
Tarcil: Reconciling Scheduling Speed
and Quality in Large Shared Clusters

Christina Delimitrou†, Daniel Sanchez∗ and Christos Kozyrakis†
†Stanford University, ∗MIT

cdel@stanford.edu, sanchez@csail.mit.edu, kozyraki@stanford.edu

Abstract
Scheduling diverse applications in large, shared clusters is
particularly challenging. Recent research on cluster schedul-
ing focuses either on scheduling speed, using sampling to
quickly assign resources to tasks, or on scheduling quality,
using centralized algorithms that search for the resources
that improve both task performance and cluster utilization.

We present Tarcil, a distributed scheduler that targets both
scheduling speed and quality. Tarcil uses an analytically
derived sampling framework that adjusts the sample size
based on load, and provides statistical guarantees on the
quality of allocated resources. It also implements admission
control when sampling is unlikely to find suitable resources.
This makes it appropriate for large, shared clusters hosting
short- and long-running jobs. We evaluate Tarcil on clusters
with hundreds of servers on EC2. For highly-loaded clusters
running short jobs, Tarcil improves task execution time by
41% over a distributed, sampling-based scheduler. For more
general scenarios, Tarcil achieves near-optimal performance
for 4x and 2x more jobs than sampling-based and centralized
schedulers respectively.

Categories and Subject Descriptors: D.4.1 [Process Man-
agement]: Scheduling

Keywords: Cloud computing, datacenters, scheduling, QoS,
resource-efficiency, scalability

1. Introduction
An increasing and diverse set of applications is now hosted
in private and public datacenters [4, 17, 24]. The large size
of these clusters (tens of thousands of servers) and the high
arrival rate of jobs (up to millions of tasks per second) make
scheduling quite challenging. The cluster scheduler must de-
termine which hardware resources, e.g., specific servers and
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cores, should be used by each job. Ideally, schedulers should
have three desirable properties. First, each workload should
receive the resources that enable it to achieve predictable,
high performance. Second, jobs should be tightly packed on
available servers to achieve high cluster utilization. Third,
scheduling overheads should be minimal to allow the sched-
uler to scale to large clusters and high job arrival rates.

Recent research on cluster scheduling can be examined
along two dimensions: scheduling concurrency (throughput)
and scheduling speed (latency).

With respect to scheduling concurrency, there are two
groups of work. In the first, scheduling is serialized, with
a centralized scheduler making all decisions [13, 19]. In
the second, decisions are parallelized through two-level or
distributed designs. Two-level schedulers, such as Mesos
and YARN, use a centralized coordinator to divide re-
sources between frameworks like Hadoop and MPI [18, 35].
Each framework uses its own scheduler to assign resources
to tasks. Since neither the coordinator nor the framework
schedulers have a complete view of the cluster state and all
task characteristics, scheduling is suboptimal [31]. Shared-
state schedulers like Omega [31] allow multiple schedulers
to concurrently access the whole cluster state using atomic
transactions. Finally, Sparrow uses multiple concurrent,
stateless schedulers to sample and allocate resources [28].

With respect to the speed at which scheduling decisions
happen, there are again two groups of work. The first group
examines most of (or all) the cluster state to determine the
most suitable resources for incoming tasks, in a way that
addresses the performance impact of hardware heterogene-
ity and interference in shared resources [12, 16, 23, 26, 33,
40, 43]. For instance, Quasar [13] uses classification to de-
termine the resource preferences of incoming jobs. Then,
it uses a greedy scheduler to search the cluster state for
resources that meet the application’s demands on servers
with minimal contention. Similarly, Quincy [19] formulates
scheduling as a cost optimization problem that accounts
for job preferences with respect to locality, fairness and
starvation-freedom. These schedulers make high quality de-
cisions that lead to high application performance and clus-
ter utilization. However, they inspect the full cluster state
on every scheduling event. Their decision overhead can be
prohibitively high for large clusters, and especially for very



short real-time analytics (100 ms–10 s) [28, 41]. Using mul-
tiple greedy schedulers improves scheduling throughput but
not latency, and terminating the greedy search early hurts
decision quality, especially at high cluster loads.

The second group improves the speed of each schedul-
ing decision by only examining a small number of ma-
chines. Sparrow reduces scheduling latency through re-
source sampling [28]. The scheduler examines the state of
two randomly-selected servers for each required core and
selects the one that becomes available first. While Sparrow
improves scheduling speed, its decisions can be poor be-
cause it ignores the resource preferences of jobs. Typically
concurrent schedulers follow sampling schemes, while cen-
tralized systems are paired with sophisticated algorithms.

Figure 1 illustrates the tradeoff between scheduling speed
and quality. Figure 1a shows the probability distribution
function (PDF) of application performance for three sce-
narios with analytics jobs of variable duration using Spar-
row [28] on a 200-server EC2 cluster. For very short jobs
(100 ms ideal duration, i.e., no scheduling delay, and no
suboptimal execution due to reasons like interference), fast
scheduling allows most workloads to achieve 80% to 95%
of the target performance. In contrast, jobs with medium (1–
10 s) or long duration (10 s–10 min) suffer significant degra-
dation and achieve 50% to 30% of their ideal performance.
As duration increases, jobs become more heterogeneous in
their requirements (e.g., preference for high-end cores), and
interference between jobs sharing a server matters. In con-
trast, the scheduling decision speed is not as critical.

Figure 1b shows the PDF of job performance using the
Quasar scheduler that accounts for heterogeneity and in-
terference [13]. The centralized scheduler leads to near-
optimal performance for long jobs. In contrast, medium
and short jobs are penalized by the latency of scheduling
decisions, which can exceed the execution time of the short-
est jobs. Even if we use multiple schedulers to increase the
scheduling throughput [31], the per-job overhead remains
prohibitively high.

