

95/
90} ! s Eiﬁ n B ¥
85| i E
80|
LI
70/
65/

Pi P2 P3 P4 P5 P6 P7 P8

Perf. norm to Isolation (%)

Figure 6: Sensitivity to the policy of mapping jobs to reserved versus on-demand resources for HF and HM.

P1: Random
P4:Q > 20% to reserved
P7: Reserved load < 90%

P2: Q> 80% to reserved
P5: Reserved load < 50%
P8: Dynamic Policy

P3: Q > 50% to reserved
P6: Reserved load < 70%

Reserved Resources 5
100 5
— 80
2 4
c 60 ,U.,a
2 3
S 40 Oy
5 20 1
0Pt P2 P3 P4 P5 P6 P7 P8 O%p1 P2 P3 P4 P5 P6 P7 P8

Figure 7: Utilization of reserved resources and cost with
different application mapping policies for HF and HM.

the batch jobs and request latency distribution for mem-
cached. The boundaries in each boxplot depict the 25th and
75th percentiles of performance, the whiskers the 5th and
95th percentiles and the horizontal line shows the mean.
When Quasar is not used, the resources for each job are sized
based on user-defined reservations. For batch jobs (Hadoop
and Spark) this translates to using the default framework pa-
rameters (e.g., 64KB block size, 1GB heapsize for Hadoop),
while for memcached resources are provisioned for peak
input load [54]. OdM requests the smallest instance size
that satisfies the resource demands of a job. SR allocates
resources on the reserved instances with the most available
resources (least-loaded).

It is clear from Figure 4 that all three strategies benefit
significantly from understanding the jobs’ resource prefer-
ences and interference sensitivity. Specifically for SR, there
is a 2.4x difference in performance on average across scenar-
ios. The differences are even more pronounced for latency-
critical jobs, where the performance metric of interest is tail
latency. In all following results, we assume that provisioning
strategies take job preferences into account, unless otherwise
specified.

We now compare the performance achieved by the three
provisioning strategies. The static strategy SR achieves the
best performance for all three scenarios, both for batch and
latency-critical jobs. OdF behaves near-optimally for the
static scenario, but worsens for the scenarios where variabil-
ity is present, primarily due to spin-up overheads to obtain

new resources. OdM achieves the worst performance for ev-
ery scenario (2.2x worse than SR on average), in part be-
cause of the spin-up overheads, but primarily because of the
performance unpredictability it experiences from external
load in the smaller instances. Memcached suffers a 24x and
42x increase in tail latency in the low- and high-variability
scenarios, as it is more sensitive to resource interference.
Cost: Figure 5 shows the relative cost of each strategy for
the three scenarios. All costs are normalized to the cost of
the static scenario with SR. Although strategy SR appears to
have the lowest cost for a 2 hour run (2-3x lower per hour
charge than on-demand), it requires at least a 1-year com-
mitment with all charges happening in advance. Therefore,
unless a user plans to leverage the cluster for long periods
of time, on-demand resources are dramatically more cost-
efficient. Moreover, SR is not cost effective in the presence
of high workload variability, since it results in significant
overprovisioning. Between the two on-demand strategies,
OdM incurs lower cost, since it uses smaller instances, while
OdF only uses the largest instances available. However the
cost savings of OdM translate to a significant performance
degradation from unpredictability (Figure 4).

4. Hybrid Provisioning Strategies

The previous section showed that neither fully reserved nor
fully on-demand strategies are ideal. Hybrid provisioning
strategies that combine reserved and on-demand resources
have the potential to achieve the best of both worlds. The
main challenge now becomes determining which jobs should
be scheduled on on-demand versus reserved resources.

4.1 Provisioning Strategies

We design HCloud, a hybrid provisioning system that uses
both reserved and on-demand resources, and discuss two
strategies HCloud employs. The first strategy (HF) only uses
large instances for on-demand resources, to constrain un-
predictability. The second strategy (HM), uses a mix of on-
demand instance types to reduce cost, including smaller in-
stances that experience interference from external load. The
retention time policy for on-demand resources is the same
as for the purely on-demand strategies OdF and OdM. The

———————————————————————————————————— Saturati
Sensitive > queued or larger on-demand aluration
) Insensitive jobs = on-demand Hard |

ano b]___Insensifive Jobs "7 on-demand _ imit
80% Sensitive jobs = reserved ard fimf

~659 = Insensitive jobs = on-demand .
B el Rttt Soft limit

Sensitive & insensitive jobs
-> reserved
0 e e No load

|QT < Q,°+>|On-demund | |(?lT > Q90+>| Reservedl

Qr

St. 4

Mem. 2

Target
resource

qualit

Resource Quality Resource Quality

Figure 8: Application mapping scheme between reserved and on-demand instances for HF and HM.

Pr{3 instance X

0.2

O w >

0.0 05 1.0 1.5 2.0 2.5 3.0 3.5
Time (cpr)

0.

Figure 9: Determining the soft utilization limit (left) and the
expected waiting time (right) in HF and HM.

reserved resources are large instances, as with the statically-
provisioned strategy. We configure reserved instances to ac-
commodate the minimum steady-state load, e.g., 600 cores
for the low variability scenario to avoid overprovisioning.
For scenarios with low steady-state load but high load vari-
ability the majority of resources are on-demand. Since HF
uses large instances for both reserved and on-demand re-
sources, it primarily uses on-demand instances to serve over-
flow load. In contrast HM can leverage smaller on-demand
instances to also accommodate jobs that can tolerate some
interference in shared resources.

HCloud addresses two challenges: first, it determines how
many resources each incoming job needs to satisfy its QoS,
and second, it determines whether a new job should be
scheduled on on-demand or reserved resources.

4.2 Application Mapping Policies

We first consider a baseline policy that maps applications be-
tween the reserved and on-demand resources randomly us-
ing a fair coin. Figure 6 shows the performance of appli-
cations mapped to reserved (left) and on-demand resources
(right) for the two hybrid strategies in the high variabil-
ity scenario. Performance is normalized to the performance
each job achieves if it runs with unlimited resources in isola-
tion. Figure 7 also shows the utilization of reserved instances
and the total cost for the 2 hour scenario normalized to the
cost of the static scenario with SR. Because the number of
jobs is large, approximately half of them are scheduled on
reserved and half on on-demand resources [27]. The random
policy hurts performance for jobs mapped to either resource
type. In reserved resources, performance degrades as more
workloads than the instances can accommodate are assigned
to them, and are therefore queued. In on-demand resources,

performance degrades for two reasons. First, because on-
demand resources introduce instantiation overheads, and,
more prominently, because jobs that are sensitive to inter-
ference and should have been mapped to reserved resources
underperform due to external load.

