
Security Implications of Data Mining in Cloud Scheduling
Christina Delimitrou and Christos Kozyrakis

Stanford University
{cdel, kozyraki}@stanford.edu

Abstract—Cloud providers host an increasing number of popular applications, on the premise of resource flexibility and cost efficiency. Most
of these systems expose virtualized resources of different types and sizes. As instances share the same physical host to increase utilization,
they contend on hardware resources, e.g., last-level cache, making them vulnerable to side-channel attacks from co-scheduled applications.

In this work we show that using data mining techniques can help an adversarial user of the cloud determine the nature and characteristics
of co-scheduled applications and negatively impact their performance through targeted contention injections. We design Bolt, a simple runtime
that extracts the sensitivity of co-scheduled applications to various types of interference and uses this signal to determine the type of these
applications by applying a set of data mining techniques. We validate the accuracy of Bolt on a 39-server cluster. Bolt correctly identifies the
type and characteristics of 81% out of 108 victim applications, and constructs specialized contention signals that degrade their performance.
We also use Bolt to find the most commonly-run applications on EC2. We hope that underlining such security vulnerabilities in modern cloud
facilities will encourage cloud providers to introduce stronger resource isolation primitives in their systems.

Index Terms—Super (very large) computers, Security and privacy protection, Scheduling and task partitioning, Application studies resulting
in better multiple-processor systems.
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1 INTRODUCTION

Cloud computing hosts an increasing number of applica-
tions in private and public clouds. It offers two main premises
to end users and datacenter operators: flexibility and cost-
efficiency. Public clouds expose resources as virtual machines
and more recently containers of different types and sizes.

Public cloud schedulers typically colocate several VMs on
the same physical machine to increase system utilization. As
VMs get co-scheduled they share certain hardware resources,
such as the last level cache, or the network switch. This hides
security and privacy pitfalls, as resource isolation is not strictly
enforced. For example, while memory capacity is partitioned,
contention in the last level cache can still leak information about
a co-scheduled program. There has been significant related
work on side-channel attacks [10], [17], VM detection [14], [21],
distributed denial-of-service attacks (DDoS) [1], [9], [17] and
data leakage vulnerabilities [10], [20] in cloud providers. Most
of these schemes leverage the lack of strictly enforced isolation,
and the naming conventions cloud providers use for machines
to extract information about a victim VM.

Recent work on datacenter scheduling proposed using data
mining techniques to accurately determine the resource prefer-
ences of new applications without significant overheads [5]–[7].
These techniques improve the decision quality of the scheduler,
and as a result per-application performance and cluster utiliza-
tion increase. This approach relies on the fact that the system
has knowledge about applications it has previously-seen which
can be mined to understand the preferences of new, unknown
applications. Unfortunately in a shared, public cloud infrastruc-
ture applying such techniques can have security implications.

In this paper we present Bolt, a practical system that lever-
ages data mining techniques to quickly determine the type
and characteristics of any applications scheduled on the same
machine in a public cloud. Bolt can determine the type of a
co-scheduled victim application, by projecting the contention
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an adversarial VM experiences, against the large dataset of
previously-seen workloads. Second, Bolt uses this information
to issue internal denial of service attacks to victim applications
through specialized interference injection.

We evaluate Bolt on a local cluster and demonstrate that it
correctly detects the type of co-scheduled applications for 81%
out of 108 diverse workloads. Additionally, it is able to degrade
the performance of those workloads, by 32% on average and
more than 60% in some cases, by injecting interference in the
resources a victim application is sensitive to. It does so without
saturating compute and/or memory utilization, which could
trigger migration and autoscaling in cloud providers that offer
such solutions to remedy performance unpredictability.