We present Tarcil, a scheduler that achieves the best of
both worlds: high-quality and high-speed decisions, making
it appropriate for large, highly-loaded clusters that host both
short and long jobs. Tarcil starts with rich information on the
resource preferences and interference sensitivity of incom-
ing jobs [12, 13]. The scheduler then uses sampling to avoid
examining the whole cluster state on every decision. There
are two main insights in Tarcil’s architecture. First, Tarcil
uses sampling not merely to find available resources but
to identify resources that best match a job’s resource pref-
erences. The sampling scheme is derived using analytical
methods that provide statistical guarantees on the quality of
scheduling decisions. Tarcil additionally adjusts the sample
size dynamically based on the quality of available resources.
Second, Tarcil uses admission control to avoid scheduling a
job that is unlikely to find appropriate resources. To handle
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Figure 1a: Sampling-based scheduling.
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Figure 1b: Centralized scheduling.
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Figure 1c: Tarcil.

Figure 1: Distribution of job performance on a 200-server
cluster with concurrent, sampling-based [28] and centralized
greedy [12] schedulers and Tarcil for: 1) short, homogeneous
Spark [41] tasks (100ms ideal duration), 2) Spark tasks of
medium duration (1s–10s), and 3) long Hadoop tasks (10s–
10min). Ideal performance (100%) assumes no scheduling
overheads and no degradation due to interference. The clus-
ter utilization is 80%.

the tradeoff between long queueing delays and suboptimal
allocations, Tarcil uses a small amount of coarse-grain in-
formation on the quality of available resources.

We use two clusters with 100 and 400 servers on Amazon
EC2 to show that Tarcil leads to low scheduling overheads
and predictable, high performance for different workload
scenarios. For a heavily-loaded, heterogeneous cluster run-
ning short Spark jobs, Tarcil improves average performance
by 41% over Sparrow [28], with some jobs running 2–3×
faster. For a cluster running diverse applications from var-
ious analytics jobs to low-latency services, Tarcil achieves
near-optimal performance for 92% of jobs, in contrast with
only 22% of jobs with a distributed, sampling-based sched-
uler and 48% with a centralized greedy scheduler [13]. Fi-
nally, Figure 1c shows that Tarcil enables close to ideal per-
formance for the vast majority of jobs of the three scenarios.

2. Background
We now discuss related work on improving the scheduling
speed and quality in large, shared datacenters.



Concurrent scheduling: Scheduling becomes a bottleneck
for clusters with thousands of servers and high workload
churn. An obvious solution is to schedule multiple jobs in
parallel [18, 31]. Google’s Omega [31], for example, has
multiple scheduling agents that can access the whole cluster
state concurrently. As long as these agents rarely attempt to
assign work to the same servers (infrequent conflicts), they
proceed concurrently without delays.
Sampling-based scheduling: Based on results from ran-
domized load balancing [25, 29], we can design sampling-
based cluster schedulers [8, 14, 28]. Sampling the state
of just a few servers reduces the latency of each schedul-
ing decision and the probability of conflicts between con-
current agents, and is likely to find available resources in
non heavily-loaded clusters. The recently-proposed Sparrow
scheduler uses batch sampling and late binding [28]. Batch
sampling examines the state of two servers for each of m re-
quired cores by a new job and selects them best cores. If the
selected cores are busy, tasks are queued locally in the sam-
pled servers and assigned to the machine where resources
become available first.
Heterogeneity & interference-aware scheduling: Hard-
ware heterogeneity occurs in large clusters because servers
are populated and replaced progressively during the lifetime
of the system [12, 40]. Moreover, the performance of tasks
sharing a server may degrade significantly due to interfer-
ence on shared resources such as caches, memory, and I/O
channels [12, 16, 23, 27]. A scheduler can improve perfor-
mance significantly by taking into consideration the job’s re-
source preferences. For instance, a particular task may per-
form much better on 2.3 GHz Ivy Bridge cores compared to
2.6 GHz Nehalem cores, while another task may be partic-
ularly sensitive to interference from cache-intensive work-
loads executing on the same socket.

The key challenge in heterogeneity and interference-
aware scheduling is determining the preferences of incom-
ing jobs. We start with a system like Quasar that automati-
cally estimates resource preferences and interference sensi-
tivity [12, 13]. Quasar profiles each incoming job for a few
seconds on two server types, while two microbenchmarks
place pressure on two shared resources. The sparse profiling
signal on resource preferences is transformed into a dense
signal using collaborative filtering [6, 20, 30, 38], which
projects the signal against all information available from
previously run jobs. This process identifies similarities in
resource and interference preferences, such as the preferred
core frequency and cache size for a job, or the memory and
network contention it generates. Profiling requires 5-10 sec-
onds, and in Quasar it is performed every time a new appli-
cation arrives to account for input load changes. Because in
this work we also consider real-time analytics applications,
which are repeated multiple times, potentially over different
data (e.g., daily or hourly), profiling for Quasar and Tarcil is
performed only the first time a new application is submitted.
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Figure 2: Distribution of resource quality Q for two work-
loads with TW = 0.3 (left) and TW = 0.8 (right).

3. The Tarcil Scheduler
3.1 Overview
Tarcil is a shared-state scheduler that allows multiple, con-
current agents to operate on the cluster state. In this section,
we describe the operation of a single agent.

The scheduler processes incoming workloads as follows.
Upon submission, Tarcil first looks up the job’s resource and
interference sensitivity preferences [12, 13]. This informa-
tion provides estimates of the relative performance on the
different server platforms, and of the interference the work-
load can tolerate and generate in shared resources (caches,
memory, I/O channels). Next, Tarcil performs admission
control. Given coarse-grained statistics of the cluster state, it
determines whether the scheduler is likely to quickly find re-
sources of satisfactory quality for a job, or whether it should
queue it for a while. Admission control is useful when the
cluster is highly loaded. A queued application waits until
it has a high probability of finding appropriate resources or
until a queueing-time threshold is reached (see Section 4).
Statistics on available resources are updated as jobs start and
complete.