Ideally, the mapping policy should take into account the
sensitivity of jobs to performance unpredictability. The fol-
lowing three policies shown in Figure 6 set a limit to the
jobs that should be mapped to reserved resources based on
the quality of resources they need. P2 assigns jobs that need
quality Q > 80% to the reserved instances to protect them
from the variability of on-demand resources. P3 and P4
set stricter limits, with P4 only assigning very tolerant to
unpredictability jobs to on-demand resources. As we move
from P2 to P4 the performance of jobs in the on-demand
instances improves, as the number of jobs mapped to them
decreases. In contrast, the performance of jobs scheduled to
reserved resources worsens due to increased demand and
queueing delays. In general, performance is worse for HM
in on-demand resources, due to the increased performance
variability of smaller instances.

It is clear that there needs to be an upper load limit for
reserved resources. The next three policies P5 — P7 set
progressively higher, static limits. For low limits, e.g., 50-
70% the performance of jobs on reserved resources is near-
optimal. In contrast, jobs assigned to on-demand resources
suffer substantial degradations, since job mapping is only
determined based on load and not resource preferences. For
a utilization limit of 90%, the performance of jobs in re-
served resources degrades due to excessive load. Low uti-
lization in reserved resources also increases cost, as addi-
tional on-demand instances have to be obtained. Therefore
a static utilization limit that does not account for resource
preferences of jobs is also suboptimal.

Based on these findings we design a dynamic policy to
separate jobs between reserved and on-demand resources.
The policy adheres to three principles. First, it utilizes re-
served resources before resorting to on-demand resources.
Second, applications that can be accommodated by on-
demand resources should not delay the scheduling of jobs
sensitive to interference. Third, the system must adjust the
utilization limits of reserved instances to respond to perfor-
mance degradations due to excessive queueing.

I with profiling info

B without profiling info

Static Scenario

Low Variability Scenario

200 High Variability Scenario

140

120

S 100 120 =

E E w0 E 150

© 80 [0) [}

E E 80 E

= = =

- 60 - - 100

S S % 8

2 .0 2 2

i 2 i 20 i

*—3R HF M %R FF " 3R HE Al
(a) Performance of batch applications for the three scenarios.
2500 Static Scenario 2500 Low Variability Scenario 6000 High Variability Scenario

3 3 8 5000

@ 2000 2 2000 2

> > 24000

© 1500 © 1500 2

£ £ 2 3000
= 1000 = 1000 -

p % % 2000

3 3 g

g 500 g 500 g 1000
c | = - == ¢ | = = = L =

SR HF HM SR HF HM SR HF HM

(b) Performance of latency-critical applications for the three scenarios.

Figure 10: Performance of the three scenarios with the statically-reserved and hybrid strategies. The boundaries of the boxplots
depict the 25th and 75th percentiles, the whiskers the Sth and 95th percentiles and the horizontal line in each boxplot the mean.

‘ Il Reserved Cost On Demand Cost ‘

Static Scenario Low Variability Scenario High Variability Scenario

Cost

Cost
OO0 O0O—— =

OO0+

ohvpProORONMR®®
ohvhrOONMPD®

SR HF HM SR HF HM

Figure 11: Cost comparison between SR, HF and HM.

Figure 8 explains the dynamic policy. We set two uti-
lization limits for reserved resources. First, a soft limit (ex-
perimentally set at 60-65% utilization), below which all in-
coming jobs are allocated reserved resources. Once utiliza-
tion exceeds this limit, the policy differentiates between jobs
that are sensitive to performance unpredictability and insen-
sitive ones. The differentiation is done based on the resource
quality @) a job needs to satisfy its QoS constraints and the
knowledge on the quality of previously-obtained on-demand
instances. Once we determine the instance size a job needs
(number of cores, memory and storage), we compare the
90*" percentile of quality of that instance type (monitored
over time) against the target quality (QQ7) the job needs.
If Q9o > Qr the job is scheduled on the on-demand in-
stance, otherwise it is scheduled on the reserved instances.
Examining the 90" percentile is sufficient to ensure accu-
rate decisions for the majority of jobs. Tightening this con-
straint to higher percentiles increases the utilization of re-
served resources, and/or the cost from acquiring additional
on-demand instances.

Second, we set a hard limit for utilization, when jobs need
to be queued before reserved resources become available. At
this point, any jobs for which on-demand resources are sat-
isfactory are scheduled in on-demand instances and all re-
maining jobs are locally queued [52]. An exception occurs
for jobs whose queueing time would exceed the instantiation
overhead of a large on-demand instance (16 vCPUs); these
jobs are instead assigned to on-demand instances. Queueing
time is estimated using a simple feedback loop based on the
rate at which instances of a given type are being released
over time. For example, if out of 100 jobs waiting for an in-
stance with 4 vCPUs and 15GB of RAM, 99 were scheduled
in less than 1.4 seconds, the system will estimate that there
is a 0.99 probability that the queueing time for a job waiting
for a 4 vCPU instance will be 1.4 seconds. Figure 9b shows a
validation of the estimation of waiting time for three instance
types. The lines show the cumulative distribution function
(CDF) of the probability that an instance of a given type be-
comes available. The dots show the estimated queueing time
for jobs waiting to be scheduled on instances with 4 (A), 8
(B) and 16 vCPUs (C) in the high variability scenario. In all
cases the deviation between estimated and measured queue-
ing time is minimal.

