
iBench: Quantifying Interference for Datacenter Applications
Christina Delimitrou and Christos Kozyrakis

Electrical Engineering Department
Stanford University

{cdel, kozyraki}@stanford.edu

Abstract—Interference between co-scheduled applications is
one of the major reasons that causes modern datacenters (DCs)
to operate at low utilization. DC operators traditionally side-
step interference either by disallowing colocation altogether and
providing isolated server instances, or by requiring the users
to express resource reservations, which are often exaggerated to
counter-balance the unpredictability in the quality of allocated
resources. Understanding, reducing and managing interference
can significantly impact the manner in which these large-scale
systems operate.

We present iBench, a novel workload suite that helps quan-
tify the pressure different applications put in various shared
resources, and similarly the pressure they can tolerate in
these resources. iBench consists of a set of carefully-crafted
benchmarks that induce interference of increasing intensity in
resources that span the CPU, cache hierarchy, memory, storage
and networking subsystems. We first validate the effect that
iBench workloads have on performance against a wide spectrum
of DC applications. Then, we use iBench to demonstrate the
importance of considering interference in a set of challenging
problems that range from DC scheduling and server provisioning,
to resource-efficient application development and scheduling
for heterogeneous CMPs. In all cases quantifying interference
with iBench results in significant performance and/or efficiency
improvements. We plan to release iBench under a free software
license.

I. INTRODUCTION

An increasing amount of computing is performed in the
cloud, primarily due to the flexibility and cost benefits both for
the end-users and the operators of these large-scale datacenters
(DCs). Public cloud providers such as Amazon EC2 [1], Mi-
crosoft Windows Azure [43] and Google Compute Engine [21]
host tens of thousands of applications on a daily basis. Addi-
tionally, several companies organize their IT in private clouds,
using management systems such as VMWare vCloud [42],
Eucalyptus [19], Citrix XenServer [46] or OpenStack [33].

Ideally, these systems should provide scalable compute at
low cost (resource efficiency). In the past, cost efficiency has
improved by switching to commodity servers [7] and reducing
the cost of the power delivery and cooling infrastructure [23].
Similarly DC compute capabilities have scaled by increasing
the number of datacenters, adding more servers per infrastruc-
ture and relying on the chip technology to provide increased
compute for the same power budget. However, these tech-
niques are reaching the point of diminishing returns. Recent
power usage effectiveness (PUE) numbers show that the over-
head for power delivery and cooling is less than 10% [6], [32].
Similarly, building more DCs requires significant investment
while chip technology starts to progress at a slower pace, as
we are reaching the end of voltage scaling [18]. To further

improve DC operation, we must focus on using efficiently
the tens of thousands of servers available in each large-scale
infrastructure.

There are, however, several challenges towards achieving
this goal. Server utilization in datacenters today is notori-
ously low [6], [7] for reasons that include load changes,
difficulty in provisioning servers appropriately [27], widely
varying workload characteristics and constraints, and platform
heterogeneity, which occurs as servers get gradually deployed
and replaced over the typical 15-year provisioned lifetime of
a DC [6], [7], [23]. More importantly, increasing utilization
involves co-scheduling applications in the same machine,
which results in performance degradation due to interference
in shared resources [17], [28]. DC operators typically side-
step interference issues either by disallowing colocation or
by resorting to exaggerated resource reservations to coun-
terbalance performance unpredictability. A driver behind the
inefficiency of these approaches is the limited visibility both
users and DC operators have into workload characteristics.
Fig. 1 for example, shows the memory capacity and mem-
ory bandwidth requirements of a wide set of application
types, including single-threaded (ST) and multi-threaded (MT)
benchmark suites such as SPECCPU2006, PARSEC [10],
SPLASH-2 [45], BioParallel [24] and MineBench [31], multi-
programmed (MP) mixes of these workloads, distributed batch
(Hadoop) and latency-critical (memcached) applications, as
well as traditional relational database workloads (MySQL).
Capacity and bandwidth demands are normalized to the pro-
visioned system values. The size of each bubble corresponds
to the size of each job (number of tasks or clients). It becomes
obvious that even when looking only at memory requirements,
demands vary widely. Therefore, understanding the sensitivity
workloads have to contention is critical towards reducing
and managing interference in a way that enables QoS-aware
operation at high utilization.

