
..

QUALITY-OF-SERVICE-AWARE
SCHEDULING IN HETEROGENEOUS
DATACENTERS WITH PARAGON

..

PARAGON, AN ONLINE, SCALABLE DATACENTER SCHEDULER, ENABLES BETTER CLUSTER

UTILIZATION AND PER-APPLICATION QUALITY-OF-SERVICE GUARANTEES BY LEVERAGING

DATA MINING TECHNIQUES THAT FIND SIMILARITIES BETWEEN KNOWN AND NEW

APPLICATIONS. FOR A 2,500-WORKLOAD SCENARIO, PARAGON PRESERVES PERFORMANCE

CONSTRAINTS FOR 91 PERCENT OF APPLICATIONS, WHILE SIGNIFICANTLY IMPROVING

UTILIZATION. IN COMPARISON, A BASELINE LEAST-LOADED SCHEDULER ONLY PROVIDES

SIMILAR GUARANTEES FOR 3 PERCENT OF WORKLOADS.

......Efficiency is a first-class require-
ment and the main source of scalability con-
cerns both for small and large systems.1,2

Achieving high efficiency is not only a matter
of sensible design, but also a function of how
the system is managed, which becomes essen-
tial as the hardware grows progressively heter-
ogeneous and parallel and applications get
dynamic and diverse. Architecture has tradi-
tionally been about efficient system design.
As efficiency increases in importance, archi-
tecture should be about both design and
management for systems of any scale.

In this article, we focus on improving effi-
ciency while guaranteeing high performance
in large-scale systems. Although an increasing
amount of computing now happens in public
and private clouds, such as Amazon Elastic
Compute Cloud (EC2; see http://aws.
amazon.com/ec2) or vSphere (www.vmware.

com/products/vsphere), datacenters continue
to operate at utilizations in the single dig-
its.1,3 This lessens the two main advantages
of cloud computing—flexibility and cost effi-
ciency both for cloud operators and end
users—because not only are the machines
underutilized, they are also operating in a
non-energy-proportional region.1,4

There can be several reasons why ma-
chines are underutilized. Two of the most
prominent obstacles are interference between
coscheduled applications and heterogeneity
in server platforms. For more information,
see the “Interference and Heterogeneity”
sidebar.

In our paper presented at the 18th Inter-
national Conference on Architectural Sup-
port for Programming Languages and
Operating Systems (ASPLOS 2013),5 we
introduced Paragon, an online and scalable

Christina Delimitrou

Christos Kozyrakis

Stanford University

..

2 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

..

Interference and Heterogeneity
Interference occurs as coscheduled applications contend in shared

resources. Coscheduled applications may interfere negatively even if

they run on different processor cores because they share caches,

memory channels, storage, and networking devices.1,2 If unmanaged,

interference can result in performance degradations of integer fac-

tors,2 especially when the application must meet tail latency guaran-

tees apart from average performance.3 Figure A shows that an

interference-oblivious scheduler will slow workloads down by 34 per-

cent on average, with some running more than two times slower. This

is undesirable for both users and operators.

Heterogeneity is the natural result of the infrastructure’s evolu-

tion, as servers are gradually provisioned and replaced over the typical

15-year lifetime of a datacenter.4-7 At any point in time, a datacenter

may host three to five server generations with a few hardware config-

urations per generation, in terms of the processor speed, memory,

storage, and networking subsystems. Managing the different hard-

ware incorrectly not only causes significant performance degradations

to applications sensitive to server configuration, but also wastes

resources as workloads occupy servers for significantly longer, and

gives a low-quality signal to hardware vendors for the design of future

platforms. Figure A shows that a heterogeneity-oblivious scheduler

will slow applications down by 22 percent on average, with some run-

ning nearly 2 times slower (see the “Methodology” section in the

main article).

Finally, a baseline scheduler that is oblivious to both interference

and heterogeneity and which schedules applications to least-loaded

servers is even worse (48 percent average slowdown), causing some

workloads to crash due to resource exhaustion on the server. Unless

interference and heterogeneity are managed in a coordinated fashion,

the system loses both its efficiency and predictability guarantees. Pre-

vious research has identified the issues of heterogeneity6 and inter-

ference,2 but while most cloud management systems—such as

Mesos8 or vSphere (www.vmware.com/products/vsphere)—have

some notion of contention or interference awareness, they either use

empirical rules for interference management or assume long-running

workloads (for example, online services), whose repeated behavior

can be progressively modeled. In this article, we target both heteroge-

neity and interference and assume no a priori analysis of the applica-

tion. Instead, we leverage information the system already has about

the large number of applications it has previously seen.

References
1. S. Govindan et al., “Cuanta: Quantifying Effects of Shared

On-Chip Resource Interference for Consolidated Virtual

Machines,” Proc. 2nd ACM Symp. Cloud Computing, 2011,

article no. 22.

2. J. Mars et al., “Bubble-Up: Increasing Utilization in Modern

Warehouse Scale Computers via Sensible Co-locations,”

Proc. 44th Ann. IEEE/ACM Int’l Symp. Microarchitecture,

2011, pp. 248-259.

3. D. Meisner et al., “Power Management of Online Data-Inten-

sive Services,” Proc. 38th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 11), 2011, pp. 319-330.

4. L.A. Barroso and U. Holzle, The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale

Machines, Morgan and Claypool Publishers, 2009.

5. C. Kozyrakis et al., “Server Engineering Insights for Large-Scale

Online Services,” IEEE Micro, vol. 30, no. 4, 2010, pp. 8-19.