Third, we adjust the soft utilization limit based on the rate
at which jobs get queued. If the queued jobs increase sharply,
the reserved instances should become more selective in the
workloads they accept, i.e., the soft limit should decrease.
Similarly, if no jobs get queued for significant periods of
time, the soft limit should increase to accept more jobs. We
use a simple feedback loop with linear transfer functions
to adjust the soft utilization limit of reserved instances as

Static Scenario Low Variability Scenario High Variability Scenario

Static Scenario Low Variability Scenario High Variability Scenario

w w
o o
v,
w w
o o

&~ o

25 AN 25
32.0{[— SR 32.0{[— SR

Cls OdF \ Cls OdF

— OdMm — 0odMm \
1 1.

ol — ke ol — ke

05— ym 05— ym

Cost
w

\\

- n

— SR — HF
500 OdF — HM
— OdM

— SR — HF
500 OdF — HM
3 — OodM

— SR — HF
400 OdF — HM
— OdMm

/

Cost (x1000$)

OU.O 05 10 15 2.0 25 3.0 35 4.0 O'U.O 05 10 15 2.0 25 3.0 35 4.0

On-Demand:Reserved Price per hr On-Demand:Reserved Price per hr On-Demand:Reserved Price per hr

Figure 12:
demand:reserved resource cost.

a scenario progresses. Figure 9a shows how the soft limit
changes with execution time and queue length.

4.3 Provisioning Strategies Comparison

Performance: Figure 10 compares the performance achieved
by the static strategy SR and the two hybrid strategies (HF
and HM), with and without determining the resource pref-
erences of new jobs. As expected, using the profiling infor-
mation improves performance significantly for the hybrid
strategies, for the additional reason that it is needed to de-
cide which jobs should be scheduled on reserved resources
(2.4x improvement on average for HF and 2.77x for HM).
When using the profiling information, strategies HF and HM
come within 8% of the performance of the statically re-
served system (SR), and in most cases outperform strategies
OdF and OdM, especially for scenarios with load variability.
The main reason is that HF and HM differentiate between
jobs that can tolerate the unpredictability of on-demand in-
stances, and jobs that need the predictable performance of a
fully controlled environment. Additionally hybrid strategies
hide some of the spin-up overhead of on-demand resources
by accommodating part of the load in the reserved instances.

Cost: Figure 11 shows the relative cost of strategies SR,
HF and HM for the three scenarios. While the static strategy
(SR) is more cost-efficient in the static scenario where provi-
sioning is straight-forward, the hybrid strategies incur signif-
icantly lower costs for both scenarios with load variability.
Therefore, unless load is almost completely static, SR re-
quires high cost, and significant overprovisioning. Addition-
ally, because of the lower per-hour cost of reserved resources
in HF and HM, the hybrid strategies have lower per-hour cost
than fully on-demand resources as well. For HF and HM,
most of the cost per hour comes from on-demand resources,
since reserved instances are provisioned for the minimum
steady-state load. Finally, between the two hybrid strategies,
HM incurs lower cost since it uses smaller instances.

5. HCloud Analysis & Robustness
5.1 Sensitivity to Job & System Parameters

We first evaluate the sensitivity of the previous findings to
various system and workload parameters.

Resource cost: The current average cost ratio of on-demand
to reserved resources per hour is 2.74. Figure 12 shows how

9.0 05 1.0 1.5 2.0 2.5 3.0 35 4.0

Sensitivity of provisioning cost to on-

50 50 0 40 50

10 20 30 40 10 20 30 40 10 20 30
Duration (weeks) Duration (weeks) Duration (weeks)

Figure 13: Sensitivity of provisioning cost to workload sce-
nario duration.

the relative cost of the three scenarios varies when this ratio
changes. All costs are normalized to the cost for the static
scenario using SR. We change the ratio in [0.01, 4] by scaling
the price of reserved resources; beyond that point the cost of
SR per hour becomes practically negligible. Initially (0.01),
strategies using on-demand resources (OdF, OdM) are sig-
nificantly more cost-efficient, especially for scenarios with
variability. For the static scenario, even when on-demand re-
sources are much cheaper than reserved, SR, HF and HM
incur similar charges as the fully on-demand systems. For
each scenario, there is a price ratio for which SR becomes
the most cost-efficient strategy. As variability increases, this
value becomes larger (e.g., for the high variability scenario
the ratio must be 3 for SR to be more cost-efficient than
HM). Note that SR still requires at least a 1-year commit-
ment, in contrast to on-demand strategies. Finally, the hy-
brid strategies, HF and HM, achieve the lowest per-hour cost
for extended ratio ranges, especially for scenarios with load
variability.

Scenario duration: Figure 13 shows the cost of each
strategy, as scenario duration increases. Because we com-
pare aggregate costs (instead of per-hour), this figure shows
the absolute cost in dollars. For the static scenario, cost-
wise, strategy HM is optimal only if duration is [20 — 25]
weeks. For durations less than 20 weeks, OdM is the most
cost-efficient, while for durations exceeding 25 weeks the
statically-reserved system (SR) is optimal. This changes
when there is load variability. For the scenario with high
variability and durations over 18 weeks, HM is the most
cost-efficient strategy, with the significantly overprovisioned
reserved system (SR) never being optimal. Note that the
charge for SR doubles beyond the 1 year (52 weeks) mark.

Spin-up overhead: Figure 14a shows the 95" percentile of
performance for different spin-up overheads in the high vari-
ability scenario. The statically-reserved strategy (SR) is not
affected by this change. Because in this scenario resources
are frequently recycled, increasing the spin-up overheads
significantly affects performance. This is more pronounced
for strategies using exclusively on-demand resources (OdF,
OdM). The additional degradation for OdM comes from the
performance unpredictability of smaller instances.

External load: Figure 14b shows the sensitivity of perfor-
mance to external load (system load due to jobs beyond those

I High Variability Scenario gmo High Variability Scenario

< 100 <

o |\ 8

1%} = \
2 g 80\

£ 2 —_—
5 £ 60

< £

o 2

& 5

o ko

O a

3 20r|— SR — OdM — HM ™ o 20f| — SR — O0dM — HM

s OdF — HF 3 — OdF — HF

o £

3 % 20 40 60 80 100 120 Z 20 40 60 80 100

Spin up Overhead (sec) External Load (%)

Figure 14: Performance sensitivity to instance spin-up time
and external load.

o
1=}

@
S

=3
=)

Cost

s
S
o N b O ®

n
1=}

- —

High Variability Scenario 14 High Variability Scenario
— SR — HF
100 200 300 _ 400 500 700 _ 200 300 400 500

————— 4ol — SR — HF/
/’ — —
% s ==
OdF — HM
Retention Time (x Spin up Overhead) Retention Time (x Spin up Overhead)

95th %ile Perf norm to SR (%)

=]

Figure 15: Performance and cost sensitivity to resource
retention time.

provisioned with our strategies). SR provisions a reserved
system, therefore there is no external load to affect perfor-
mance. OdF and HF are also tolerant to external load, since
they only use large instances, which are less prone to in-
terference. For HM, performance degrades minimally until
50% load, beyond which point the estimations on resource
quality become inaccurate. OdM suffers the largest perfor-
mance degradation since all of its resources are susceptible
to external interference.