For admitted jobs, Tarcil performs sampling-based schedul-
ing with the sample size adjusted to satisfy statistical guaran-
tees on the quality of allocated resources. The scheduler also
uses batch sampling if a job requests multiple cores. Tarcil
examines the quality of sampled resources to select those
best matching the job’s preferences. It additionally monitors
the performance of running jobs. If a job runs significantly
below its expected performance, the scheduler adjusts the
scheduling decisions, first locally and then via migration.
This is useful for long-running workloads; for short jobs,
the initial scheduling decision determines performance with
little room for adjustments.

3.2 Analytical Framework
We use the following framework to design and analyze
sampling-based scheduling in Tarcil.
Resource unit (RU): Tarcil manages resources at RU gran-
ularity using Linux containers [10]. Each RU consists of one
core and an equally partitioned fraction of the server’s mem-
ory and storage capacity, and provisioned network band-
width. For example, a server with 16 cores, 64 GB DRAM,



480 GB of Flash and a 10 Gbps NIC has 16 RUs, each with
1 core, 4 GB DRAM, 30 GB of Flash and 625 Mbps of net-
work bandwidth.
RU quality: The utility an application can extract from an
RU depends on the hardware type (e.g., 2 GHz vs 3 GHz
core) and the interference on shared resources from other
jobs on the same server. The scheduler [12, 13] obtains the
interference preferences of an incoming job using a small set
of microbenchmarks to inject pressure of increasing inten-
sity (from 0 to 99%) on one of ten shared resources of inter-
est [11]. Interference preferences capture, first, the amount
of pressure ti a job can tolerate in each shared resource
i ∈ [1, N ], and second, the amount of pressure ci it itself
will generate in that resource. High values of ti or ci imply
that a job will tolerate or cause a lot of interference on re-
source i. ti and ci take values in [0, 99]. In most cases, jobs
that cause a lot of interference in a resource are also sensitive
to interference on the same resource. Hence, to simplify the
rest of the analysis we assume that ti = 99− ci and express
resource quality as a function of caused interference.

Let W be an incoming job and VW the vector of in-
terference it will cause in the N shared resources, VW =
[c1, c2, ..., cN ]. To capture the fact that different jobs are
sensitive to interference on different resources [23], we re-
order the elements of VW by decreasing value of ci and get
V ′W = [cj , ck, ..., cn], with cj ≥ ck ≥ ... ≥ cn. Finally,
we obtain a single value for the resource requirements of W
using an order-preserving encoding scheme that transforms
V ′W to a concatenation of its elements:

VWenc
= cj · 10(2·(N−1)) + ck · 10(2·(N−2)) + ...+ cn (1)

For example, if V ′W = [84, 31] then VWenc = 8431. This
compactly encodes the values of vector V ′W and preserves
their order. Finally, for simplicity we normalize VWenc

in
[0, 1] and derive the target resource quality for job W :

TW =
VWenc

102N − 1
, TW ∈ [0, 1] (2)

A high value for the quality target TW implies that job W is
resource-intensive. Its performance will depend a lot on the
quality of the scheduling decision.

We now need to find RUs that closely match this target
quality. To determine if an available resource unit H is
appropriate for job W , we calculate the interference caused
on this RU by all other jobs occupying RUs on the same
server. Assuming M resource units in the server, the total
interference H experiences on resource i is:

Ci =

∑
m6=H ci

M − 1
(3)

Starting with vector VH = [C1, C2, ..., CN ] for H and
using the same reordering and order-preserving encoding as

for TW , we calculate the quality of resource H as:

UH = 1− VHenc

102N − 1
, UH ∈ [0, 1] (4)

The higher the interference from colocated tasks, the lower
UH will be. Resources with low UH are more appropriate
for jobs that can tolerate a lot of interference and vice versa.
Note that the ordering of Ci in VHenc

follows the resource
ordering in vector V ′W of the application we want to sched-
ule, i.e., resource j which is the most critical resource for job
W is ordered first. This ensures that RUs are judged with re-
spect to the resources a new application is most sensitive to.

Comparing UH for an RU against TW allows us to judge
the quality of resource H for incoming job W :

Q =

{
1− (UH − TW ) , if UH ≥ TW
TW − UH , if UH < TW

(5)

IfQ equals 1, we have an ideal assignment with the server
tolerating as much interference as the new job generates.
If Q is within [0, TW ], selecting RU H will degrade the
job’s performance. If Q is within (TW , 1), the assignment
will preserve the workload’s performance but is suboptimal.
It would be better to assign a more demanding job on this
resource unit.
Resource quality distribution: Figure 2 shows the distri-
bution of Q for a 100-server cluster with ∼800 RUs (see
Section 6 for cluster details) and 100 10-min Hadoop jobs as
resident load (50% cluster utilization). For a non-demanding
new job with TW = 0.3 (left), there are many appropri-
ate RUs at any point. In contrast, for a demanding job with
TW = 0.8, only a small number of resources will lead to
good performance. Obviously, the scheduler must adjust the
sample size for new jobs based on TW .

3.3 Scheduling with Guarantees
We can now derive the sample size that provides statistical
guarantees on the quality of scheduling decisions.
Assumptions and analysis: To make the analysis indepen-
dent of cluster load, we make Q an absolute ordering of
RUs in the cluster. Starting with equation (5), we sort RUs
based on Q for incoming job W , breaking any ties in quality
with a fair coin, and distribute them uniformly in D, where
D ∈ [0, 1], i.e., forNRU total RUs,D(i) = i/(NRU−1), i ∈
[0, NRU − 1]. Because D is now a probability distribution
function of resource quality, we can derive the sample size
in the following manner.

Assume that the scheduler samples R RU candidates
for each RU needed by an incoming workload. If we treat
the qualities of these R candidates as random variables
Di (D1, D2, ..., DR ∼ U [0, 1]) that are uniformly dis-
tributed by construction and statistically independent from
each other (i.i.d), we can derive the distribution of qual-
ity D after sampling. The cumulative distribution func-
tion (CDF) of the resource quality of each candidate is:
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Figure 3: Resource quality CDFs under the uniformity assumption in linear and log scale for R=8, 16, 32 and 64.
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Figure 4: Comparison of resource quality CDFs under the
uniformity assumption, and as measured in a 100-server
cluster.