6. J. Mars, L. Tang, and R. Hundt, “Heterogeneity in ‘Homoge-

neous’ Warehouse-Scale Computers: A Performance Oppor-

tunity,” IEEE Computer Architecture Letters, vol. 10, no. 2,

2011, pp. 29-32.

7. R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting Platform Het-

erogeneity for Power Efficient Data Centers,” Proc. 4th Int’l

Conf. Autonomic Computing (ICAC 07), 2007, doi:10.1109/

ICAC.2007.16.

8. B. Hindman et al., “Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center,” Proc. 8th USENIX

Conf. Networked Systems Design and Implementation,

2011, article no. 22.

1.0

Alone on best platform No interference
Least loadedNo heterogeneity

S
p

ee
d

up
 o

ve
r

al
on

e
on

 b
es

t p
la

tfo
rm

0.8

0.6

0.4

0.2

0.0
0 1,000 2,000

Workloads
3,000 4,000 5,000

Figure A. Performance degradation for 5,000 applications

on 1,000 Amazon Elastic Compute Cloud (EC2) servers with

heterogeneity-oblivious, interference-oblivious, and

baseline least-loaded schedulers compared to ideal

scheduling (application runs alone on best platform).

Results are ordered from worst to best-performing

workload.

...

MAY/JUNE 2014 3

datacenter scheduler that accounts for hetero-
geneity and interference. The key feature of
Paragon is its ability to quickly and accurately
classify an unknown application with respect
to heterogeneity (which server configurations
it will perform best on) and interference
(how much interference it will cause to
coscheduled applications and how much
interference it can tolerate itself in multiple
shared resources). Unlike previous techniques
that require detailed profiling of each in-
coming application, Paragon’s classification
engine exploits existing data from previously
scheduled workloads and requires only a
minimal signal about a new workload. Spe-
cifically, it is organized as a low-overhead rec-
ommendation system similar to the one
deployed for the Netflix Challenge,6 but
instead of discovering similarities in users’
movie preferences, it finds similarities in
applications’ preferences with respect to het-
erogeneity and interference. It uses singular
value decomposition (SVD) to perform col-
laborative filtering and identify similarities
between incoming and previously scheduled
workloads.

Once an incoming application is classi-
fied, a greedy scheduler assigns it to the server
that is the best possible match in terms of
platform and minimum negative interference
between all coscheduled workloads. Even
though the final step is greedy, the high accu-
racy of classification leads to schedules that
achieve both fast execution time and efficient
resource usage. Paragon scales to systems
with tens of thousands of servers and tens of
configurations, running large numbers of
previously unknown workloads. We imple-
mented Paragon and showed that it signifi-
cantly improves cluster utilization, while
preserving per-application quality-of-service
(QoS) guarantees both for small- and large-
scale systems. For more information on
related work, see the “Research Related to
Paragon” sidebar.

Fast and accurate classification
The key requirement for heterogeneity

and interference-aware scheduling is to
quickly and accurately classify incoming
applications. First, we need to know how fast
an application will run on each of the tens of

server configurations (SCs) available. Second,
we need to know how much interference it
can tolerate from other workloads in each of
several shared resources without significant
performance loss and how much interference
it will generate itself. Our goal is to perform
online scheduling for large-scale systems
without any a priori knowledge about incom-
ing applications. Most previous schemes
address this issue with detailed but offline
application characterization or long-term
monitoring and modeling.7-9 Paragon takes a
different approach. Its core idea is that,
instead of learning each new workload in
detail, the system leverages information it
already has about applications it has seen to
express the new workload as a combination
of known applications. For this purpose, we
use collaborative filtering techniques that
combine a minimal profiling signal about the
new application with the large amount of
data available from previously scheduled
workloads. The result is fast and accurate
classification of incoming applications with
respect to heterogeneity and interference.
Within a minute of its arrival, an incoming
workload is scheduled on a large-scale cluster.

Background on collaborative filtering
Collaborative filtering techniques are fre-

quently used in recommendation systems.
We use one of their most publicized applica-
tions, the Netflix Challenge,6 to provide a
quick overview of the two analytical methods
we rely on, SVD and PQ reconstruction.10

In this case, the goal is to provide valid movie
recommendations for Netflix users given the
ratings they have provided for various other
movies.

The input to the analytical framework is a
sparse matrix A, the utility matrix, with one
row per user and one column per movie. The
elements of A are the ratings that users have
assigned to movies. Each user has rated only
a small subset of movies; this is especially true
for new users, who might only have a handful
of ratings, or even none. Although techniques
exist that address the cold-start problem (that
is, providing recommendations to a com-
pletely fresh user with no ratings), we focus
here on users for whom the system has some
minimal input. If we can estimate the values
of the missing ratings in the sparse matrix A,

..

TOP PICKS

...

4 IEEE MICRO

we can make movie recommendations; that
is, we can suggest that users watch the movies
for which the recommendation system esti-
mates they will give high ratings to with high
confidence.

The first step is to apply SVD, a matrix
factorization method used for dimensionality
reduction and similarity identification. Fac-
toring A produces the decomposition to the
following matrices of left (U) and right (V)

..

Research Related to Paragon
We discuss work relevant to Paragon in the areas of datacenter

scheduling, virtual machine (VM) management, workload rightsizing,

and scheduling for heterogeneous multicore chips.

Datacenter scheduling
Recent work on datacenter scheduling has highlighted the impor-

tance of platform heterogeneity and workload interference. Mars

et al. showed that the performance of Google workloads can vary by

up to 40 percent because of heterogeneity, even when considering

only two server configurations, and by up to 2 times because of inter-

ference, even when considering only two colocated applications.1,2

Govindan et al. also present a scheme to quantify the effects of cache

interference between consolidated workloads.3 In Paragon, we extend

the concepts of heterogeneity- and interference-aware scheduling by

providing an online, scalable, and low-overhead methodology that

accurately classifies applications for both heterogeneity and interfer-

ence across multiple resources.