Previous work has shown the importance of accounting for
interference in DC scheduling [17], [28] and has developed
hardware and software mechanisms to minimize interference
effects. Mars et al. [28] show that ignoring the interference
chracteristics of large DC applications in the memory subsys-
tem can cause significant performance degradations that vio-
late the workloads’ QoS constraints. Typically, determining the
interference profile of a workload involves either retroactively
observing which co-scheduled applications contend in shared
resources and annotating the offending workloads [47] or
profiling the workload against a carefully-crafted benchmark
that puts pressure on a specific shared resource [17], [28]. The

1

Memory capacity (%)

M
e

m
o

ry
 b

a
n

d
w

id
th

 (
%

)

0

20

40

60

80

100

20 40 60 80 100

 ST MT MP

 Hadoop memcached MySQL

Fig. 1: Pressure in memory capacity and memory bandwidth
from a wide set of applications, as measured by iBench. The
bubble size is proportional to the number of tasks (for Hadoop)
or clients (for memcached) of the corresponding application.

disadvantage of the first approach is that interference is deter-
mined after performance degradation has occured, and, cur-
rently, requires manual annotation of contending workloads.
The second approach is less invasive, enables interference
detection before this reflects into performance degradation,
but requires effort in designing targeted benchmarks that put
pressure on specific resources. Currently, there is no open-
source benchmark suite that enables fast characterization of
the interference an application tolerates and causes in various
subsystems.

In this paper we present iBench, a novel benchmark suite
that helps quantify the sensitivity of DC (and conventional)
applications to interference. iBench consists of a set of
carefully-crafted benchmarks that generate contention of tun-
able intensity in various shared resources which include the
core, the cache and memory hierarchy, and the storage and
networking subsystems. iBench workloads are called SoIs
(sources of interference). Injecting an SoI in a machine host-
ing an application identifies the interference that application
can tolerate in the corresponding shared resource before it
violates its QoS, and the interference it itself creates. We
validate iBench against a set of DC applications that range
from distributed frameworks such as Hadoop [2], latency-
critical online services like memcached [30] and conventional
single-threaded, multithreaded and multiprogrammed single-
node applications, and verify the accuracy and consistency of
the interference measurements.

We have used iBench in various system studies, and specifi-
cally in this work we show that it improves decision quality in
four use cases that extend to DC and CMP systems and span
hardware and software challenges. First, we use the benchmark
suite to quantify the interference sensitivity of a large set of
applications resembling a cloud provider mix and use this
information to make resource-efficient scheduling decisions.
Second, we use iBench to guide the hardware configuration of
DC servers, such that the system is appropriately provisioned

to tolerate the pressure workloads put in different resources.
Third, we move the interference characterization one step in
advance and use it to guide application software development,
before the workload’s full deployment. iBench here is used
to determine the resources where an application induces
contention, and to assist the software developer to design
more resource-efficient code. Given the speed of interference
characterization, using iBench significantly accelerates the
iterative testing process of application software. Finally, we
show that iBench is applicable to studies outside datacenters
and use the interference characterization to guide scheduling
decisions in a large-scale heterogeneous CMP. Note that in this
case characterization needs to also account for the different
core designs, while being lightweight and trasparent to the
workload. In all cases, using iBench significantly improves
the system’s ability to preserve QoS guarantees in a resource-
efficient manner. Specifically, scheduling in a DC using iBench
preserves performance for the majority of workloads, while
significantly increasing utilization, by 42%. Also, by revising
code regions, based on indications from iBench, we managed
to reduce the application footprint of a large, data mining
application by 49%, while speeding up the workload by 35%.
We plan to release iBench under a free software license.

The rest of this paper is structured as follows. Section
II discusses related work. Section III describes the iBench
workloads, while Section IV includes a validation of inter-
ference measurements using iBench. Section V presents the
four system studies used to evaluate iBench. Finally, Section
VI presents topics for future work and concludes the paper.

II. RELATED WORK

DC benchmark suites: A major roadblock when studying
DC applications is the unavailability of representative work-
loads and input loads. Given this challenge, there is extensive
work on characterization and modeling of DC applications [5],
[14], [15], [16], [25], [38] that leads to generated workloads
with characteristics that closely resemble those of the original
application. The generated workloads can then be used in
system studies without the limitation of needing access to real
DC workloads. While this is a viable approach in some cases,
modeling has limitations; there are workload aspects that are
not captured in the model to preserve simplicity. However
omitting these aspects can cause the generated workload to
deviate from its expected behavior. Additionally, modeling is
more applicable to large, long-running applications that can be
characterized in detail to provide some input to the model, but
is less beneficial in systems like Amazon’s EC2 or Windows
Azure where submitted workloads are typically unknown and
no a priori assumptions can be made about their behavior.

A different track to side-step DC workload unavailability is
the design of open-source versions of popular applications, that
resemble their behavior and structure. Examples of such work-
loads are Lucene [3] and Nutch [4] for Websearch, Round-
cube [35] for Webmail, or Hadoop [2] for MapReduce [13]. In
the same spirit, CloudSuite [20] is an open-source benchmark
suite that aggregates a set of such applications, including

2

data analytics, media streaming and web serving. While open-
source applications cannot be exact replicas of production-
class workloads, they provide a reasonable approximation of
their behavior.