Retention time: Figure 15 shows the 95 latency per-
centile and cost for the high variability scenario, as the time
for which idle instances are maintained changes. As ex-
pected, releasing well-behaved instances immediately hurts
performance, since it introduces higher spin-up overheads
to acquire new resources. This is especially true here, where
load changes frequently. Higher retention time also increases
cost for OdF and OdM, while SR remains unchanged; the
difference for hybrid strategies is small. An unexpected find-
ing is that excessive resource retention hurts performance
slightly for OdM and HM. The primary reason is the tempo-
ral variability in the quality of on-demand resources, which
degraded by the time new jobs were assigned to them.

Workload characteristics: Figure 16 shows the 95 per-
centile of performance for the five strategies as the percent-
age of jobs that are sensitive to interference increases. We
modify the high variability scenario used before, such that
the number of jobs that cannot tolerate performance unpre-
dictability increases. In the left-most part of the graph, most
jobs are batch Hadoop applications, which can tolerate some
resource contention; as we move to the right part of the graph

3100 High Variability Scenario 6 High Variability Scenario
g b\
2 — SR — HF
5
§8°\‘\ — OdF — HM
° [———— 4 —
2 OdM
€ B 7
5 o3
g . o —_//—/
£ — SR — HF 2
& ool — OF — HM\ :
g o f—/
5 %= 700 %= 700
(2]

40 60 80 40 60 80
Sensitive Apps (%) Sensitive Apps (%)

Figure 16: Performance and cost sensitivity to application
characteristics.

the majority of jobs are latency-critical memcached applica-
tions and real-time Spark jobs.

The statically-provisioned strategy (SR) behaves well
even when most applications need resources of high qual-
ity, since it is provisioned for peak load, and there is no
external load affecting application performance. The two
hybrid strategies also behave well, until the fraction of sen-
sitive applications increases beyond 80%, at which point
queueing in the reserved resources becomes significant. The
purely on-demand strategies are the ones that suffer the most
from increasing the fraction of sensitive applications. OdF
and especially OdM significantly degrade the performance
of scheduled workloads, both due to increased spin-up over-
heads, and because more applications are now affected by
external resource contention.

With respect to cost, increasing the fraction of applica-
tions that are sensitive to interference impacts all strategies
except for SR. Since HF and HM can use the reserved re-
sources for the sensitive jobs, their cost increases only be-
yond the 30% mark, at which point more on-demand re-
sources have to be purchased to avoid increased queueing
in the reserved resources. The two on-demand strategies ex-
perience a significant cost surge, since increasing the frac-
tion of sensitive applications results in a lower degree of co-
scheduling and makes acquiring new resources necessary.

5.2 Provisioning Overheads

In the presented strategies, the provisioning overheads in-
clude job profiling and classification (Quasar), provisioning
decisions, spin-up of new on-demand instances (where ap-
plicable), and rescheduling actions. The profiling that gen-
erates the input signal for classification takes 5-10 sec, but
only needs to happen the first time a job is submitted. Classi-
fication itself takes 20msec on average. Decision overheads
include the greedy scheduler in the static strategy (SR) and
the job mapping policy between reserved and on-demand re-
sources in the hybrid strategies. In all cases decision over-
heads do not exceed 20msec, three orders of magnitude
lower than the spin-up overheads of on-demand instances
(10-20sec on average). Finally, job rescheduling due to sub-
optimal performance is very infrequent for all strategies ex-
cept OdM, where it induces 6.1% overheads to the execution
time of jobs on average.

I SR B OdF

B Odm

N HF 0 HM

Static Scenario

Low Variability Scenario

High Variability Scenario

4.0
3.5}
3.0}
5 2.5} 5
o 2.0f o
O 1.5 ©
1.0
0.5}
Reserved & On-demand On»dtﬂnand & 0.0 Reserved On-deﬁ’nand On-demand & Reserved & On-demand On-d%{nand &
on-demand only usage discounts on-deman only usage discounts on-demand only usage discounts

Figure 17: Sensitivity to the cloud pricing model for the three workload scenarios.

5.3 Different Pricing Models

So far we have assumed a pricing model similar to Ama-
zon’s AWS. This is a popular approach followed by many
smaller cloud providers. Nevertheless, there are alternative
approaches. GCE does not offer long-term reservations. In-
stead it provides sustained usage monthly discounts to en-
courage high utilization of on-demand resources. The higher
the usage of a set of instances for a fraction of the month,
the lower the per-hour price for the remainder of the month.
Microsoft Azure only offers on-demand resources at the mo-
ment.

Even without reserved resources, the problem of select-
ing the appropriate instance size and configuration, and de-
termining how long to retain an instance remains. Figure 17
shows how cost changes for the three workload scenarios,
under the Azure (on-demand only) and GCE (on-demand +
usage discounts) pricing models, compared to the AWS pric-
ing model (reserved + on-demand). We assume that the re-
sources will be used at least for one month, so that GCE’s
discounts can take effect. Cost is normalized to the cost of
the static scenario under the SR strategy using the reserved
& on-demand pricing model. Even with the alternative pric-
ing models using the hybrid strategies and accounting for
resource preferences of new jobs significantly benefits cost.
For example, for the high variability scenario, HM incurs
32% lower cost than OdF with the Windows Azure pric-
ing model; similarly for the GCE model with discounts, HM
achieves 30% lower cost than OdF.