VM management
Systems such as vSphere (http://www.vmware.com/products/

vsphere) or the VM platforms on public cloud providers can schedule

diverse workloads submitted by users on the available servers. In gen-

eral, these platforms account for application resource requirements

that they expect the user to express or they learn over time by moni-

toring workload execution. Paragon can complement such systems by

making scheduling decisions on the basis of heterogeneity and inter-

ference and detecting when an application should be considered for

rescheduling.

Resource management and rightsizing
There has been significant work on resource allocation in virtual-

ized and nonvirtualized large-scale datacenters. Mesos performs

resource allocation between distributed computing frameworks such

as Hadoop or Spark.4 Rightscale (http://www.rightscale.com) auto-

matically scales out three-tier applications to react to changes in the

load in Amazon’s cloud service. DejaVu serves a similar goal by identi-

fying a few workload classes and, based on them, reusing previous

resource allocations to minimize reallocation overheads.5 In general,

Paragon is complementary to rightsizing systems. Once such a system

determines the amount of resources needed by an application, Para-

gon can classify and schedule it on the proper hardware platform in a

way that minimizes interference.

Scheduling for heterogeneous multicore chips
Scheduling in heterogeneous CMPs shares some concepts and

challenges with scheduling in heterogeneous datacenters; thus, some

of the ideas in Paragon can be applied in heterogeneous CMP sched-

uling as well. Shelepov et al. present a scheduler for heterogeneous

CMPs that is simple and scalable,6 whereas Craeynest et al. use per-

formance statistics to estimate which workload-to-core mapping is

likely to provide the best performance.7 Given the increasing number

of cores per chip and coscheduled tasks, techniques similar to the

ones used in Paragon can be applicable when deciding how to sched-

ule applications in heterogeneous CMPs as well.

References
1. J. Mars, L. Tang, and R. Hundt, “Heterogeneity in ‘Homoge-

neous’ Warehouse-Scale Computers: A Performance Oppor-

tunity,” IEEE Computer Architecture Letters, vol. 10, no. 2,

2011, pp. 29-32.

2. J. Mars et al., “Bubble-Up: Increasing Utilization in Modern

Warehouse Scale Computers via Sensible Co-locations,”

Proc. 44th Ann. IEEE/ACM Int’l Symp. Microarchitecture,

2011, pp. 248-259.

3. S. Govindan et al., “Cuanta: Quantifying Effects of Shared

On-Chip Resource Interference for Consolidated Virtual

Machines,” Proc. 2nd ACM Symp. Cloud Computing, 2011,

article no. 22.

4. B. Hindman et al., “Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center,” Proc. 8th USENIX

Conf. Networked Systems Design and Implementation,

2011, article no. 22.

5. N. Vasic et al., “DejaVu: Accelerating Resource Allocation in

Virtualized Environments,” Proc. 17th Int’l Conf. Architec-

tural Support for Programming Languages and Operating

Systems, 2012, pp. 423-436.

6. D. Shelepov et al., “HASS: A Scheduler for Heterogeneous

Multicore Systems,” ACM SIGOPS Operating Systems

Rev., vol. 43, no. 2, 2009, pp. 66-75.

7. K. Craeynest et al., “Scheduling Heterogeneous Multi-Cores

through Performance Impact Estimation (PIE),” Proc. 39th

Ann. Int’l Symp. Computer Architecture (ISCA 12), 2012,

pp. 213-224.

...

MAY/JUNE 2014 5

singular vectors and the diagonal matrix of
singular values (R):

Am;n ¼

a1;1 a1;2 � � � a1;n

a2;1 a2;2 � � � a2;n

..

. ..
. . .

. ..
.

am;1 am;2 � � � am;n

0
BBBB@

1
CCCCA

¼ U � R � V T where

Um�r ¼

u1;1 � � � u1;r

..

. . .
. ..

.

um;1 � � � um;r

0
BB@

1
CCA;

V n�r ¼

v1;1 � � � v1;r

..

. . .
. ..

.

vn;1 � � � vn;r

0
BB@

1
CCA;

Rr�r ¼
r1 � � � 0

..

. . .
. ..

.

0 � � � rr

0
BB@

1
CCA

Dimension r is the rank of matrix A, and
it represents the number of similarity con-
cepts identified by SVD. For instance, one
similarity concept might be that certain mov-
ies belong to the drama category, while
another might be that most users who liked
the movie The Lord of the Rings: The Fellow-
ship of the Ring also liked The Lord of the
Rings: The Two Towers. Similarity concepts
are represented by singular values rið Þ in
matrix R and the confidence in a similarity
concept by the magnitude of the correspond-
ing singular value. Singular values in R are
ordered by decreasing magnitude. Matrix U
captures the strength of the correlation
between a row of A and a similarity concept.
In other words, it expresses how users relate
to similarity concepts such as the one about
liking drama movies. Matrix V captures the
strength of the correlation of a column of A
to a similarity concept. In other words, to
what extent does a movie fall in the drama
category? The complexity of performing
SVD on a m � n matrix is minðn2m; m2nÞ.
SVD is robust to missing entries and imposes
relaxed sparsity constraints to provide accu-
racy guarantees.

Before we can make accurate score estima-
tions using SVD, we need the full utility
matrix A. To recover the missing entries in A,

we use PQ reconstruction. Building from the
decomposition of the initial sparse A matrix,

we have Qm�r ¼ U and PT
r�n ¼

P
�V T .