FDi(x) = Prob(Di ≤ x) = x, x ∈ [0, 1]1. Since the can-
didate with the highest quality is selected from the sampled
set, its resource quality is the max order random variable
A = max{D1, D2, ..., DR}, and its CDF is:

FA(x) = Prob(A ≤ x) = Prob(D1 ≤ x ∧ ... ∧DR ≤ x)
= Prob(Di ≤ x)R = xR, x ∈ [0, 1] (6)

This implies that the distribution of resource quality af-
ter sampling only depends on the sample size R. Figure 3
shows CDFs of resource quality distributions under the uni-
formity assumption, for sample sizes R = {8, 16, 32, 64}.
The higher the value of R, the more skewed to the right the
distribution is, hence the probability of finding only candi-
dates of low quality quickly diminishes to 0. For example,
for R = 64 there is a 10−6 probability that none of the sam-
pled RUs will have resource quality of at least D = 80%,
i.e., Prob(D < 0.8| ∀ RU) = 10−6.

Figure 4 validates the uniformity assumption on a 100-
server EC2 cluster running short Spark tasks (100 ms ideal
duration) and longer Hadoop jobs (1-10 min). The cluster
load is 70-75% (see methodology in Sec. 6). In all cases,
the deviation between the analytically derived and measured
distributions of D is minimal, which shows that the analysis
above holds in practice. In general, the larger the cluster, the
more closely the distribution approximates uniformity.

1 This assumes Di to be continuous variables, although in practice they are
discrete. This makes the analysis independent of the cluster size NRU . The
result holds for the discretized version of the equation.

Large jobs: For jobs that need multiple RUs, Tarcil uses
batch sampling [28, 29]. For m requested units, the sched-
uler samples R ·m RUs and selects the m best among them
as shown in Figure 5a. Some applications experience locality
between sub-tasks or benefit from allocating all resources in
a small set of machines (e.g., within a single rack). In such
cases, for each sampled RU, Tarcil examines its neighbor-
ing resources and makes a decision based on their aggregate
quality (Figure 5b). Alternatively, if a job prefers distributing
its resources the scheduler will allocate RUs in different ma-
chines, racks and/or cluster switches, assuming knowledge
of the cluster’s topology. Placement preferences for reasons
such as security [32] can also be specified in the form of
attributes at submission time by the user.
Sampling at high load: Equation (6) estimates the proba-
bility of finding near-optimal resources accurately when re-
sources are not scarce. When the cluster operates at high
load, we must increase the sample size to guarantee the
same probability of finding a candidate of equally high qual-
ity, as when the system is unloaded. Assume a system with
NRU = 100 RUs. Its discrete CDF is FA(x) = P [A ≤ x] =
x, x = 0, 0.01, 0.02, ..., 1. For sample sizeR, this becomes:
FA(x) = xR, and a quality target of Pr[D < 0.8] = 10−3

is achieved with R = 32. Now assume that 60% of the RUs
are already busy. If, for example, only 8 of the top 20 can-
didates for this task are available at this point, we need to
set R s.t. Pr[D < 0.92] = 10−3, which requires a sample
size of R = 82. Hence, the sample size for a highly loaded
cluster can be quite high, degrading scheduling latency. In
the next section, we introduce an admission control scheme
that bounds sample size and scheduling latency, while still
allocating high-quality resources.

4. Admission Control
When available resources are plentiful, jobs are immediately
scheduled using the sampling scheme described in Section 3.
However, when load is high, the sample size needed to find
resources of sufficient quality may become quite large. Tarcil
employs a simple admission control scheme that queues jobs
until appropriate resources become available and estimates
how long an application should wait at admission control.
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Figure 5: Batch sampling in Tarcil with R = 4 for (a) a job
with two independent tasks A and B, and (b) a job with two
subtasks A1 and A2 that exhibit locality. x-marked RUs are
already allocated, striped RUs are sampled, and solid black
RUs are allocated to the new job.

A simple indication to trigger job queueing is the count
of available RUs. This, however, does not yield sufficient
insight into the quality of available resources. If most RUs
have poor quality for an incoming job, queueing may be
preferable. Unfortunately, a naı̈ve quality check involves ac-
cessing the whole cluster state, with prohibitive overheads.
Instead, we maintain a small amount of coarse-grain infor-
mation which allows for a fast check. We leverage the infor-
mation on contention scores that is already maintained per
RU to construct a contention score vector [C1C2 ...CN ] from
the contention Ci the RU experiences in each resource, due
to interference from neighboring RUs. We use locality sensi-
tive hashing (LSH) based on random selection to hash these
vectors into a small set of buckets [1, 9, 30]. LSH computes
the cosine distance between vectors and assigns RUs with
similar contention scores in the respective resources to the
same bucket. We only keep a single count of available RUs
for each bucket. The hash for an RU (and the counter of that
bucket) is recalculated upon instantiation or completion of
a job. Updating the per-bucket counters is a fast operation,
out of the critical path for scheduling. Note that excluding
updates in RU status, LSH is only performed once.