GCE decouples the usage from the specific instance used.
For example, it does not differentiate between using a single
instance of type A for 3 weeks, or 3 instances of type A for 1
week each. This introduces new optimization opportunities
to maximize the time a certain instance type is used during a
month. We defer such considerations to future work.

5.4 Resource Efficiency

Apart from lowering cost, we must ensure that a provision-
ing strategy is not wasteful in terms of resources. Figure 18
shows the resource allocation for each strategy throughout
the duration of the high variability scenario. SR is provi-
sioned statically for the peak requirements plus a 15% over-
provisioning to avoid operating close to saturation, as de-
scribed in Section 3.1. Because all instances are private (lim-

ited external interference) and resources are readily avail-
able, SR achieves near-ideal execution time (~2hr). How-
ever, due to the high load variability, system utilization is
rarely high, resulting in poor resource efficiency. The major-
ity of resources is only used in the interval between 32 and
60 minutes.

Figure 20 shows the CPU utilization of each instance
throughout the execution of the high variability scenario for
the five provisioning strategies. CPU utilization is sampled
every 2 seconds and averaged across the cores of an in-
stance. For the hybrid strategies we separate the reserved
(bottom) from the on-demand resources (top). Servers are
ranked from most- to least-utilized at each point in time
during the execution of the scenario. Figure 19 also shows
server resources in the order in which on-demand instances
are obtained. For strategies with only reserved resources, the
y-axis corresponds to server IDs.

Strategy OdF obtains resources as they become neces-
sary, therefore inducing spin-up overheads frequently due
to the constant load change, and resulting in increased ex-
ecution time (132 min). It also introduces some overpro-
visioning, as it only requests the largest instances to con-
strain performance unpredictability. Because instances are
released after remaining idle for a while, the average num-
ber of active instances is smaller than for SR. OdM does
not overprovision allocations noticeably since it uses smaller
instances, however, it significantly hurts performance, re-
sulting in the scenario taking 48% more time. Performance
degradation is partially the result of variability in the qual-
ity of instances, and of the high instance churn, due to their
poor performance. 43% of obtained instances were released
immediately after use.

The hybrid strategies (HF and HM) provision reserved
resources for the minimum, steady-state load and use on-
demand resources beyond that. HF needed in total 72 on-
demand instances, of which 34 are used on average. HM
needs a higher number of on-demand resources, because
it uses smaller instances, and because it releases poorly-
performing resources. 11% of on-demand instances obtained
by HM were released immediately after use. Note that this
is significantly lower than for OdM since only jobs that
can tolerate performance unpredictability are assigned to on-
demand resources. This issue is even less pronounced when

Configuration: SR

= Required

Reserved

On-Demand

Configuration: OdF

Configuration: OdM

Configuration: HF Configuration: HM
1400 1400 1400 1400 1400
1200 1200 1200 1200 1200
1000 1000 1000 1000 1000
@ @ @ @ @«
0 800 0 800 0 800 & 800 £ 800
3 <] <] S S
O 600 O 600 O 600 O 600 O 600
400 400 400 400 400
200 200 200 200 200
20 40 60 80 100 120 0 20 40_ 60 80 100 120 20 40 60 80 100 120 140 160 0 20 40 60 80 100 12 0 20 40 60 80 100 12
Time (min) Time (min) Time (min) Time (min) Time (min)

Figure 18: Resource allocation graphs for the five provisioning strategies in the case of the high variability scenario.

" Strategy HF 0 120 Strategy HM 0
100
120 Strategy SR 100 Strategy OdF 100 200 Strategy OdM 100 g?S 250
90 140 90 90 2 49 2 60
100 < 3 3 @ 30 D 40
80 ¥ 120 80 2 80 2 b 20 o %0
80 70 ¢ 70 70 € 9 o
0 60 2 !0 50 2 v 50 2 20 40 60 80 100 120 020 40 60 80 100 120
o S o g S o] Time (min) Time (min)
S 60 50 & 2 50 & 2100 50 &
$40 405 & 60 05 G 40 5 8 0
]] 3
o 40 0 2 50 0 2 0
20 20 & 20 & 20 & 5
10 20 10 10 0
%20 40 60 80 100 120 ° %20 40 60 80 100 120 ° 0620 40 60 80 100120140160 © H :
Time (min) Time (min) Time (min) 0 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 19: Resource utilization for the high variability scenario across the five provisioning strategies.

Time (min\} Time (min\

Servers are ordered

from most to least utilized at each point in time during the execution of the scenario.

Strategy SR

Servers

Server Utilization (%)

v =
40 60 80 100 120
Time (min)

0 20

Servers

. e

20 40 60 80 100 120

Server Utilization (%)

Time (min)

Instances

Time (min)

1 1
- 18 100 o’
100 I 8 2
o g2 i
o . 3
nE ; ¢
60 T 20 40 60 80 100 120
50 =
5 .100 4100
5
5 8 | |
g
20 13 g
10 = 4 4
o b i
: 10 - 70
% 20 40 60 8 100 120 © % 20 40 60 80 100 120 0

Time (min)}

Time (min\}

Figure 20: Resource utilization for the high variability scenario across the five provisioning strategies. Instances are ranked in
the order in which they are obtained. For HF and HM we separate reserved (bottom) from on-demand (top) resources.

= Allocated

Il Hadoop

N Spark

BN memcached

Reserved Resources

On-Demand Resources

40 60 80

Time (min)

100 1

20

40 60 80

Time (min)

100

120

Figure 21: Breakdown of allocation per application type.

all on-demand resources are large instances (HF). Finally,
spin-up overheads induce some delay in execution, which
amounts to 2.6% over SR.

Figure 21 breaks down the allocation of the low vari-
ability scenario by application type, for HM. Initially the
reserved resources are used for most jobs, until load reaches
the soft utilization limit. Beyond that, the interference-

sensitive memcached occupies most of the reserved re-
sources, while batch workloads are mostly scheduled on
the on-demand side. When the memcached load exceeds
the capabilities of the reserved resources, part of its load
is serviced by on-demand resources to avoid long queueing
delays, although it is often allocated larger instances to meet
its resource quality requirements.