The product of Q and PT gives matrix R,
which is an approximation of A with the
missing entries. To improve R, we use sto-
chastic gradient descent (SGD), a scalable
and lightweight latent-factor model that iter-
atively recreates A:

8rui, where rui is an element of the rec-
onstructed matrix R

2ui ¼ rui � qi � pT
u

qi qi þ gð2ui pu � kqiÞ
pu pu þ gð2ui qi � kpuÞ

until 2j jL2
¼

ffiP
u;i 2uij j2

q
becomes marginal.

In this process, g is the learning rate and
k is the regularization factor. The complex-
ity of PQ is linear with the number of rui

and in practice takes up to a few millisec-
onds for matrices whose m and n equal
about 1,000. Once the dense utility matrix
R is recovered, we can make movie recom-
mendations. This involves applying SVD
to R to identify which of the reconstructed
entries reflect strong similarities that enable
making accurate recommendations with
high confidence.

Classification for heterogeneity
We use collaborative filtering to identify

how well a previously unknown workload
will run on different hardware platforms.
The rows in matrix A represent applications,
the columns represent server configurations
(SCs), and the ratings represent normalized
application performance on each SC. As part
of an offline step, we select a small number of
applications and profile them on all the dif-
ferent SCs. This provides some initial infor-
mation to the classification engine to address
the cold-start problem that would otherwise
occur. It only needs to happen once in the
system.

During regular operation, when an appli-
cation arrives, we profile it for 1 minute on
any two SCs, insert it as a new row in matrix
A, and use the process described previously to
derive the missing ratings for the other server
configurations. In this case, R represents sim-
ilarity concepts such as the fact that applica-
tions that benefit from SC1 will also benefit

..

TOP PICKS

...

6 IEEE MICRO

from SC3. U captures how an application
correlates to the different similarity concepts,
and V shows how an SC correlates to them.
Collaborative filtering identifies similarities
between new and known applications. Two
applications can be similar in one characteris-
tic (for instance, they both benefit from high
clock frequency) but different in others (for
example, only one benefits from a large L3
cache). This is especially common when scal-
ing to large application spaces and hardware
configurations. SVD addresses this issue by
uncovering hidden similarities and filtering
out the ones less likely to have an impact on
the application’s behavior.

As incoming applications are added in A,
the density of the matrix increases and the
recommendation accuracy improves. Note
that online training is performed only on two
SCs. This reduces the training overhead and
the number of servers needed for it compared
to exhaustive search. In contrast, if we
attempted an exhaustive application profil-
ing, the number of profiling runs would
equal the number of SCs. For a cloud service
with high workload arrival rates, this would
be infeasible to support. On a production-
class Xeon server, classification takes 10 to 30
milliseconds for thousands of applications
and tens of SCs. We can perform classifica-
tion for one application at a time or for small
groups of incoming applications (batching) if
the arrival rate is high without impacting
accuracy or speed.

Performance scores. We use the following per-
formance metrics according to the applica-
tion type:

� Single-threaded workloads: We use
instructions committed per second
(IPS) as the initial performance met-
ric. Using execution time would
require running applications to com-
pletion during profiling, increasing
overheads. We have verified that IPS
leads to similar classification accuracy
as using time to completion. For
multiprogrammed workloads, we use
aggregate IPS.

� Multithreaded workloads: In the pres-
ence of spinlocks or other synchroni-
zation schemes, IPS can be deceptive.

We address this by detecting active
waiting and weight such execution
segments out of the IPS computa-
tion. We verified that using this
“useful” IPS leads to similar classifi-
cation accuracy as using the full exe-
cution time.

The choice of IPS is influenced by our
current evaluation, which focuses on single-
node CPU-, memory-, and I/O-intensive
programs. The same methodology can be
extended to higher-level metrics, such as
queries per second (QPS), which cover com-
plex multitier workloads as well.

Validation. We evaluate the accuracy of het-
erogeneity classification on a 40-server cluster
with 10 SCs with a large set of diverse appli-
cations. The offline training set includes 20
randomly selected applications. Using the
classification output for scheduling improves
performance by 24 percent for single-
threaded workloads, 20 percent for multi-
threaded workloads, 38 percent for multi-
programmed workloads, and 40 percent for
I/O workloads, on average, while some appli-
cations have a 2� performance difference.
Table 1 summarizes key statistics on the vali-
dation study. It is important to note that the
accuracy does not depend on the SCs selected
for training, which matched the top-
performing configuration only for 20 percent
of workloads. We also compare performance
predicted by the recommendation system to
performance obtained through experimenta-
tion. The deviation is 3.8 percent on average.

Classification for interference
We are interested in two types of interfer-

ence: that which an application can tolerate
from preexisting load on a server, and that
which the application will cause on that load.
We detect interference due to contention
and assign a score to the sensitivity of an
application to a type of interference. To
derive sensitivity scores, we develop several
microbenchmarks (sources of interference, or
SoIs), each stressing a specific shared resource
with tunable intensity.11 SoIs span the core,
memory, and cache hierarchy and network
and storage bandwidth. We run an applica-
tion concurrently with a microbenchmark

...

MAY/JUNE 2014 7

and progressively tune up its intensity until
the application violates its QoS. Applications
with high tolerance to interference (for exam-
ple, a sensitivity score over 60 percent) are
easier to coschedule than applications with
low tolerance. Similarly, we detect the sensi-
tivity of a microbenchmark to the interfer-
ence the application causes by tuning up its
intensity and recording when the microbe-
nchmark’s performance degrades by 5 per-
cent compared to its performance in
isolation. In this case, high-sensitivity scores
correspond to applications that cause a lot of
interference in the specific shared resource.