Interference-related workloads: Recent work has shown
that reducing interference is critical to preserving application
performance in DCs [17], [22], [28], [40]. Govindan et al. [22]
designed a synthetic cache loader to profile an application’s
cache behavior and the pressure it would put on co-scheduled
workloads. Similarly, to demonstrate the impact of interference
in the memory subsystem, Mars et al. [28] designed two micro-
kernels that create tunable contention in memory capacity and
memory bandwidth. These kernels are then used to quantify
the sensitivity of a workload to memory interference. Addi-
tionally, Tang et al [40] designed SmashBench, a benchmark
suite for cache and memory contention. Benchmarks include
operations on binary search trees (BSTs), arrays and 3D arrays.

With iBench we extend the resources in which interference
is quantified to the core, the memory hierarchy, and the storage
and networking subsystems. This enables iBench to provide
critical insights on the sensitivity of applications to resource
contention that can guide both software (e.g., scheduling) and
hardware (e.g., server provisioning) system studies.

III. IBENCH WORKLOADS

A. Overview

The goal of iBench is to identify the shared resources
an application creates contention to, and similarly the type
and amount of contention the application is sensitive to. For
this purpose, all iBench workloads have tunable intensity that
progressively puts more pressure on a specific shared resource
until the behavior of the application changes (i.e., performance
degrades). A similar technique has been shown to provide
accurate estimations on sensitivity to contention in the memory
subsystem [28], [40]. In total, iBench consists of 15 carefully-
crafted workloads, which we call sources of interference
(SoIs), each for a different shared resource. The following
section describes each one of them in detail. To provide some
proportionality between the intensity of the benchmark and its
impact to the corresponding resource, SoIs are designed such
that their impact increases almost linearly with the intensity
of the benchmark. Finally, we try to ensure that the impact of
the different iBench workloads is not overlapping, e.g., that the
memory bandwidth SoI does not cause significant contention
in memory capacity and vice versa. Section IV validates that
this is indeed the case across SoIs.

B. Designing the SoIs

Memory capacity (SoI1): This kernel progressively accesses
larger memory footprints until it takes over the entire memory
capacity. The access pattern of addresses in this case is
random, but can also be set to perform strided memory
accesses. The following snippet shows the basic operation of
SoI1:

t = 0;

while (t < duration) {
ts = time(NULL);

while (coverage < x%) {
// SSA: to increase ILP

access[0] += data[r] << 1;

access[1] += data[r] << 1;

...

access[30] += data[r] << 1;

access[31] += data[r] << 1;

wait(tx/accx);

}
x++;

t += time(NULL) - ts;

}

The kernel identifies automatically the size of memory
available in the system and scales its footprint “almost”
proportionately with time. From the snippet above, t is the total
time the SoI will run for. The benchmark uses single static
assignment (SSA) to increase the ILP in memory accesses,
and launches as many requests as necessary to guarantee
the appropriate capacity coverage at each point during its
execution, e.g., at 8% intensity, capacity coverage should be
8%. The memory addresses r are selected randomly with a
low-overhead random generator function. For low intensities
the kernel may switch to an idle state between memory
requests. tx is the time the kernel spends at a specific intensity
level, and is a function of the benchmark duration t and the
intensity level x. accx is the number of accesses required to
reach a specific coverage level and is also a function of the
intensity x. The time the kernel can remain idle is proportional
to tx and inversely proportional to accx. As the kernel moves
to higher intensities, the fraction of time the kernel remain idle
reduces as more accesses are required to achieve a certain
memory coverage. By default all kernels run for 10msec,
however duration is a configurable parameter.

Memory bandwidth (SoI2): The benchmark in this case
performs streaming (serial) memory accesses of increasing
intensity to a small fraction of the address space. The intensity
increases until the SoI consumes 100% of the sustained
memory bandwidth of the specific machine. The intensity
of accesses increases linearly with the memory bandwidth
used. The reason why accesses happen to a relatively small
fraction of memory (e.g., 10%) is to decouple the effects of
contention in memory bandwidth from contention in memory
capacity. The following snippet captures the main operation
of the streaming kernel:

t = 0;

while (t < duration) {
ts = time(NULL);

for (int cnt = 0; cnt < accx; cnt++) {
access[cnt] = data[cnt]*data[cnt+4];

wait(tx/accx);

}

3

x++;

calculate accx;

t += time(NULL) - ts;

}

The definition of tx and accx is the same as before. In the
subsequent SoIs we skip the code snippets in the interest of
space, and describe their main operation.