5.5 Additional Provisioning Considerations

Spot instances: Spot instances consist of unallocated re-
sources that cloud providers make available through a bid-
ding interface. Spot instances do not have availability guar-
antees, and may be terminated at any point if the market
price exceeds the bidding price for an instance type. Incor-
porating spot instances in provisioning for non-critical tasks
or jobs with very relaxed performance requirements can fur-
ther improve cost-efficiency. We will consider how spot in-
stances interact with the current provisioning strategies in
future work.

Reducing unpredictability: Resource partitioning (cache,
memory or network bandwidth partitioning) can reduce un-
predictability in fully on-demand systems. We plan to in-
vestigate how resource partitioning complements the current
provisioning decisions.

Data management: In our current infrastructure both re-
served and on-demand resources reside in the same physical
cluster. When reserved resources are deployed as a private
facility, provisioning must also consider how to minimize
data transfers and replication across the two clusters.

6. Related Work

Cluster management: The prevalence of cloud comput-
ing has motivated several new designs for cluster manage-
ment. Systems like Mesos [30], Torque [62], Tarcil [22], and
Omega [57] all address the problem of allocating resources
in large, shared clusters. Mesos is a two-level scheduler.
It has a central coordinator that makes resource offers to
application frameworks, and each framework has an indi-
vidual scheduler that handles its assigned resources. Omega
on the other hand, follows a shared-state approach, where
multiple concurrent schedulers can view the whole clus-
ter state, with conflicts being resolved through a transac-
tional mechanism [57]. Tarcil leverages information on the
type of resources applications need to employ a sampling-
base distributed scheduler that returns high quality re-
sources within a few milliseconds [22]. Dejavu identifies
a few workload classes and reuses previous allocations for
each class, to minimize reallocation overheads [63]. Cloud-
Scale [58], PRESS [26], AGILE [48] and the work by
Gmach et al. [25] predict future resource needs online, often
without a priori knowledge. Finally, auto-scaling systems,
such as Rightscale [55], automatically scale the number of
physical or virtual instances used by webserving workloads,
to accommodate changes in user load.

A second line of work tries to identify the specific re-
sources that are appropriate for incoming tasks [16, 18-20,
44,46,66]. Paragon uses classification to determine the im-
pact of platform heterogeneity and workload interference on
an unknown, incoming workload [17,18]. It then uses this in-
formation to achieve high application performance and high
cluster utilization. Paragon, assumes that the cluster manager
has full control over all resources, which is often not the
case in public clouds. Nathuji et al. developed a feedback-
based scheme that tunes resource assignments to mitigate
memory interference [47]. Yang et al. developed an online
scheme that detects memory pressure and finds colocations
that avoid interference on latency-sensitive workloads [66].
Similarly, DeepDive detects and manages interference be-
tween co-scheduled workloads in a VM environment [49].
Finally, CPI2 [70] throttles low-priority workloads that in-
duce interference to important, latency-critical services. In
terms of managing platform heterogeneity, Nathuji et al. [46]
and Mars et al. [43] quantified its impact on conventional

benchmarks and Google services, and designed schemes to
predict the most appropriate servers for a workload.

Hybrid clouds: Hybrid clouds consist of both privately-
owned and publicly-rented machines and have gained in-
creased attention over the past few years for several reasons,
including cost-efficiency, future growth, as well as security
and privacy concerns [2,10,31,33,69]. Breiter et al. [10] de-
scribe a framework that allows service integration in hybrid
cloud environments, including actions such as overflowing
in on-demand resources during periods of high load. Fara-
habady et al. [31] present a resource allocation strategy for
hybrid clouds that attempts to predict the execution times
of incoming jobs and based on these predictions generate
Pareto-optimal resource allocations. Finally, Annapureddy
et al. [2] and Zhang et al. [69] discuss the security challenges
of hybrid environments, and propose ways to leverage the
private portion of the infrastructure for privacy-critical com-
putation.

Cloud economics: The resource pricing of cloud providers
has been extensively analyzed. Ben-Yehuda et al. [9] con-
test whether the pricing strategy of spot instances on EC2
is indeed market-driven, and discuss alternative strategies.
Deelman et al. [15] present cost-efficient cloud provisioning
strategies for specific astronomy applications. Li et al. [38]
compare the resource pricing of several cloud providers
to assist users provision their applications. Finally, Gue-
vara et al. [28] and Zahed et al. [68] incorporate the eco-
nomics of heterogeneous resources in market-driven and
game-theoretic strategies for resource allocation in shared
environments.

7. Conclusions

We have discussed the resource offerings available on cloud
providers today and showed their advantages and pitfalls
with respect to cost, performance, and instantiation over-
heads. We then presented HCloud, a hybrid provisioning
system that uses both reserved and on-demand resources.
HCloud obtains information on the resource preferences of
incoming jobs, and determines which jobs should be mapped
to on-demand versus reserved resources and how many re-
sources they should each receive. We showed that hybrid
strategies can provide the best of both worlds in terms of
performance and cost-efficiency; they preserve QoS for the
majority of jobs, improve performance by 2.1x compared to
fully on-demand resources, and reduce cost by 46% com-
pared to fully reserved resources.

Acknowledgements

The authors sincerely thank Mendel Rosenblum, John Ouster-
hout, Daniel Sanchez, David Lo, and the anonymous review-
ers for their feedback on earlier versions of this manuscript.
This work was supported by the Platform Lab and NSF
grant CNS-1422088. Christina Delimitrou was supported
by a Facebook Graduate Fellowship.

References
[1] Amazon ec2. http://aws.amazon.com/ec2/.

[2] K. Annapureddy. Security challenges in hybrid cloud infras-
tructures. In Aalto University, T-110.5290 Seminar on Net-
work Security. 2010.

[3] Autoscale. https://cwiki.apache.org/cloudstack/
autoscaling.html.

[4] Aws autoscaling. http://aws.amazon.com/autoscaling/.

[5] G. Banga, P. Druschel, and J. Mogul. Resource containers: a
new facility for resource management in server systems. In
Proceeedings of OSDI. New Orleans, 1999.

[6] S. K. Barker and P. Shenoy. Empirical evaluation of latency-
sensitive application performance in the cloud. In Proceed-
ings of the First Annual ACM SIGMM Conference on Multi-
media Systems (MMsys). Scottsdale, AR, 2010.