2 RELATED WORK

We discuss related work with respect to VM placement detec-
tion, DDoS attacks, side-channel attacks and data extraction.
VM placement detection: Ristenpart et al. [14] show how
leveraging the IP naming conventions of machines in cloud
providers can help an adversarial user pinpoint where a vic-
tim VM is residing in a large-scale cluster. Subsequently, the
adversarial user can launch VMs until one is co-scheduled on
the same physical machine as the target VM. HomeAlone [21]
tracks the utilization of the L2 cache during periods of low
traffic from “friendly” VMs to detect whether the physical
machine is shared across VMs.
DDoS attacks: Distributed Denial of Service attacks [8], [12],
[15] in the cloud have increased significantly in number and
impact over the past few years. This has generated a lot of
interest in detection and prevention techniques [13]. Gupta et
al. [9] outline the characteristics of cloud facilities that make
DDoS attacks more likely, discuss the challenges that current
DDoS prevention schemes face, and propose a scheme based on
VM profiling to detect network DDoS attacks. Bakshi et al. [1]
develop a system that detects abnormally high network traffic
in cloud machines that would signal an upcoming DDoS attack.
Finally, Darwish et al. [3] explore different DDoS attack types
in cloud resources, and propose practical defense mechanisms.
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Fig. 1. Overview of the system’s operation. The adversarial VM uses
iBench to measure the pressure the two victim VMs place on shared
resources. Bolt then uses data mining to determine the type and char-
acteristics of applications running in the victim VMs.

Side-channel attacks in public clouds: Such systems attempt to
extract information about co-scheduled applications, including
confidential data, such as private keys [2], [11], [18], [19]. Zhang
et al. [20] describe a system that launches side-channel attacks
in a virtualized environment. The system overcomes three main
challenges: the frequent re-scheduling of VMs by a hypervisor
or cluster scheduler, the noise in shared resource usage and the
implications introduced by core migrations. They demonstrate
that the system can extract an ElGamal decryption key from a
victim VM. Wang et al. [17] specifically target intrusion detec-
tion in cloud settings, while Liu et al. [10] design a scheduling
system that protects against covert channels in resources such
as the memory bus in a cloud environment. The system controls
the overlapping execution of different VMs and injects noise
on the memory bus to prevent the extraction of confidential
information by an adversarial user.

3 BOLT
3.1 Threat Model
We consider an IaaS provider that operates a public cloud.
Multiple VMs can be co-scheduled on the same physical server.
Each VM has no control over where it is placed in the cluster,
and has no a priori information on any other VMs scheduled
on the same host. We assume that the cloud provider is neutral
with respect to VM detection by an adversarial VM, i.e., it does
not employ any additional resource isolation techniques than
what is available by default to hinder such attacks.
Adversarial VM: An adversarial VM has the goal of determining
the nature and characteristics of jobs co-scheduled on the same
physical host, and negatively impacting their performance.
Friendly VM: This is a VM scheduled on a physical host that
runs one or more applications. Friendly VMs do not attempt
to determine the existence and characteristics of other co-
scheduled VMs. They also do not employ any schemes to
prevent detection.

3.2 Application Detection
The operation of Bolt at a high level is shown in Figure 1. The
adversarial VM runs a set of microbenchmarks that have tun-
able intensity and put progressively more pressure in a specific
shared resource each [4]. Examined shared resources include
the different levels of the cache hierarchy, the memory system,
the core, and the network and storage subsystems. Once a
microbenchmark starts running it will increase its intensity
until it finds pressure from co-scheduled workloads, i.e., until
its performance is lower than its expected value, when it is
running in isolation. The intensity of the microbenchmark at

that point is the pressure the co-scheduled applications put in
shared resource i and is denoted by ci, where i ∈ [1, N ], N = 10.
Large ci values mean that the co-scheduled applications put a
lot of pressure in resource i. The same operation is performed
for 2-3 microbenchmarks, and requires 5-10 seconds.

This profiling signal is used by an online recommender
system that derives the resource pressure of the victim VMs
in the remaining shared resources. Missing pressure scores are
determined using Singular Value Decomposition (SVD) and
PQ-reconstruction with Stochastic Gradient Descent (SGD) [5],
[6]. The recommender system then finds similarities between
the new victim VM and previously-seen VMs by extracting
similarity concepts, such as the memory pressure applications
create, the type of compute operations they perform, or the
network/storage access patterns they launch. SVD produces
three matrices, U , Σ and V . Matrix U captures the correlation
between each application and each similarity concept. Using
Pearson correlation coefficients on the Ui vectors of different
applications we can determine which application types a new,
unknown application is similar to. The output is a distribution
of confidence scores of how closely the victim VM resembles
different types of previous applications. For example a victim
VM may be 65% similar to memcached applications, 18%
similar to Spark jobs, 10% similar to Hadoop jobs running SVM
classifiers, and 3% to Hadoop jobs running k-means.