Storage capacity (SoI3): Storage corresponds to the non-
volatile secondary devices, e.g., disk drives or flash that store
data. We assume these are disk drives for simplicity. The
microbenchmark accesses random data segments across the
disk’s sectors. The amount of accessed data increases linearly
with the SoI’s intensity, i.e., at 20% intensity close to 20% of
disk capacity is accessed by the SoI.

Storage bandwidth (SoI4): This benchmark creates traffic
of increasing intensity to the hard drives of the system.
Disk accesses in this case are serial and the consumed disk
bandwidth increases almost linearly with the intensity of the
SoI, e.g., at 100% intensity, the SoI uses close to 100% of the
sustained disk bandwidth of the system.

Network bandwidth (SoI5): This SoI is of interest to
workloads with network connectivity, e.g., online services or
distributed frameworks like MapReduce. It operates by issuing
network requests of increasing intensity (size and frequency
of requests) to a remote host. We currently do not deploy rate
limiting mechanisms, therefore the SoI can take over 100%
of the available network bandwidth, essentially starving any
co-scheduled application.

Last level cache (LLC) capacity (SoI6): The benchmark
mines the /proc/cpuinfo of the system and adjusts its
footprint, access pattern and the pace that its intensity in-
creases based on the size and associativity of the specific LLC.
The kernel issues random accesses that cover an increasing
size of the LLC capacity. Because caches are structured in sets,
it is easy to mathematically prove and practically guarantee
that the footprint of the benchmark increases linearly with
the intensity of the SoI and that its accesses are uniformly
distributed. We skip the proof in the interest of space. Finally,
to guarantee that accesses are not intercepted in the lower
levels of the hierarchy (L1, L2) we concurrently run small tests
that sweep the smaller caches (without introducing additional
misses) to ensure that all accesses from the SoI go to the LLC.

LLC bandwidth (SoI7): This benchmark is similar to the
SoI for memory bandwidth in that it performs streaming data
accesses to the LLC. In this case the size and peak bandwidth
the SoI targets are tuned to the parameters of the specific last
level cache. Because accesses are streaming over a fraction
of the cache, the lower levels of the hierarchy do not play
as important a role as with random accesses. We have found
that running the sweep tests for L1 and L2 does not make a
significant difference when measuring sensitivity to contention
in LLC bandwidth.

L2 capacity (SoI6’): This is a similar benchmark to SoI6
(LLC Capacity), and is applicable in systems with 3+ levels

of cache hierarchy. The footprint in this case grows up to the
L2 cache size and the L2 associativity is used to tune how
intensity changes over the kernel’s duration.
L2 bandwidth (SoI7’): Similar to SoI7 (LLC bandwidth), but
tuned to the size and associativity of the L2. Accesses in this
case are streaming.
L1 i-cache (SoI8): A simple kernel that sweeps through
increasing fractions of the i-cache, until it populates its full
capacity. Accesses in this case are again random.
L1 d-cache (SoI9): A copy of the previous SoI, tuned to the
specific structure and size of the d-cache (typically the same
as the i-cache).
Translation lookahead buffer (TLB) (SoI10): This bench-
mark fetches pages from memory at increasing rates until it
occupies all the TLB entries. This forces long page walks
for any co-scheduled application, inducing high performance
degradations. Again, because of the structure of TLBs it is easy
to compute the pace at which SoI intensity should increase to
guarantee a linear relation with the occupied entries.
Integer processing units (SoI11): While the core can be
approached as a single shared resource, we decide to separate
the different types of operations to integer, floating point (and
an optional vector SoI when SSE extensions are available).
All three SoIs are assembly-level benchmarks that issue an
increasing number of the corresponding type of instructions.
For SoI11 these are instructions between integers.
FP processing units (SoI12): Similarly here, floating point
instructions are issued at an increasing rate. SoIs 11 and 12
(and 15 when applicable) can run both on the same hardware
thread and on different threads sharing the same core.
Prefetchers (SoI13): This benchmark tries to inject un-
predictability in the instructions the prefetcher brings from
memory, and decrease its effectiveness. This may seem similar
to the operation of the L1 i-cache benchmark, however the
prefetcher SoI employs a different access pattern than SoI8.
Instead of simply sweeping through the L1 and evicting the
co-runner’s instructions, the SoI here is a small program that
only takes up a fraction of the L1 i-cache, but interleaves its
instructions with the examined application’s instructions. This
way the prefetcher gets tricked into bringing the SoI’s next
“expected” instructions from memory instead of the primary
application’s. Intensity here translates to the time the SoI is
non-idle. This SoI also interacts in part with the system’s
branch predictor.
Interconnection network (SoI14): This benchmark is de-
signed using message passing primitives between cores. As the
SoI intensity goes up the number and fanout of messages sent
by the kernel increases. For high intensities the injected traffic
becomes adversarial, leading the remaining system cores to
starvation.
Vector processing units (SoI15): This SoI is only applicable
in systems with SIMD ISA extensions, e.g., SSE3/4. It takes
advantage of these extensions to launch 256-wide SIMD
instructions with increasing frequency. Instructions are issued