[7] L. Barroso. Warehouse-scale computing: Entering the teenage
decade. ISCA Keynote, SJ, June 2011.

[8] L. Barroso and U. Hoelzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
MC Publishers, 2009.

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.

Deconstructing amazon ec2 spot instance pricing. In ACM
TEAC, 1(3), September 2013.

[10] G. Breiter and V. Naik. A framework for controlling and man-
aging hybrid cloud service integration. In Proceedings of the
2013 IEEE International Conference on Cloud Engineering
(IC2E). Redwood City, CA, 2013.

[11] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. Long-
term slos for reclaimed cloud computing resources. In Pro-
ceedings of ACM Symposium on Cloud Computing (SOCC).
Seattle, WA, 2014.

[12] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing energy and server resources in hosting centers. In
Proceedings of the Symposium on Operating Systems Princi-
ples (SOSP). Banff, CA, 2001.

[13] Linux containers. http://1xc.sourceforge.net/.

[14] J. Dean and L. A. Barroso. The tail at scale. In Communica-
tions of the ACM (CACM), Vol. 56 No. 2, Pages 74-80.

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good.
The cost of doing science on the cloud: The montage exam-
ple. In Proceedings of Supercomputing (SC). Austin, TX,
2008.

[16] C. Delimitrou, N. Bambos, and C. Kozyrakis. QoS-Aware
Admission Control in Heterogeneous Datacenters. In Pro-
ceedings of the International Conference of Autonomic Com-
puting (ICAC). San Jose, CA, USA, 2013.

[17] C. Delimitrou and C. Kozyrakis. iBench: Quantifying In-
terference for Datacenter Workloads. In Proceedings of the
IEEE International Symposium on Workload Characteriza-
tion (IISWC). Portland, OR, September 2013.

[18] C. Delimitrou and C. Kozyrakis. Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters. In Proceedings
of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems
(ASPLOS). Houston, TX, 2013.

[19] C. Delimitrou and C. Kozyrakis. QoS-Aware Scheduling in
Heterogeneous Datacenters with Paragon. In ACM Transac-
tions on Computer Systems (TOCS), Vol. 31 Issue 4. Decem-
ber 2013.

[20] C. Delimitrou and C. Kozyrakis. Quality-of-Service-Aware
Scheduling in Heterogeneous Datacenters with Paragon. In
IEEE Micro Special Issue on Top Picks from the Computer
Architecture Conferences. May/June 2014.

[21] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In Proceedings of the
Nineteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS). Salt Lake City, UT, USA, 2014.

[22] C. Delimitrou, D. Sanchez, and C. Kozyrakis. Tarcil: Recon-
ciling Scheduling Speed and Quality in Large Shared Clus-
ters. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (SOCC). Kohala Coast, HI, 2015.

[23] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bow-
ers, and M. M. Swift. More for your money: Exploiting per-
formance heterogeneity in public clouds. In Proceedings of
the ACM Symposium on Cloud Computing (SOCC). San Jose,
CA, 2012.

[24] Google compute engine. https://developers.google.
com/compute/.

[25] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Work-
load analysis and demand prediction of enterprise data center
applications. In Proceedings of the IEEE International Sym-
posium on Workload Characterization (IISWC). Boston, MA,
2007.

[26] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic re-
source scaling for cloud systems. In Proceedings of the In-
ternational Conference on Network and Service Management
(CNSM). Niagara Falls, ON, 2010.

[27] G. R. Grimmett and D. R. Stirzaker. Probability and random
processes. 2nd Edition. Clarendon Press, Oxford, 1992.

[28] M. Guevara, B. Lubin, and B. Lee. Navigating heterogeneous
processors with market mechanisms. In Proceedings of the
IEEE Symposium on High Performance Computer Architec-
ture (HPCA). Shenzhen, China, 2013.

[29] J. Hamilton. Cost of power in large-scale data centers. http:
//perspectives.mvdirona.com.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceedings of
the USENIX Sumposium on Networked Systems Design and
Implementation (NSDI). Boston, MA, 2011.

[31] M. Hoseinyfarahabady, H. Samani, L. Leslie, Y. C. Lee,
and A. Zomaya. Handling uncertainty: Pareto-efficient bot
scheduling on hybrid clouds. In Proceedings of the Inter-
national Conference for Parallel Processing (ICPP). Lyon,
France, 2013.

[32] A. Iosup, N. Yigitbasi, and D. Epema. On the performance

http://aws.amazon.com/ec2/
https://cwiki.apache.org/cloudstack/autoscaling.html
https://cwiki.apache.org/cloudstack/autoscaling.html
http://aws.amazon.com/autoscaling/
http://lxc.sourceforge.net/
https://developers.google.com/compute/
https://developers.google.com/compute/
http://perspectives.mvdirona.com
http://perspectives.mvdirona.com

variability of production cloud services. In Proceedings of
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). Newport Beach, CA, 2011.

[33] V. Khadilkar, K. Y. Oktay, B. Hore, M. Kantarcioglu, S. Mehro-
tra, and B. Thuraisingham. Risk-aware data processing in
hybrid clouds. TR-UTDCS-31-11, 2011.

[34] Y. E. Khamra, H. Kim, S. Jha, and M. Parashar. Explor-
ing the performance fluctuations of hpc workloads on clouds.
In Proceeedings of IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). Indianapo-
lis, IN, 2010.

[35] L. Kleinrock. Queueing systems volume 1: Theory. pp. 101-
103, 404.

[36] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe,
and A. Agarwal. Multicore performance optimization using
partner cores. In Proceedings of the USENIX Workshop on
Hot Topics in Parallelism (HotPar). Berkeley, CA, 2011.

[37] J. Laudon. Performance/watt: the new server focus. In ACM
SIGARCH Computer Architecture News: dasCMP. Vol. 33
Issue 4, p. 5-13, November 2005.

[38] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp:
Comparing public cloud providers. In Proceeedings of Inter-
net Measurement Conference (IMC). Melbourne, Australia,
2010.

[39] Host server cpu utilization in amazon ec2 cloud. http:
//goo.gl/nCEYFX.

[40] J. Lorch and A. Smith. Reducing processor power consump-
tion by improving processor time management in a single-
user operating system. In Proceeedings of Annual Inter-
national Conference on Mobile Computing and Networking
(Mobicom). New York, NY, 1996.