There are cases where a victim VM may not have a clear
application type it resembles, or may change behavior during
its execution. To address this issue Bolt repeats the classification
periodically (every 5 minutes in our experiments), until the
confidence scores of similarity converge. For the majority of
examined applications, convergence occurs after 2 iterations.
Multiple co-scheduled jobs: A challenge with the previous
approach is the case where more than one victim VMs are co-
scheduled on the same physical server. The adversarial VM has
no access to the hypervisor, and hence only sees the aggregate
interference from all co-scheduled applications. To decouple
different jobs sharing a physical server, Bolt examines the
combinations of interference profiles of different application
types, and compares them against the aggregate interference
observed by the adversarial VM. For example, if we have only
seen three types of applications, A1, A2 and A3, with U vectors:
[u11, u12, ..., u1N ], [u21, u22, ..., u2N ] and, [u31, u32, ..., u3N ] and
the victim VM has interference profile: [x1, x2, ..., xN ], Bolt will
examine all combinations of the three application types, and
return the one that most closely resembles the victim VM. We
plan to investigate solutions that scale better and detect non-
linear interference relations in future work.

3.3 Internal Denial of Service (DoS) Attack
Once an adversarial VM knows the type of applications that
coexist on the same physical host, it tries to degrade their
performance through a targeted interference injection. Con-
structing an interference signal that will affect the victim VM
relies on the knowledge of the resources the victim VM is
sensitive to. This corresponds to the level of interference the
application can tolerate in the different shared resources. The
injected contention is then simply an interference signal that
slightly exceeds that level. For example, in the case of mem-
cached, the detection scheme determines that the victim VM
puts a lot of pressure in the LLC, followed by lower pressure
in the CPU, memory and network subsystems. This means that
the application tolerates a lot of contention in storage, followed
by lower tolerance in the memory, network and CPU. Note
that tolerated interference is not simply the complement of the
generated contention of a workload.
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Fig. 2. Per-server resource pressure in the controlled experiment.

Hadoop Spark memcached Cassandra SPEC

Fig. 3. Per-server application mapping in the controlled experiment.

TABLE 1
Estimation accuracy for the controlled experiment.

Applications Correct 1st incorrect 2nd incorrect
app type estimation estimation

Aggregate 81% - -
memcached 76% Spark speccpu2006

Hadoop 84% Cassandra Spark
Spark 85% speccpu2006 memcached

Cassandra 87% Hadoop Spark
speccpu2006 81% Spark memcached

Injecting this contention signal degrades the performance
of the victim VM with high probability. Furthermore, because
the injection does not simply saturate shared resources, e.g., by
scanning the entire cache/memory or saturating the CPU, it
will not trigger the migration/autoscaling schemes that cloud
providers have in place to avoid machine oversubscription
when application load increases. As a result, performance de-
grades without the user being able to ameliorate the problem,
except by terminating and restarting the VM.

In the following section we evaluate the accuracy of Bolt in
detecting the type and characteristics of victim VMs, and the
performance degradation it can induce to them.

4 EVALUATION

4.1 Controlled Experiment
We first perform a controlled experiment, in which all victim
applications are known in advance. This allows us to validate
the accuracy of Bolt in detecting application types and degrad-
ing their performance through targeted contention injection.

We use a cluster of 39 dedicated machines, with 8 2-way
hyperthreaded physical cores and 64GB of RAM each. In each
server we launch a 2 physical core (of 2 vCPU each) VM run-
ning Ubuntu 14.04 as the adversarial VM. The remainder of the
machine is allocated to one or more victim VMs, running over
Ubuntu 14.04 or Debian 8.0. Victim applications are scheduled
using the Quasar cluster manager [6]. Quasar minimizes in-
terference between co-scheduled workloads by only colocating
applications that do not contend in the same resources. This
helps quantify the impact of the adversarial VM on perfor-
mance, and decouple it from any existing interference between
co-scheduled applications. We will explore how different sched-
ulers affect the detection accuracy as part of future work. The
adversarial applications have no a priori information on the
number and type of co-scheduled applications. We schedule
a total of 108 applications, from five classes (Table 1). Within

each class there are several individual workloads, including the
Mahout library for Hadoop and machine learning applications
for Spark. Each machine has at least one victim VM, and at most
four victim VMs. Each VM can use one or more physical cores.
When exceeding four applications the interference between
the victim applications alone does not permit them to meet
their QoS constraints. Figure 3 shows the type of applications
running in each physical machine, and Figure 2 shows the level
of interference they induce in each of the main shared resources
(from 0 to 99%), as detected by Bolt. Note that different mixes of
applications produce different interference profiles in Figure 2.
Based on this signal Bolt tries to identify the type of co-
scheduled applications. Table 1 shows Bolt’s detection accuracy,
per application type, and aggregate. Bolt correctly identifies
the majority of jobs, 81%, and for certain application types
like databases and analytics, the accuracy exceeds 85%. 86%
of correctly identified applications required one profiling run
for identification. For an extra 9%, a second profiling run was
necessary. We also show the most frequent misconceptions for
each job type. Most incorrectly-identified applications occur in
servers hosting more than three workloads.