4

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
ap

ac
ity

(%
)

SoI1:: Mem Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
an

dw
id

th
(%

)

SoI2:: Mem Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
ap

ac
ity

(%
)

SoI3:: Storage Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
an

dw
id

th
(%

)

SoI4:: Storage Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
an

dw
id

th
(%

)

SoI5:: Network Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
ap

ac
ity

(%
)

SoI6:: LLC Cap

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100
B

an
dw

id
th

(%
)

SoI7:: LLC Bw

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
ap

ac
ity

(%
)

SoI8:: L1 i-cache

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

C
ap

ac
ity

(%
)

SoI9:: L1 d-cache

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

TL
B

m
is

se
s

(%
)

SoI10:: TLBs

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

SoI11:: Int Unit

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

SoI12:: FP Unit

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100
P

re
fe

tc
h

M
is

se
s

(%
)

SoI13:: Prefetchers

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
an

dw
id

th
(%

)

SoI14:: Interconnection Network

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

SoI15:: Vector Unit

Fig. 2: The iBench workloads. For each benchmark we show the system impact for increasing SoI intensity. We do not include
the graphs for the L2 capacity and bandwidth SoIs. These are similar to the ones for LLC capacity and bandwidth.

on a small data set to avoid interfering with the cache/memory
hierarchy. None of the systems we tested uses extensive
memoization techniques therefore operating on the same data
does not reduce the load to the vector units.

IV. VALIDATION

We want to validate three aspects of iBench; first that the
benchmarks indeed induce contention in their corresponding
resources, and that their impact increases almost linearly with
their intensity. Second, we want to evaluate the impact of
iBench on conventional and DC applications and verify that
the SoIs can be used to detect sensitivity to interference.
Finally, we want to verify that the different SoIs do not overlap
with each other in a way that voids the insights drawn about
an application’s behavior, e.g., that the memory bandwidth SoI
does not introduce significant contention in memory capacity.

A. Individual SoIs Validation

Fig. 2 shows the impact of the 15 SoIs across their intensity
spectrum (0-100%). For capacity-related benchmarks we show
their cache, memory or disk footprint. For the bandwidth-
related SoIs we show the fraction of bandwidth they consume
normalized to the provisioned sustained cache, memory or disk
bandwidth. For the core-related SoIs we show the utilization
they induce in the corresponding functional units (int, fp
or vector). Finally, for the TLB benchmark we show TLB
misses and for the prefetcher benchmark, prefetch misses. All
measurements are collected using performance counters on
a dual-socket, 8-core Nehalem server with private L1s and

L2s and a shared 8MB L3 cache and 32GB of RAM. The
server has a 1GB NIC and 4 500GB hard drives. Each SoI
runs for 10msec on its own and covers its full range of 0 to
100% of intensity. Each SoI automatically detects the system
parameters that it needs in order to adjust its operation, e.g.,
cache or TLB size, core count or NIC type. From Fig. 2 we
see that for all benchmarks the impact to the corresponding
resource increases almost linearly with their intensity. The
only SoIs that slightly deviate from linear are the core-related
benchmarks Int and FP. This happens because correlating the
number of issued instructions to the eventual system utilization
is harder than correlating the number of cache accesses to the
capacity used. We plan to further refine these workloads to
better approach linear load increase as part of future work.

B. SoI Impact on Applications

iBench is aimed to detect and quantify the sensitivity of DC
and conventional workloads to various sources of interference.
Here we validate that this operation is accurate. We inject
iBench workloads in a conventional application (mcf from the
SPECCPU2006 suite) and in a DC latency-critical application
(memcached [30]) and measure their sensitivity to interference
in the corresponding resources. Each application runs on a
single server, and memcached is set up with 1000 clients
launching 40,000 QPS in total, with a target per-request
latency of 200usec. mcf is profiled for 10msec against the LLC
capacity SoI, and memcached against the network bandwidth
SoI. Both SoIs inflate to full intensity (100%). Fig. 3a, b
shows the results for mcf and Fig. 3c, d for memcached.