Collaborative filtering for interference. We
classify applications for interference tolerated
and caused, using twice the process described
earlier. The two utility matrices have applica-
tions as rows and SoIs as columns. The ele-
ments of the matrices are the sensitivity
scores of an application to the corresponding
microbenchmark. Similarly to classification
for heterogeneity, we profile a few applica-
tions offline against all SoIs and insert them
as dense rows in the utility matrices. In the
online mode, each new application is profiled

against two randomly chosen microbe-
nchmarks for one minute, and its sensitivity
scores are added in a new row in each of the
matrices. Then, we use SVD and PQ recon-
struction to derive the missing entries and the
confidence in each similarity concept.

Validation. We evaluated the accuracy of
interference classification using the same
workloads and systems as before. Table 2
summarizes key statistics on the classification
quality. The average error in estimating both
tolerated and caused interference across SoIs
is 5.3 percent. For high values of sensitivity
(that is, applications that tolerate and cause a
lot of interference), the error is even lower
(3.4 percent).

Putting it all together
Overall, Paragon requires two short runs

(approximately 1 minute) on two SCs to clas-
sify incoming applications for heterogeneity.
Another two short runs against two micro-
benchmarks on a high-end SC are needed for
interference classification. Running for 1
minute provides some signal on the new
workload without introducing significant

Table 1. Validation of heterogeneity classification.

Applications

Metric

Single

threaded (%)

Multithreaded

(%)

Multiprogrammed

(%)

I/O bound

(%)

Selected best platform 86 86 83 89

Selected platform within 5% of best 91 90 89 92

Correct platform ranking (best to worst) 67 62 59 43

90% correct platform ranking 78 71 63 58

Training and best selected platform match 28 24 18 22

Table 2. Validation of interference classification.

Metric Percentage (%)

Average estimation error of sensitivity across all examined resources 5.3

Average estimation error for sensitivities> 60% 3.4

Applications with< 5% estimation error 59.0

Resource with highest estimation error: L1 instruction cache 15.8

Frequency L1 instruction cache used for training 14.6

Resource with lowest estimation error: Storage bandwidth 0.9

..

TOP PICKS

...

8 IEEE MICRO

profiling overheads. In our full paper,5 we dis-
cuss the issue of workload phases (that is,
transient effects that do not appear in the
1-minute profiling period). Next, we use col-
laborative filtering to classify the application
in terms of heterogeneity and interference.
This requires a few milliseconds even when
considering thousands of applications and
several tens of SCs or SoIs. Classification for
heterogeneity and interference is performed
in parallel. For the applications we consid-
ered, the overall profiling and classification
overheads are 1.2 and 0.09 percent on
average.

Using analytical methods for classification
has two benefits. First, we have strong analyt-
ical guarantees on the quality of the informa-
tion used for scheduling, instead of relying
mainly on empirical observation. The analyt-
ical framework provides low and tight error
bounds on the accuracy of classification, stat-
istical guarantees on the quality of colocation
candidates, and detailed characterization of
system behavior. Moreover, the scheduler
design is workload independent, which
means that the properties the scheme pro-
vides hold for any workload. Second, these
methods are computationally efficient, scale
well with the number of applications and
SCs, and do not introduce significant sched-
uling overheads.

Paragon
Once an incoming application is classified

with respect to heterogeneity and interference,

Paragon schedules it on one of the available
servers. The scheduler attempts to assign each
workload to the server of the best SC and colo-
cate it with applications so that interference is
minimized for workloads running on the
same server.

Scheduler design
Figure 1 presents an overview of Paragon’s

components and operation. The scheduler
maintains per-application and per-server
state. The per-application state includes the
classification information; for a datacenter
with 10 SCs and 10 SoIs, it is 64 bytes per
application. The per-server state records the
IDs of applications running on a server and
the cumulative sensitivity to interference
(roughly 64 bytes per server). The per-server
state is updated as applications are scheduled
and, later on, completed. Overall, state over-
heads are marginal and scale logarithmically
or linearly with the number of applications
(N) and servers (M). In our experiments with
thousands of applications and servers, a single
server could handle all processing and storage
requirements of scheduling, although addi-
tional servers can be used for fault tolerance.

Greedy server selection
In examining candidates, the scheduler

considers two factors: first, which assign-
ments minimize negative interference be-
tween the new application and existing load,
and second, which servers have the best SC
for this workload.

Selection of colocation
candidates

2x

State: N*16B

Step 2: Server selection

App
arrival

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

U’ ∑’ V’

Classification for heterogeneity (SVD+PQ)

Classification for interference (SVD+PQ)

Step 1: Application classification

U ∑ V

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

U’ ∑’ V’
5 45 5 5 1

1 31 2 54
2 4 35 5 3

1 54 253
2 31 5 55
3 511 3 2

2 3 34 4 2
3 41 551

5 45 5 5 1
1 31 2 54
2 4 35 5 3

1 54 253
2 31 5 55
3 511 3 2

2 3 34 4 2
3 41 551

U ∑ V

Heterogeneity
scores

Interference
scores

C

DC servers

S
A

N

B

D
S

A

C
S

C
DC

S

D

SS

D

DE
E

E F
F
FA

A

B
B

Figure 1. The components of Paragon and the state maintained by each component. Overall, the state requirements are

marginal and scale linearly or logarithmically with the number of applications (N), servers (M), and configurations. (PQ: PQ

reconstruction; SVD: singular value decomposition; DC: datacenter.)

...