Admission control works as follows. We check the bucket(s)
that correspond to the resources with quality that matches
the incoming job’s preferences. If these buckets have coun-
ters close to the number of RUs the job needs, the applica-
tion is queued. Admission control may penalize resource-
demanding jobs, for which RUs take longer to be freed. To
ensure this penalty is not severe, we impose an upper limit
for queueing time. Therefore, queued applications wait until
the probability that resources are freed increases or until an
upper bound for waiting time is reached. To estimate waiting
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Figure 6: Actual and estimated (dot) probability for a target
RU to exist as a function of waiting time.

time, Tarcil records the rate at which RUs of each bucket be-
came available in recent history. Specifically, it uses a simple
feedback loop to estimate when the probability that an ap-
propriate RU exists approximates 1 for a target bucket. The
distribution is updated every time an RU from that bucket
is freed. Tarcil also sets an upper bound for waiting time at
µ+2 ·σ, where µ and σ are the mean and standard deviation
of the corresponding “time-until-free” PDF. If the estimated
waiting time is less than the upper bound, the job waits for
resources to be freed; otherwise it is scheduled to avoid ex-
cessive queueing. Although admission control adds some
complexity, in practice it only delays workloads at very high
cluster utilizations (over 80%-85%).
Validation of waiting time estimation: Figure 6 shows the
probability that a desired RU will become available within
time t for different buckets in a heterogeneous 100-server
EC2 cluster running short Spark tasks and long Hadoop
jobs. The cluster utilization is approximately 85%. We show
the probabilities for r3.2xlarge (8 vCPUs) instances with
CPU contention (A), r3.2xlarge instances with network con-
tention (B), and c3.large (2 vCPUs) instances with memory
contention (C). The distributions are obtained from recent
history and vary across buckets. The dot in each line shows
the estimated waiting time by Tarcil. There is less than 8%
deviation between estimated and measured time for an ap-
propriate RU to be freed. In all experiments we use 20 buck-
ets and a 2-hour history. This was sufficient to make accurate
estimations of available resources, however, the bucket count
and/or history length may vary for other systems.

5. Tarcil Implementation
5.1 Tarcil Components
Figure 7 shows the components of the scheduler. Tarcil
is a distributed, shared-state scheduler so, unlike Quincy
or Mesos, it does not have a central coordinator [18, 19].
Scheduling agents work in parallel, are load-balanced by the
cluster front-end, and have a local copy of the shared server
state, which contains the list and status of all RUs.

Since all schedulers have full access to the cluster state,
conflicts are possible. Conflicts between agents are resolved
using lock-free optimistic concurrency [31]. The system
maintains one resilient master copy of state in a sepa-
rate server. Each scheduling agent has a local copy of this
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Figure 7: The different components of the scheduler and their interactions.

state which is updated frequently. When an agent makes a
scheduling decision it attempts to update the master state
copy using an atomic write operation. Once the commit is
successful the resources are yielded to the corresponding
agent. Any other agent with conflicting decisions needs to
resample resources. The local copy of state of each agent is
periodically synced with the master (every 5-10 s). The tim-
ing of the updates includes a small random offset such that
the master does not become the bottleneck. When the sample
size is small, decisions of scheduling agents rarely overlap
and each scheduling action is fast (∼ 10− 20ms, for a 100-
server cluster and R = 8, over an order of magnitude faster
than centralized approaches). When the number of sampled
RUs increases beyond R = 32 for very large jobs, conflicts
can become more frequent, which we resolve using incre-
mental transactions on the non-conflicting resources [31]. If
a scheduling agent crashes, an idle cluster server resumes its
role, once it has obtained a copy of the master state.

Each worker server has a local monitor module that han-
dles scheduling requests, federates resource usage in the
server, and updates the RU quality. When a new task is as-
signed to a server by a scheduling agent, the monitor updates
the RU status in the master copy and notifies the agent and
admission control. Finally, a per-RU load monitor evaluates
performance in real time. When a job’s performance devi-
ates from its expected target, the monitor notifies the proper
agent for a possible allocation adjustment. The load moni-
tor also informs agents of CPU or memory saturation, which
triggers resource autoscaling (see Section 5.2).

We currently use Linux containers to partition servers
into RUs [3]. Containers enable CPU, memory, and I/O iso-
lation. Each container is configured to a single core and a fair
share of the memory and storage subsystem, and network
bandwidth. Containers can be merged to accommodate mul-
ticore workloads, using cgroups. Virtual machines (VMs)
could also be used to enable migration [27, 36, 37, 39], but
would incur higher overheads.

Figure 8 traces a scheduling event. Once a job is sub-
mitted, admission control evaluates whether it should be
queued. Once the assigned scheduling agent sets the sample
size according to the job’s constraints, it samples the shared
cluster state for the required number of RUs. Sampling hap-
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Figure 8: Trace of a scheduling event in Tarcil.

pens locally in each agent. The agent computes the resource
quality of sampled resources and selects the ones allocated
to the job. The selection takes into account the resource qual-
ity and platform preferences, and any locality preferences of
a task. The agent then attempts to update the master copy
of the state. Upon a successful commit it notifies the local
monitor of the selected server(s) over RPC and launches the
task in the target RU(s). The local monitor notifies admis-
sion control, and the master copy to update their state. Once
the task completes, the local monitor issues updates to the
master state and notifies the agent and admission control;
the scheduling agent then informs the cluster front-end.

5.2 Adjusting Allocations
For short-running tasks, the quality of the initial assign-
ment is particularly important. For long-running tasks, we
must also consider the different phases the program goes
through [21]. Similarly, we must consider cases where Tar-
cil makes a suboptimal allocation due to inaccurate classi-
fication, deviations from fully random selection in the sam-
pling process, or a compromise in resource quality at ad-
mission control. Tarcil uses the per-server load monitor to
measure the performance of active workloads in real time.
This can correspond to instructions per second (IPS), pack-
ets per second or a high-level application metric, depending
on the application type. Tarcil compares this metric to any
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Figure 9: Sensitivity of sampling overheads and response times to sample size.

performance targets the job provides or are available from
previous runs of the same application. If there is a large devi-
ation, the scheduler takes action. Since we are using contain-
ers, the primary action we take is to avoid scheduling other
jobs on the same server. For scale-out workloads, the sys-
tem also employs a simple autoscale service which allocates
more RUs (locally or not) to improve the job’s performance.

5.3 Priorities
Users can submit jobs with priorities. Jobs with high priority
bypass others during admission and preempt lower-priority
jobs during resource selection. Tarcil also allows users to se-
lect between incremental scheduling, where tasks from a job
get progressively scheduled as resources become available
and all-or-nothing gang scheduling, where either all or no
task is scheduled. We evaluate priorities in Section 6.1.