5

0 20 40 60 80 100
SoI Intensity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
Is

ol
at

io
n

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

M
is

s
R

at
e

(%
)

0 20 40 60 80 100
SoI Intensity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
no

rm
Is

ol
at

io
n

0 20 40 60 80 100
SoI Intensity (%)

0

20

40

60

80

100

B
an

dw
id

th
no

rm
Is

ol
at

io
n

(%
)

Fig. 3: Validation of the impact contention generated using
iBench has on mcf and memcached. Fig. 3a shows the perfor-
mance of mcf when co-scheduled with the LLC capacity SoI,
while Fig. 3b shows its new miss rate curve as SoI intensity
increases. Fig. 3c shows the performance of memcached when
running with the network bandwidth SoI and Fig. 3d shows
its bandwidth share compared to when running alone.

Fig. 3a shows the performance impact of contention in LLC
capacity for mcf and the corresponding miss rate curve as
the intensity of the SoI increases. Comparing the two shows
that the SoI indeed induces significant performance degrada-
tion to the application due to cache contention. The point
when performance gets a significant hit coincides with the
moment when the miss rate increases rapidly, therefore the
SoI is correctly stressing its target resource. Similarly, for
memcached we show the performance impact from increased
contention in the network and the bandwidth fraction mem-
cached manages to extract compared to the target fraction it
needs to preserve its performance requirements. Again there is
a direct correlation between performance degradation and its
cause. As SoI intensity increases, the goodput of memcached
(fraction of requests that meet their target latency) rapidly
decreases. Fig. 3d shows the reason behind this degradation.
For high SoI intensities, the bandwidth share of memcached
becomes increasingly smaller, introducing queueing delays to
incoming requests. At the same time, examining its cache miss
rate or memory behavior does not show significant variations
compared to when memcached is running alone. This verifies
that the SoI is confined to its specific resource and does
not violently disrupt the utilization of other subsystems. We
further validate this observation in the following subsection.
We have also verified that these results are consistent across
the different SoIs for various workload types.

C. Correlation between SoIs

Finally, we verify that different sources of interference
(SoIs) do not overlap and interfere with each other. For this
purpose we co-schedule two SoIs at a time in the same core

0 2 4 6 8 10
Time (msec)

0

20

40

60

80

100

In
te

ns
ity

(%
)

alone
with SoI2

0 2 4 6 8 10
Time (msec)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IP
C

no
rm

Is
ol

at
io

n

SoI1:: Memory Capacity

0 2 4 6 8 10
Time (msec)

0

20

40

60

80

100

In
te

ns
ity

(%
)

alone
with SoI1

0 2 4 6 8 10
Time (msec)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IP
C

no
rm

Is
ol

at
io

n

SoI2:: Memory Bandwidth

Fig. 4: Validation of the impact SoIs have on each other. Fig.
4a shows the intensity of SoI1 when co-scheduled with SoI2
and similarly for SoI2 (Fig. 4c). Fig. 4b, d show the achieved
IPC normalized to target when the two SoIs run together.
Overall, interference between benchmarks is minimal.

of the 8-core system previously used. Fig. 4 shows the in-
crease in intensity and corresponding performance normalized
to isolation for a co-schedule of the memory capacity and
memory bandwidth SoIs. As shown in the figure, for high
system loads, there is a small impact in the ability of each SoI
to reach its full intensity. Similarly there is a slight degradation
in performance compared to running in isolation. However, for
both SoIs degradations are mild, which means that the different
benchmarks do not induce significant contention outside their
target resource. This is important to both obtain accurate
interference measurements, and make valid assumptions on
their causes. We have performed this experiment with different
SoI combinations with similar results.

V. USE CASES

A. Datacenter Scheduling

Currently, DC operators often disallow application co-
scheduling in shared servers to preserve QoS guarantees.
However, this leads to serious resource underutilization. On the
other hand, co-scheduling applications can induce interference
due to contention in shared resources. We use iBench to
quantify the tolerance a workload has to various sources of
interference, and similarly the interference it causes in shared
resources. Given this information, a scheduler determines the
applications that can be safely co-scheduled without perfor-
mance degradation from interference. For this use case, the
scheduler simply tries to minimize:

||it − ic||L1
(1)

where it and ic the tolerated and caused interference for two
examined applications. The tolerated interference is calculated
as described in Section IV. The caused interference is similarly

6

0 50 100 150 200
Workload number

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

ov
er

Is
ol

at
io

n

In isolation
w/o iBench
w/ iBench

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

ov
er

Ta
rg

et

w/o iBench w/ iBench

Hadoop BE hmean

0 5000 10000 15000 20000 250000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ed
up

ov
er

Is
ol

at
io

n

In isolation w/o iBench w/ iBench

Time (s)

Fig. 5: Performance achieved by a scheduler that accounts for
interference using iBench compared to a system that ignores
interference in scheduling decisions. Results are shown for
three scenarios: a cloud workload mix (Fig. 5a), a distributed
workload (Fig. 5b) and a latency-critical application (Fig. 5c).