MAY/JUNE 2014 9

The scheduler evaluates two metrics,
D1¼ tserver� cnewapp and D2¼ tnewapp�
cserver , where t is the sensitivity score for toler-
ated and c for caused interference for a spe-
cific SoI. The cumulative sensitivity of a
server to caused interference is the sum of
sensitivities of individual applications run-
ning on it, whereas the sensitivity to tolerated
interference is the minimum of these values.
The optimal candidate is a server for which
D1 and D2 are exactly zero for all SoIs, which
implies no negative impact from interference
and perfect resource usage. In practice, a
good selection is one where D1 and D2 are
positive and small for all SoIs. Large, positive
values for D1 and D2 indicate suboptimal
resource utilization. Negative values for D1

or D2 imply violation of QoS.
We examine candidate servers for an

application in the following way. The process
is explained for interference tolerated by the
server and caused by the new workload (D1)
and is exactly the same for D2. We start from
the resource the new application is most sen-
sitive to. We select the server set for which D1

is non-negative for this SoI. Next, we exam-
ine the second SoI in order of decreasing sen-
sitivity scores, filtering out any servers for
which D1 is negative, until all SoIs have been
examined. Then, we take the intersection of
server sets for D1 and D2 and select the
machine with the best SC and with
min D1 þ D2 L1kkð Þ.

As we filter out servers, at some point the
set of candidate servers might become
empty. This implies that there is no single
server for which D1 and D2 are non-negative
for some SoI. Although unlikely, we support
this event with backtracking and QoS
relaxation. Given M servers, the worst-case
complexity is OðM � SoI 2Þ, because, theo-
retically, backtracking might extend all the
way to the first SoI. In practice, however, we
observe that for a 1,000-server system, 89
percent of applications were scheduled with-
out any backtracking. For 8 percent of the
remaining applications, backtracking led to
negative D1 or D2 for a single SoI (and for 3
percent for multiple SoIs). Additionally, we
bound the runtime of the greedy search
using a timeout mechanism, after which the
best server from the ones already examined
is selected.

Our full paper includes a discussion on
workload phases and applicability to multit-
ier latency-critical applications.5

Evaluation methodology
In the following paragraphs, we describe

the server systems, alternative schedulers,
applications, and workload scenarios used in
our evaluation.

We evaluated Paragon on a 1,000-server
cluster on Amazon EC2 with 14 instance
types from small to extra large.12 All instances
were exclusive (reserved)—that is, no other
users had access to the servers. There were no
external scheduling decisions or actions such
as auto-scaling or workload migration during
the course of the experiments.

We compared Paragon to three schedu-
lers. The first is a baseline scheduler that
assigns applications to least-loaded (LL)
machines, accounting for their core and
memory requirements but ignoring their het-
erogeneity and interference profiles. The
second is a heterogeneity-oblivious (NH)
scheme that uses the interference classifica-
tion in Paragon to assign applications to serv-
ers without visibility in their SCs. The third
is an interference-oblivious (NI) scheme that
uses the heterogeneity classification but has
no insight on workload interference.

We used 400 single-threaded (ST), multi-
threaded (MT), and multiprogrammed
(MP) applications from SPEC CPU2006,
several multithreaded benchmark suites,5 and
SPECjbb. For multiprogrammed workloads,
we created 350 mixes of four SPEC applica-
tions. We also used 26 I/O-bound workloads
in Hadoop and Matlab running on a single
node. Workload durations range from
minutes to hours. For workload scenarios
with more than 426 applications, we repli-
cated these workloads with equal likelihoods
(1/4 ST, 1/4 MT, 1/4 MP, and 1/4 I/O) and
randomized their interleaving.

We used the applications listed in this sec-
tion to examine the following scenarios: a low-
load scenario with 2,500 randomly chosen
applications submitted with 1-second inter-
vals, a high-load scenario with 5,000 applica-
tions submitted with 1-second intervals, and
an oversubscribed scenario where 7,500 work-
loads are submitted with 1-second intervals
and an additional 1,000 applications arrive in

..

TOP PICKS

...

10 IEEE MICRO

burst (less than 0.1-second intervals) after the
first 3,750 workloads.

Evaluation
We evaluated the Paragon scheduler

against the LL, NH, and NI schedulers, with
respect to performance, decision quality,
resource allocation, and cluster utilization.

Performance impact
Figure 2 shows the performance for the

three workload scenarios on the 1,000-server

EC2 cluster. The low-load scenario, in gen-
eral, does not create significant performance
challenges. Nevertheless, Paragon outper-
forms the other three schemes; it preserves
QoS for 91 percent of workloads and
achieves on average 96 percent of the per-
formance of a workload running in isolation
in the best SC. When moving to the high-
load scenario, the difference between schedu-
lers becomes more obvious. Although the
heterogeneity and interference-oblivious
schemes degrade performance by an average

0 5,00 1,000 1,500 2,000 2,500

Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p

ee
d

up
 o

ve
r

al
on

e
on

b

es
t p

la
tfo

rm

Low load

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p

ee
d

up
 o

ve
r

al
on

e
on

b

es
t p

la
tfo

rm

0 1,000 2,000 3,000 4,000 5,000

Workloads

High load

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p

ee
d

up
 o

ve
r

al
on

e
on

 b
es

t p
la

tfo
rm

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Workloads

Oversubscribed

(a) (b)

(c)

Alone on best platform No heterogeneity (NH) No interference (NI)

Least loaded (LL) Paragon (P)

Figure 2. Performance comparison between the four schedulers for three workload scenarios on 1,000 Amazon Elastic

Compute Cloud (EC2) servers. Performance is normalized to optimal performance in isolation, and applications are ordered

from worst to best performing.

...