6. Evaluation
6.1 Tarcil Analysis
We first evaluate Tarcil’s scalability and its sensitivity to
parameters such as the sample size and task duration.
Sample size: Figure 9 shows the sensitivity of sampling
overheads and response times to the sample size for ho-
mogeneous Spark tasks with 100 ms duration and cluster
loads varying from 10% to 90% on the 110-server EC2
cluster. All machines are r3.2xlarge memory-optimized in-
stances (61 GB of RAM). 10 servers are used by the schedul-
ing agents, and the remaining 100 serve incoming load.
The boundaries of the boxplots depict the 25th and 75th
percentiles, the whiskers the 5th and 95th percentiles and
the horizontal line shows the mean. As sample size in-
creases, the overheads increase. Until R = 32 overheads
are marginal even at high loads, but they increase substan-
tially for R ≥ 64, primarily due to the overhead of resolving
conflicts between the 10 scheduling agents. Hence, we cap
sample size to R = 32 even under high load. Response
times are more sensitive to sample size. At low load, high
quality resources are plentiful and increasing R makes little
difference to performance. As load increases, sampling with
R = 2 or R = 4 is unlikely to find good resources. R = 8 is
optimal for both low and high cluster loads in this scenario.
Number of scheduling agents: We now examine how the
number of agents that perform concurrent scheduling actions

affects the quality and latency of scheduling. Figure 10a
shows how scheduling latency changes as we increase the
number of scheduling agents. The cluster load varies again
from 10% to 90%, and the load is the same homogeneous
Spark tasks with 100msec optimal duration, as before. We
set the sample size to R = 8, which was the optimal, based
on the previous experiment. When the number of schedulers
is very small (below 3), latency suffers at high loads due
to limited scheduling parallelism. As the number of agents
increases latency drops, until 12 agents. Beyond that point,
latency slowly increases due to increasing conflicts among
agents. For larger cluster sizes, the same number of agents
would not induce as many conflicts. Figure 10b shows how
the fraction of tasks that meet QoS changes as the number of
scheduling agents increases. As previously seen, if the num-
ber of agents is very small, many jobs experience increased
response times. As more agents are added, the vast majority
of jobs meet their QoS until high cluster loads. When cluster
load exceeds 80%, QoS violations are caused primarily due
to queueing at admission control, instead of limited schedul-
ing concurrency. In general, 3 scheduling agents are suffi-
cient to get the minimum scheduling latency; in following
comparisons with Sparrow we use 10 agents to ensure a fair
comparison, since Sparrow uses a 10:1 worker to agent ratio.
Cluster load: Figure 11a shows the average and 95th per-
centile response times when we scale the cluster load in
the 110-server EC2 cluster. The incoming jobs are homoge-
neous Spark tasks with 100msec target duration. We increase
the task arrival rate to increase the load. The target perfor-
mance of 100msec includes no overheads or degradation due
to suboptimal scheduling. The reported response times in-
clude the task execution and all overheads. The mean of re-
sponse times with Tarcil remains almost constant until loads
over 85%. At very high loads, admission control and the
large sample size increase the scheduling overheads, affect-
ing performance. The 95th percentile is more volatile, but
only exceeds 250msec at loads over 80%. Tasks with very
high response times are typically those delayed by admis-
sion control. Sampling itself adds marginal overheads until
90% load. At very high loads scheduling overheads are dom-
inated by queueing time and increased sample sizes.
Task duration: Figure 11b shows the average and 95th per-
centile response times as a function of task duration, which
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ing agents. Figure 10a shows the scheduling latency, and
Figure 10b the fraction of jobs that meet QoS.
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Figure 11: Task response times with (a) system load, and
(b) task duration at constant load.

ranges from 10msec to 600sec. The cluster load is 80% in all
cases. For long tasks the mean and 95th percentile closely
approximate the target performance. When task duration is
below 100msec, the scheduling overhead dominates. Despite
this, the mean and tail latency remain very close, which
shows that performance unpredictability is limited.
Priorities: We now examine the impact of task priorities on
response time. Figure 12a shows the distribution of response
times for the same 100msec homogeneous Spark tasks when
increasing the fraction of tasks with high priority. 10% of
high priority tasks corresponds to a set of randomly-selected
tasks that bypass all prior-enqueued tasks. System load is
at 80%. Figure 12b shows the impact of bypassing on the
remaining low priority tasks. In all cases, we compare re-
sponse times to the system with no priorities. The workload
scenarios are identical, meaning that the task comparison
between systems with and without priorities is one-to-one.
Since high priority tasks can bypass others, their response
time is reduced, as seen in the left figure. On the other hand
low priority tasks may experience increased queueing time,
especially when more than a third of tasks have high priority.

6.2 Comparison Between Schedulers
Methodology: We compare Tarcil to Sparrow [28] and
Quasar [13]. Sparrow uses a sampling ratio ofR = 2 servers
for every core required, as recommended in [28]. Quasar has
a centralized greedy scheduler that searches the cluster state
with a timeout of 2 seconds. Sparrow does not take into ac-
count heterogeneity or interference preferences for incoming
jobs, while Tarcil and Quasar do. We evaluate these sched-
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Figure 12: Task response time in the presence of priorities.
Figure 12a shows the response time of the high priority
tasks, and Figure 12b for the low priority tasks.

ulers on the same 110-server EC2 cluster with r3.2xlarge
memory-optimized instances. 10 servers are dedicated to the
scheduling agents for Tarcil and Sparrow and a single server
for Quasar. Note that utilization in the scheduling agents for
Tarcil is very low, less than 10%; we select 10 agents to en-
sure a fair comparison with Sparrow. While we could repli-
cate Quasar’s scheduler for fault tolerance, it would not im-
prove the latency of each scheduling decision. Additionally,
Quasar schedules applications at job, not task granularity,
which reduces its scheduling load. Unless otherwise speci-
fied, Tarcil uses sample sizes of R = 8 during low load.