calculated, by quantifying the impact the examined workload
has on the performance of an SoI. The L1 norm is calcu-
lated across the different SoIs. More sophisticated scheduling
techniques can be deployed to take better advantage of the
information provided by iBench [17]. Obviously applications
can change behavior during their execution. This is especially
true for DC workloads [7], [29]. The scheduler adapts to
these changes to preserve QoS throughout an application’s
execution. If at any point in time it detects that an application is
running under its QoS, the scheduler injects iBench workloads
to the system to construct a new interference profile. Any
further scheduling decisions use the new interference profile.
Required migrations due to behavior changes are handled by
a low-overhead live migration system present in the cluster.
In the event where migration is not possible, the scheduler
disallows additional applications to be placed on the same
machine as the affected workload.

We design three scenarios; first a cloud workload mix that
resembles a system like EC2, where 200 applications are
submitted in a 40-machine cluster with 1 sec inter-arrival
times. All nodes are dual socket, 4-12 core machines with
private L1 and L2 caches and shared L3 caches, and 16-
48GB of RAM. All applications are selected randomly from a
pool consisting of the full SPECCPU2006 suite, 22 workloads
from PARSEC [10], SPLASH-2 [45], BioParallel [24] and
Minebench [31], 140 multiprogrammed workloads of 4 SPEC
applications each, based on the methodology in [37], and 10
I/O-bound data mining workloads [34]. The second scenario
involves a Hadoop workload running distributed on 40 nodes
with low-priority best-effort (BE) applications occupying the
remaining server capacity, and the third scenario involves a

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/o iBench
w/ iBench

Time (s)
5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

S
er

ve
rs

0

10

20

30

40

50

60

70

80

90

100

S
er

ve
rU

til
iz

at
io

n
(%

)

Time (s)
3600 7200 10800 14400 18000

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/o iBench w/ iBench
0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/o iBench
w/ iBench

Time (s)
5000 10000 15000 20000 25000

Fig. 6: Utilization achieved by a scheduler that uses iBench
compared to a system that ignores interference in scheduling
decisions. For the first scenario fewer machines are needed
(and for less time) (Fig. 6a, b), while for the second (Fig. 6c)
and third scenarios (Fig. 6d) more best-effort applications are
co-scheduled with the primary workload.

40-node installation of memcached, running as the primary
process and best-effort applications using the remaining re-
sources. Fig. 5a compares application performance for the first
scenario when quantifying interference using iBench, against
a baseline scheduler that only considers the CPU and memory
requirements of an application and assigns workloads to least-
loaded (LL) servers (w/o iBench). The latter is common
practice in many cloud providers today [41]. Performance
is normalized to running in isolation and applications are
ordered from worst- to best-performing. Using iBench to
quantify the pressure applications put on various system
resources improves performance, by 15.7% on average and
up to 25%. Similarly, performance improves in the second
and third scenario both for the primary workloads (Hadoop
and memcached respectively) and the best-effort applications.
Managing interference is beneficial to utilization as well, since
more applications can be scheduled on the same machine. Fig.
6 shows the utilization for each of the three scenarios when
accounting for interference using iBench and when using the
baseline least-loaded (LL) scheduler. The benefits are twofold;
first utilization increases, improving resource-efficiency for the
DC operator (Fig. 6a). Second, the duration of the scenario
reduces because applications are running near their target
performance. Fig. 6b offers a closer look at utilization across
the different servers in the cluster throughout the scenario’s
execution. The increase in utilization is also consistent for
the other two scenarios (35.6% and 27.1% respectively on
average). There is still some performance degradation in
these scenarios, which iBench cannot prevent. This is due to

7

S
oI

1

S
oI

2

S
oI

3

S
oI

4

S
oI

5

S
oI

6

S
oI

7

S
oI

8

S
oI

9

S
oI

10

S
oI

11

S
oI

12

S
oI

13

S
oI

14

S
oI

15

0

20

40

60

80

100

C
au

se
d

in
te

rfe
re

nc
e

(%
)

before after

CPI
0

2

4

6

8

10

S
am

pl
e

Pe
rc

en
ta

ge
(%

) before after

1 1.5 2 2.5 3 0 20 40 60 80 100
Time (%)

0

20

40

60

80

100
C

P
U

U
til

iz
at

io
n

(%
)

before
after

Fig. 7: Using iBench to provision a server that hosts a
specific workload improves performance and reduces resource
contention. Fig. 7a compares the old and new interference
profiles of the workload. Fig. 7b shows the CPI distribution
for memcached in the original system configuration and after
reconfiguring the system based on the interference profile
from iBench, and Fig. 7c shows that utilization decreases, as
resources are appropriately balanced to reduce contention.

fast-changing workloads, complex applications that introduce
inaccuracies in interference measurements, or workloads that
have pathologies when co-scheduled with specific applica-
tions. Additional mechanisms can be used to address these
issues.