MAY/JUNE 2014 11

of 22 and 34 percent and violate QoS for 96
and 97 percent of workloads, respectively, Par-
agon degrades performance by only 4 percent
and guarantees QoS for 61 percent of work-
loads. The least-loaded scheduler degrades
performance by 48 percent on average, with
some applications not terminating success-
fully. The differences in performance are
larger for workloads submitted when the sys-
tem is heavily loaded.

Finally, for the oversubscribed case, NH,
NI, and LL dramatically degrade perform-
ance for most workloads, while the number
of applications that do not terminate success-
fully increases to 10.4 percent for LL. Para-
gon, on the other hand, preserves QoS
guarantees for 52 percent of workloads, while
the other schedulers provide similar guaran-
tees only for 5, 1, and 0.09 percent of work-
loads, respectively. Additionally, it limits
degradation to less than 10 percent for an
additional 33 percent of applications and
maintains moderate performance degrada-
tion (no cliffs in performance similar to NH
for applications 1 through 1,000).

Decision quality
Figure 3 shows a breakdown of the deci-

sion quality of the different schedulers for
heterogeneity (left) and interference (right)
across the three scenarios. LL induces more

than 20 percent performance degradation to
most applications, both due to heterogeneity
and interference. NH has low decision qual-
ity in terms of platform selection, whereas NI
causes performance degradation by colocating
unsuitable applications. The errors increase as
we move to scenarios of higher load. Paragon
decides optimally for 65 percent of applica-
tions for heterogeneity and 75 percent for
interference, on average, significantly higher
than the other schedulers. It also constrains
decisions that lead to larger than 20 percent
degradation to less than 8 percent of
workloads.

Resource allocation
Figure 4 shows why this deviation exists.

The solid black line in each graph represents
the required core count based on the applica-
tions running at a snapshot of the system,
while the other lines show the allocated cores
by each of the schedulers. Because Paragon
optimizes for increased utilization within QoS
constraints, it follows the application require-
ments closely. It only deviates when the
required core count exceeds the resources
available in the system (oversubscribed case).
NH has mediocre accuracy, whereas NI and
LL either significantly overprovision the num-
ber of allocated cores, or oversubscribe certain
servers. There are two important points in

LL N
H N
I P LL N

H N
I P LL N

H N
I P

0

20

40

60

80

100

A
p

p
lic

at
io

n
pe

rc
en

ta
g

e

No degradation < 10% degradation < 20% > 20%

LL N
H N
I P LL N

H N
I P LL N

H N
I P

0

20

40

60

80

100

A
p

p
lic

at
io

n
pe

rc
en

ta
g

e

Low load High load Oversubscribed Low load High load Oversubscribed

Figure 3. Breakdown of decision quality for the four schedulers across the three EC2

scenarios. Different colors correspond to different impacts in application performance in

terms of heterogeneity (left) and interference.

..

TOP PICKS

...

12 IEEE MICRO

these graphs. First, as the load increases, the
deviation of execution time from optimal
increases for NH, NI, and LL, whereas Para-
gon approximates it closely. Second, for high
loads, the errors in core allocation increase dra-
matically for the other three schedulers,
whereas for Paragon the average deviation

remains approximately constant, excluding
the part where the system is oversubscribed.

Cluster utilization
Figure 5 shows the cluster utilization in

the high-load scenario for LL and Paragon in
the form of heat maps. Utilization is shown

0 50 100 150 200 250 300
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

C
or

e
co

un
t

Low load

Time (minutes)
0 100 200 300 400 500

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

C
or

e
co

un
t

High load

Time (minutes)

(a) (b)

0 100 200 300 400 500 600 700 800
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

C
or

e
co

un
t

Oversubscribed load

Time (minutes)

(c)

Required

No heterogeneity (NH)

No interference (NI)

Least loaded (LL)

Paragon (P)

Figure 4. Resource allocation for the three workload scenarios. Each line corresponds to the number of allocated computing

cores at each point during the execution of the scenario. Although the heterogeneity-oblivious (NH), interference-oblivious

(NI), and least-loaded (LL) schedulers under- or overestimate the required resources, Paragon closely follows the application

resource requirements.

0

200

400

600

800

1,000
Least loaded

0

10

20

30

40

50

60

70

80

90

100

S
er

ve
rs

Time (minutes)

 100 200 300 400 500
0

200

400

600

800

1,000
Paragon

0

10

20

30

40

50

60

70

80

90

100

S
er

ve
rs

Time (minutes)
 100 200 300 400 500

(a) (b)

Figure 5. CPU utilization heat maps for the high-load scenario for the least-loaded system and Paragon. Utilization is averaged

across the cores of a server and is sampled every 5 seconds. Darker colors correspond to higher CPU utilization in the

heatmaps.

...

MAY/JUNE 2014 13

for each individual server throughout the
duration of the experiment and is averaged
across the server’s cores every 5 seconds.
Whereas with LL utilization does not exceed
20 percent for the majority of time, Paragon
achieves an average utilization of 52 percent.
Additionally, as workloads run closer to their
QoS requirements, the scenario completes in
19 percent less time.

T he Paragon scheduler moves away from
the traditional empirical design

approach in computer architecture and
systems and adopts a more data-driven
approach. In the past few years, we have
entered an era where data has become so vast
and rich that it can provide much better (and
faster) insight on design decisions than the
traditional trial-and-error approach can.
Applying such techniques in datacenter
scheduling with significant gains is proof of
the value of using data to drive system design
and management decisions. There are other
highly dimensional problems where similar
techniques can be proven effective, such as
the large space-design explorations for either
processors13 or memory systems or the more
general cluster management problem in
cloud providers. The latter becomes increas-
ingly challenging because many cloud appli-
cations are multitier workloads with complex
dependencies and they must satisfy strict tail
latency guarantees. Additionally, issues like
heterogeneity and interference are not rele-
vant only to datacenters. Systems of all scales,
from low-power mobile to traditional CMPs
and large-scale cloud computing facilities,
face similar challenges, which makes employ-
ing techniques that work online, fast and can
handle huge spaces a pressing need.