[41] Mahout. http://mahout.apache.org/.

[42] D. Mangot. Ec2 variability: The numbers revealed. http:
//goo.gl/NAH21m.

[43] J. Mars and L. Tang. Whare-map: heterogeneity in “homo-
geneous” warehouse-scale computers. In Proceeedings of the
International Symposium on Computer Architecture (ISCA).
Tel-Aviv, Israel, 2013.

[44] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proceeedings of the
IEEE/ACM International Symposium on Microarchitecture
(MICRO). Porto Alegre, Brazil, 2011.

[45] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Com-
bined dynamic voltage scaling and adaptive body biasing
for lower power microprocessors under dynamic workloads.

In Proceeedings of International Conference On Computer
Aided Design (ICCAD). 2002.

[46] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. In Proceeed-
ings of the International Conference on Autonomic Comput-
ing (ICAC). Jacksonville, FL, 2007.

[47] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Man-
aging performance interference effects for qos-aware clouds.

In Proceeedings of EuroSys France, 2010.

[48] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile:
Elastic distributed resource scaling for infrastructure-as-a-
service. In Proceedings of the International Conference on
Autonomic Computing (ICAC). 2013.

[49] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bian-
chini. Deepdive: Transparently identifying and managing
performance interference in virtualized environments. In
Proceeedings of the USENIX Annual Technical Conference
(ATC). San Jose, CA, 2013.

[50] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema. A performance analysis of ec2 cloud comput-
ing services for scientific computing. In Lecture Notes on
Cloud Computing. Volume 34, p.115-131, 2010.

[51] Z. Ou, H. Zhuang, J. K. Nurminen, A. Yl4-Jaéski, and P. Hui.
Exploiting hardware heterogeneity within the same instance
type of amazon ec2. In HotCloud. 2012.

[52] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Spar-
row: Distributed, low latency scheduling. In Proceeedings
of the Symposium on Operating Systems Principles (SOSP).
Farminton, PA, 2013.

[53] M. Rehman and M. Sakr. Initial findings for provisioning
variation in cloud computing. In Proceeedings of CloudCom.
Indianapolis, IN, 2010.

[54] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozych.
Heterogeneity and dynamicity of clouds at scale: Google
trace analysis. In Proceeedings of ACM Symposium on Cloud
Computing (SOCC). 2012.

[55] Rightscale. https://aws.amazon.com/solution-providers/

isv/rightscale.

[56] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime mea-
surements in the cloud: Observing, analyzing, and reducing
variance. Proceeedings VLDB Endow., 3(1-2):460-471, Sept.
2010.

[57] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In Proceeedings of EuroSys. 2013.

[58] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elas-
tic resource scaling for multi-tenant cloud systems. In Pro-
ceeedings of ACM Symposium on Cloud Computing (SOCC).
Cascais, Portugal, 2011.

[59] T. Simunic and S. Boyd. Managing power consumption in
networks on chips. In Proceeedings of Design Automation
Conference (DAC). Paris, France, 2002.

[60] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Pe-
tersen, A. Schwerin, M. Oskin, and S. J. Eggers. Area-
performance trade-offs in tiled dataflow architectures. In Pro-
ceeedings of ACM SIGARCH Computer Architecture News,
v.34 n.2, p.314-326, May 2006.

[61] K. Therdsteerasukdi, G. Byun, J. Cong, F. Chang, and G. Rein-
man. Utilizing rf-i and intelligent scheduling for better
throughput/watt in a mobile gpu memory system. In Trans-
actions on Architecture and Code Optimization (TACO) 8(4).
2012.

http://goo.gl/nCfYFX
http://goo.gl/nCfYFX
http://mahout.apache.org/
http://goo.gl/NAH2lm
http://goo.gl/NAH2lm
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale

[62] Torque resource manager. http://www.adaptivecomputing.

com/products/open-source/torque/.

[63] N. Vasié, D. Novakovié, S. Miucin, D. Kosti¢, and R. Bian-
chini. Dejavu: accelerating resource allocation in virtualized
environments. In Proceedings of the Seventeenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 2012.

[64] G. Wang and T. S. E. Ng. The impact of virtualization on net-
work performance of amazon ec2 data center. In Proceeed-
ings of IEEE International Conference on Computer Commu-
nications (INFOCOM). San Diego, CA, 2010.

[65] Windows azure. http://www.windowsazure. com/.

[66] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: pre-
cise online qos management for increased utilization in ware-
house scale computers. In Proceeedings of the International
Symposium on Computer Architecture (ISCA). 2013.

[67] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. In Proceedings of the USENIX
Sumposium on Networked Systems Design and Implementa-
tion (NSDI). San Jose, CA, 2012.

[68] S. M. Zahed and B. C. Lee. Ref: Resource elasticity fairness
with sharing incentives for multiprocessors. In Proceeedings
of the Nineteenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). Salt Lake City, UT, 2014.

[69] J. Y. Zhang, P. Wu, J. Zhu, H. Hu, and F. Bonomi. Privacy-
preserved mobile sensing through hybrid cloud trust frame-
work. In Proceeedings of IEEE International Conference on
Cloud Computing (CLOUD). 2013.

[70] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes. Cpi2: Cpu performance isolation for shared
compute clusters. In Proceeedings of EuroSys. Prague, 2013.

[71] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and
D. Newell. Exploring large-scale cmp architectures using
manysim. In IEEE Micro, vol.27 n.4, July 2007.

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.windowsazure.com/

	Introduction
	Cloud Workloads and Systems
	Workload Scenarios
	Cloud Instances
	Cloud Pricing

	Provisioning Strategies
	Statically Reserved Resources (SR)
	Dynamic On-Demand Resources (OdF, OdM)
	The Importance of Resource Preferences
	Provisioning Strategies Comparison

	Hybrid Provisioning Strategies
	Provisioning Strategies
	Application Mapping Policies
	Provisioning Strategies Comparison

	HCloud Analysis & Robustness
	Sensitivity to Job & System Parameters
	Provisioning Overheads
	Different Pricing Models
	Resource Efficiency
	Additional Provisioning Considerations

	Related Work
	Conclusions