6.2.1 TPC-H workload
We compare the three schedulers on the TPC-H benchmark.
TPC-H is a standard proxy for ad-hoc, low-latency queries
that comprise a large fraction of load in shared clusters.
We use a similar setup as the one used to evaluate Spar-
row [28]. TPC-H queries are compiled into Spark tasks using
Shark [15], a distributed SQL data analytics platform. The
Spark plugin for Tarcil is 380 lines of code in Scala. Each
task triggers a scheduling request for the distributed sched-
ulers (Tarcil and Sparrow), while Quasar schedules jointly
all tasks from the same computation stage. We constrain
tasks in the first stage of each query to the machines hold-
ing their input data (3-way replication). All other tasks are
unconstrained. We run each experiment for 30 minutes, with
multiple users submitting randomly-ordered TPC-H queries
to the cluster. The results discard the initial 10 minutes
(warm-up) and capture a total of 40k TPC-H queries and ap-
proximately 134k jobs. Utilization at steady state is 75-82%.
Unloaded cluster: We first examine the case where TPC-
H is the only workload in the cluster. Figure 13a shows the
response times for seven representative query types [42]. Re-
sponse times include all scheduling and queueing overheads.
Boundaries show the 25th and 75th percentiles and whiskers
the 5th and 95th percentiles. The ideal scheduler corresponds
to a system that identifies resources of optimal quality with
zero delay. Figure 13a shows that the centralized scheduler
experiences the highest variability in performance. Although
some queries complete very fast because they receive high
quality resources, most experience high scheduling delays.
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(a) Initially unloaded cluster.

q1 q3 q4 q6 q9 q10 q120

500

1000

1500

2000

2500

3000

R
es

po
ns

e 
T

im
e 

(m
se

c)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

(%
)

Centralized
Sparrow
Tarcil

(b) Cluster with initial resident load.
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(c) Heterogeneous cluster with initial resident load.

Figure 13: Response times for different query types (left) and CDFs of scheduling overheads (right).

To verify this, we also show the scheduling time CDF on
the right of Figure 13a. While Tarcil and Sparrow have tight
bounds on scheduling overheads, the centralized scheduler
adds up to 2 seconds of delay (timeout threshold). Compar-
ing query performance between Sparrow and Tarcil, we see
that the difference is small, 8% on average. Tarcil approx-
imates the ideal scheduler more closely, as it accounts for
each task’s resource preferences. Additionally, Tarcil con-
strains performance unpredictability. The 95th percentile is
reduced by 80%-2.4x compared to Sparrow.
Cluster with resident load: The difference in schedul-
ing quality becomes more clear when we introduce cross-
application interference. Figure 13b shows a setup where
40% of the cluster is busy servicing background applica-
tions, including other Spark jobs, long Hadoop workloads,
and latency-critical services like memcached. These jobs are
not scheduled by the examined schedulers. While the cen-
tralized scheduler still adds considerable overhead to each
job (Figure 13b, right), its performance is now compara-
ble to Sparrow. Since Sparrow does not account for sen-
sitivity to interference, the response time of queries that
experience resource contention is high. Apart from aver-
age response time, the 95th percentile also increases signif-
icantly. In contrast, Tarcil accounts for resource preferences

and only places tasks on machines with acceptable interfer-
ence levels. It maintains an average performance only 6%
higher compared to the unloaded cluster across query types.
More importantly, it preserves the low performance jitter by
bounding the 95th percentile of response times.
Heterogeneous cluster with resident load: Next, in addi-
tion to interference, we also introduce hardware heterogene-
ity. The cluster size remains constant but 75% of the worker
machines are replaced with less or more powerful servers,
ranging from general purpose medium and large instances to
quadruple compute- and memory-optimized instances. Fig-
ure 13c shows the new performance for the TPC-H queries.
As expected, response times increase, since some of the
high-end machines are replaced by less powerful servers.
More importantly, performance unpredictability increases
when the resource preferences of incoming jobs are not ac-
counted for. In some cases (q9, q10), the centralized sched-
uler now outperforms Sparrow despite its higher scheduling
overheads. Tarcil achieves response times close to the un-
loaded cluster and very close to the ideal scheduler.

6.2.2 Impact on Resident Memcached Load
Finally, we examine the impact of scheduling on resident
load. In the same heterogeneous cluster (110 EC2 nodes with
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Figure 14: Performance of scheduled Spark tasks and resident memcached load (aggregate and over time).

10 schedulers), we place long-running memcached instances
as resident load. These instances serve read and write queries
following the Facebook etc workload [2]. etc is the large
memcached deployment in Facebook, has a 3:1 read:write
ratio, and a value distribution between 1B and 1KB. Mem-
cached occupies about 40% of the system capacity and has
a QoS target of 200usec for the 99th latency percentile.

The incoming jobs are homogeneous, short Spark tasks
(100msec ideal duration, 20 tasks per job) that perform lo-
gistic regression. A total of 300k jobs are submitted over 900
seconds. Figure 14a shows the response times of the Spark
tasks for the three schedulers. The centralized scheduler adds
significant overheads, while Sparrow and Tarcil add small
overheads and behave similarly for 80% of the tasks. For the
remaining tasks, Sparrow increases response times signifi-
cantly, as it is unaware of the interference induced by mem-
cached. Tarcil maintains low response times for most tasks.

It is also important to consider the impact on memcached.
Figure 14b shows the latency CDF of memcached requests.
The black diamond depicts the QoS constraint of tail latency.
With Tarcil and the centralized scheduler, memcached be-
haves well as both schedulers minimize interference. Spar-
row, however, leads to large latency increases for mem-
cached, since it does not account for resource preferences.
Figure 14c shows how the 99th percentile of memcached
changes as load increases. Initially memcached meets its
QoS for all three schedulers. As the cluster becomes more
loaded the tail latency increases significantly for Sparrow.