We also examine the performance degradation Bolt can
introduce through contention injection. Figure 4 shows the PDF
of degradation in execution time across correctly- (left) and
incorrectly-identified applications (right). Correctly-identified
jobs experience substantial performance degradation, since the
system is able to determine the resources they are most sensi-
tive to. On average there is a 32% degradation in execution time,
and 62% in the worst case, while tail latency increases by 10x
for applications such as memcached (Figure 5a). On the other
hand, the small number of incorrectly-identified applications
only experience modest performance degradation, since the
system introduces contention in the wrong resources.

If interference translates to CPU or memory saturation, there
is a high probability that at least one of the co-scheduled
VMs will be migrated to a new physical machine, for cloud
providers that support live migration, e.g., Google Compute
Engine, or scaled out to additional machines. Therefore it is
critical to ensure that interference and system utilization are
almost orthogonal. Figure 5 compares the tail latency and CPU
utilization Bolt causes to that of a naı̈ve system that simply
saturates the CPU through a compute-intensive kernel. We
focus on a single victim VM running memcached. Performance
degradation is similar for both systems as time progresses. On
the other hand utilization is quite different, with Bolt keeping
CPU utilization fairly low, hence not triggering migration or
autoscaling, while the naı̈ve scheme quickly saturates the core.
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Fig. 4. Performance degradation in the controlled experiment.
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Fig. 5. Comparison of latency and utilization against a naı̈ve scheme.

4.2 Bolt in the Wild
We now use Bolt in a real (non-controlled) setting on a large
EC2 cluster to detect the type of applications submitted by
external users. This experiment is limited to detecting, but
not negatively impacting the performance of the co-scheduled
applications, to prevent service interruptions for other users.
We request 400 4 vCPU on-demand instances, and verify that
they are not on the same physical machine [16]. We inject
iBench to determine the interference profile of the co-scheduled
application(s) and use the classification engine to map inter-
ference profiles to specific application types. Table 2 shows
how many co-scheduled applications were found across the 400
physical machines. For a large fraction of physical machines the
adversarial VM is the only application occupying the server,
despite the fact that it only requires 4 vCPUs. Most of the
remaining machines have 1-2 co-scheduled applications, while
a small number of servers host more than 3 victim applications.
We keep requesting 4 vCPU instances until we have 400 in-
stances with at least one co-scheduled VM. Figure 6 shows the
probability distribution function (PDF) of detected application
types. Interestingly there is a very small number of application
types that dominates the utilization of the examined cluster. As
expected, these applications primarily include analytics, web-
servers and databases. Apart from the main five applications,
there is a long tail of less common applications, which were
encountered less than 10 times across all VMs.

5 FUTURE WORK

We have presented Bolt, a system that highlights the perfor-
mance implications of using data mining in cloud settings. Bolt
projects the contention an adversarial VM experiences in shared
resources from co-scheduled VMs, against a dataset of applica-
tion profiles to determine the type and characteristics of co-
scheduled VMs. Furthermore, it negatively impacts victim ap-
plications, through targeted contention injections. Such attacks
are facilitated by the lack of strict resource isolation guarantees
between workloads sharing a physical machine. Introducing
isolation techniques, primarily in the memory hierarchy which
is a strong indicator of the type of co-scheduled applications
could alleviate some of these security concerns.

Anecdote: By verifying the timestamps, instance configuration and
zone, and benchmark order, we were able to identify one victim
VM running several SPECCPU2006 benchmarks which belonged to a
student group at Stanford.

TABLE 2
Breakdown of the number of co-scheduled VMs found by Bolt in the

EC2 experiment.

no VM 1 VM 2 VMs >2 VMs
% of machines 41% 32% 16% 11%
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Fig. 6. Probability distribution function of application types on EC2.
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