Determining which data can offer valua-
ble insights in system decisions and designing
efficient techniques to collect and mine it in a
way that leverages their nature and character-
istics is a significant challenge moving
forward.

MICR O

Acknowledgments
We sincerely thank John Ousterhout,

Mendel Rosenblum, Byung-Gon Chun,
Daniel Sanchez, Jacob Leverich, David Lo,
and the anonymous reviewers for their

feedback on earlier versions of this manu-
script. This work was partially supported by
a Google-directed research grant on energy-
proportional computing. Christina Delimi-
trou was supported by a Stanford Graduate
Fellowship.

..
References
1. L.A. Barroso and U. Holzle, The Datacenter

as a Computer: An Introduction to the

Design of Warehouse-Scale Machines,

Morgan and Claypool, 2009.

2. J. Rabaey et al., “Beyond the Horizon: The

Next 10x Reduction in Power—Challenges

and Solutions,” Proc. IEEE Int’l Solid-State

Circuits Conf., 2011, doi:10.1109/ISSCC.

2011.5746206.

3. L. Barroso, “Warehouse-Scale Computing:

Entering the Teenage Decade,” Proc. 38th

Ann. Int’l Symp. Computer Architecture

(ISCA 11), 2011.

4. D. Meisner et al., “Power Management of

Online Data-Intensive Services,” Proc. 38th

Ann. Int’l Symp. Computer Architecture

(ISCA 11), 2011, pp. 319-330.

5. C. Delimitrou and C. Kozyrakis, “Paragon:

QoS-Aware Scheduling in Heterogeneous

Datacenters,” Proc. 18th Int’l Conf. Archi-

tectural Support for Programming Lan-

guages and Operating Systems (ASPLOS

13), 2013, pp. 77-88.

6. R.M. Bell, Y. Koren, and C. Volinsky,

The BellKor 2008 Solution to the

Netflix Prize, tech. report, AT&T Labs, Oct.

2007.

7. J. Mars et al., “Bubble-Up: Increasing Uti-

lization in Modern Warehouse Scale Com-

puters via Sensible Co-locations,” Proc.

44th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture, 2011, pp. 248-259.

8. R. Nathuji, C. Isci, and E. Gorbatov,

“Exploiting Platform Heterogeneity for

Power Efficient Data Centers,” Proc. 4th

Int’l Conf. Autonomic Computing (ICAC 07),

2007, doi:10.1109/ICAC.2007.16.

9. N. Vasic et al., “DejaVu: Accelerating

Resource Allocation in Virtualized Environ-

ments,” Proc. 17th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems, 2012, pp. 423-436.

..

TOP PICKS

...

14 IEEE MICRO

10. A. Rajaraman and J.D. Ullman, Mining of

Massive Datasets, Cambridge Univ. Press,

2011.

11. C. Delimitrou and C. Kozyrakis, “iBench:

Quantifying Interference for Datacenter

Workloads,” Proc. IEEE Int’l Symp. Work-

load Characterization, 2013, pp. 23-33.

12. C. Delimitrou and C. Kozyrakis, “QoS-Aware

Scheduling in Heterogeneous Datacenters

with Paragon,” ACM Trans. Computer Sys-

tems, vol. 31, no. 4, 2013, article no. 12.

13. O. Azizi et al., “Energy Performance Trade-

offs in Processor Architecture and Circuit

Design: A Marginal Cost Analysis,” Proc.

37th Ann. Int’l Symp. Computer Architec-

ture (ISCA 10), 2010, pp. 26-36.

Christina Delimitrou is a PhD student in
the Department of Electrical Engineering at
Stanford University. Her research focuses on
large-scale datacenters, specifically on sched-
uling and resource allocation techniques
with quality-of-service guarantees, practical
cluster management systems that improve
resource efficiency, and datacenter applica-
tion analysis and modeling. Delimitrou has
an MS in electrical engineering from

Stanford University. She is a student mem-
ber of IEEE and the ACM.

Christos Kozyrakis is an associate professor
in the Departments of Electrical Engineer-
ing and Computer Science at Stanford Uni-
versity, where he investigates hardware
architectures, system software, and pro-
gramming models for systems ranging from
cell phones to warehouse-scale datacenters.
His research focuses on resource-efficient
cloud computing, energy-efficient multicore
systems, and architectural support for secur-
ity. Kozyrakis has a PhD in computer
science from the University of California,
Berkeley. He is a senior member of IEEE
and the ACM.

Direct questions and comments about this
article to Christina Delimitrou, Gates Hall,
353 Serra Mall, Room 316, Stanford, CA
94305; cdel@stanford.edu.

...

MAY/JUNE 2014 15

	ref1a
	ref2a
	ref3a
	ref4a
	ref5a
	ref6a
	ref7a
	ref8a
	figA
	ref1b
	ref2b
	ref3b
	ref4b
	ref5b
	ref6b
	ref7b
	deqn1
	deqn2
	deqn3
	deqn4
	deqn5
	table1
	table2
	fig1
	fig2
	fig3
	fig4
	fig5
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	ref7
	ref8
	ref9
	ref10
	ref11
	ref12
	ref13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 36.00000
 36.00000
 36.00000
 36.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 36.00000
 36.00000
 36.00000
 36.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