Note that a naı̈ve coupling of Sparrow – for short jobs –
with Quasar – for long jobs – is inadequate for three reasons.
First, Tarcil achieves higher performance for short tasks be-
cause it considers their resource preferences. Second, even if
the long jobs were scheduled with Quasar, using Sparrow for
short tasks would degrade its performance. Third, while the
difference in execution time achieved by Quasar and Tarcil
for long jobs is small, scheduling overheads are significantly
reduced, without sacrificing scheduling quality.

6.3 Large-Scale Evaluation
Methodology: We also evaluated Tarcil on a 400-server
EC2 cluster with 10 server types ranging from 4 to 32 cores.
The total core count in the cluster is 4,178. All servers are
dedicated and managed only by the examined schedulers and
there is no external interference from other workloads.

We use applications including short Spark tasks, longer
Hadoop jobs, streaming Storm jobs [34], latency-critical
services (memcached [22] and Cassandra [7]), and single-
server benchmarks (SPECCPU2006, PARSEC [5]). In total,
7,200 workloads are submitted with 1-second inter-arrival
times. These applications stress different resources, includ-
ing CPU, memory and I/O (network, storage). We measure
job performance (from submission to completion), cluster
utilization, scheduling overheads and scheduling quality.

We compare Tarcil, Quasar and Sparrow. Because this
scenario includes long-running jobs, such as memcached,
that are not supported by the open-source implementation of
Sparrow, we use Sparrow when applicable (e.g., Spark) and a
Sampling-based scheduler that follows Sparrow’s principles
(batch sampling and late binding) for the remaining jobs.
Performance: Figure 15a shows the performance (time be-
tween submission and completion) of the 7,200 workloads
ordered from worst to best-performing, and normalized to
their optimal performance. Optimal corresponds to the per-
formance on the best available resources and zero scheduling
delay. The Sampling-based scheduler degrades performance
for more than 75% of jobs. While Centralized behaves bet-
ter, achieving an average of 82% of optimal, it still violates
QoS for a large fraction of applications, particularly short-
running workloads (0-3900 for this scheduler). Tarcil outper-
forms both schedulers, leading to 97% average performance
and bounding maximum performance degradation to 8%.
Cluster utilization: Figure 15b shows the system utilization
across the 400 servers of the cluster when incoming jobs are
scheduled with Tarcil. CPU utilization is averaged across the
cores of each server, and sampled every 2 sec. Utilization
is 70% on average at steady-state (middle of the scenario),
when there are enough jobs to keep servers load-balanced.
The maximum in the x-axis is set to the time it takes for
the Sampling-based scheduler to complete the scenario (∼
35, 000 sec). The additional time corresponds to jobs that
run on suboptimal resources and take longer to complete.
Core allocation: Figure 15c shows a snapshot of the RU
quality across the cluster as observed by the job that is oc-
cupying each RU when using Tarcil. The snapshot is taken
at 8, 000s when all jobs have arrived and the cluster operates
at maximum utilization. White tiles correspond to unallo-
cated resources. Dark blue tiles denote jobs with resources
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Figure 15: (a) Performance across 7,200 jobs on a 400-server EC2 cluster for the Sampling-based and Centralized schedulers
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Figure 16: Resource quality distributions for the Sampling-
based scheduler and Tarcil with R = 8 and 16 RUs across
different permutations of the EC2 scenario.
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Figure 17: Resource quality CDFs for: (a) the Sampling-
based scheduler, and (b) Tarcil.

very close to their target quality. Lighter blue corresponds to
jobs that received good but suboptimal resources. The graph
shows that the majority of jobs are given suitable resources.
Note that highQ does not imply low server utilization. Clus-
ter utilization at the time of the snapshot is 75%.
Scheduling overheads: Figure 15d shows the scheduling
overheads for the Centralized scheduler and Tarcil. The re-
sults on scheduling overheads are consistent with the TPC-H
experiment in Section 6.2. The overheads of the Centralized
scheduler increase significantly with scale, adding approxi-
mately 1 sec to most workloads. Tarcil keeps overheads low,
adding less than 150msec to more than 80% of workloads.
This is essential for scalability. At high load, Tarcil increases
the sample size to preserve the statistical guarantees and/or
resorts to local queueing. Beyond the first 4,000 workloads,
most scheduling overheads are due to queueing. The over-
heads for the Sampling-based scheduler are similar to Tarcil.
Predictability: Figure 17 shows the fraction of allocated
RUs that are over a certain resource quality at each point dur-
ing the scenario. Results are shown for the Sampling-based
scheduler (left) and Tarcil (right). Darker colors towards the

bottom of the graph denote that most of allocated RUs have
poor quality. At time 16, 000sec, when the cluster is highly-
loaded, the Sampling-based scheduler leads to 70% of al-
located cores having quality less than 0.4. For Tarcil, only
18% of cores have less than 0.9 quality. Also note that, as
the scenario progresses, the Sampling-based scheduler starts
allocating resources of worse quality, while Tarcil maintains
almost the same quality throughout the experiment.

Figure 16 explains this dissimilarity. It shows the CDF
of resource quality for this scenario, and 5 random permu-
tations of it (different job submission order). We show the
CDF for the Sampling-based scheduler and Tarcil with 8
and 16 candidates. We omit the centralized scheduler which
achieves high quality most of the time. The sampling-based
scheduler deviates significantly from the uniform distribu-
tion, since it does not account for the quality of allocated
resources. In contrast, Tarcil closely follows the uniform dis-
tribution, improving performance predictability.

7. Conclusions
We have presented Tarcil, a cluster scheduler that improves
both scheduling speed and quality, making it appropriate for
large, highly-loaded clusters running short and long jobs.
Tarcil uses an analytically-derived sampling framework that
provides guarantees on the quality of allocated resources,
and adjusts the sample size to match application preferences.
It also employs admission control to avoid poor schedul-
ing decisions at high load. We have compared Tarcil to ex-
isting parallel and centralized schedulers for various work-
loads on 100- and 400-server clusters on Amazon EC2. We
have showed that it provides low scheduling overheads, high
application performance, and high cluster utilization. More-
over, it reduces performance jitter, improving predictability
in large, shared clusters.
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