B. Server Provisioning

Provisioning servers is especially difficult for cloud
providers that have to accommodate any - possibly unknown
- submitted workload. Even in the case of well-studied, long-
running applications the datacenter architect must deal with
evolving application code and varying user patterns. Here
we use the output of iBench to guide the way system re-
sources are balanced in a DC server running memcached [30].
The workload runs with 1000 clients launching a total of
40,000QPS with a latency constraint of 200usec. Fig. 7a
shows the interference profile of the application running on
a default server configuration (4 cores, 8MB L3, 16GB RAM,
1GB NIC) across the different SoIs. It is evident that the
application puts significant pressure on the cache hierarchy
and the network and memory subsystems (SoI2: memory
bandwidth, SoI5: network bandwidth, SoI7: LLC bandwidth
and SoI11-12: core). Based on this information we adjust the
parameters of the system. To alleviate the contention in the
memory hierachy we switch to a triple-memory channel server
with 24GB of total memory capacity. Similarly, we move from
a server with a 1GB to a 10GB NIC to accommodate the
application’s network demands. We maintain the core count

and the rest of the system parameters the same. Fig. 7a also
shows the new interference profile, where both the contention
in the cache/memory hierarchy and the network subsystem
are now significantly reduced. Fig. 7b shows the distribution
of CPI in the default server configuration and in the server
provisioned based on the output of iBench, while Fig. 7c
compares the CPU utilization in the two systems. In both
cases accounting for contention when provisioning the system
improves application performance (the CPI curve is shifted to
the left in the new system) and reduces CPU throttling due to
memory stalls. Similarly, we can use the information on re-
source contention to guide the microarchitecture design (cache
hierarchy, pipeline organization, etc.) of hardware aimed to
service a particular application.

C. Application Development/Testing

An important reason behind resource inefficiency is poor
application design. Workloads are often written without suf-
ficient considerations of sensible resource usage, resulting in
unnecessarily bloated code, huge memory footprints, and high
CPU utilization. This problem is even more prominent in DC
workloads, which are often complex, multi-tier applications
with several interdependent components. Despite the long
testing periods devoted to these workloads, robustness and
performance are typically the main optimization objectives,
with resource-efficiency being less important. Here we show
that using iBench to identify code regions that cause high
contention not only improves efficiency by eliminating un-
necessary resource consumption, but is also beneficial to
performance by reducing resource contention.

For this purpose we start with an unoptimized data mining
application that performs collaborative filtering on a large
dataset of sparse data. The data are movie ratings from 180k
users. Running the original version of the code, which relies
on Singular Value Decomposition and PQ-reconstruction [34],
[11] experiences very high contention in LLC capacity, band-
width, L1 d-cache and L2 cache capacity and bandwidth,
memory bandwidth and FP computation. Running the program
to completion takes approximately 1.6h. The performance of
the original code is shown in Fig. 8 (leftmost figure, first
column). The second and third figures in the first column show
the CPU and memory bandwidth utilization of the program
(normalized to sustained memory bandwidth for the server).
After detecting the points of contention using iBench, we
optimize parts of the code to make better use of system
resources. In the first code iteration we switch to SIMD
operations using SSE4 [26]. As shown in the second column
in Fig. 8 both performance and resource efficiency benefit. The
boost in performance comes from leveraging spatial locality
in matrix accesses, while the decrease in required resources
comes from performing fewer operations on larger chunks of
data and reducing the misses to the cache hierarchy. We now
repeat the interference characterization for the new program.
iBench again helps identify remaining inefficiencies in the
code that induce resource contention. We progressively address
these with optimizations such as reordering of operations to

8

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

Original

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 1st iteration

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 2nd iteration

0 20 40 60 80 100
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

After 3rd iteration

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

til
iz

at
io

n
(%

)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100
C

P
U

U
til

iz
at

io
n

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

til
iz

at
io

n
(%

)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

C
P

U
U

til
iz

at
io

n
(%

)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
em

or
y

B
an

dw
id

th
(%

)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
em

or
y

B
an

dw
id

th
(%

)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100
M

em
or

y
B

an
dw

id
th

(%
)

0 20 40 60 80 100
Time (min)

0

20

40

60

80

100

M
em

or
y

B
an

dw
id

th
(%

)

Fig. 8: Performance (IPC), CPU utilization and memory bandwidth utilization for the testing application across three
optimization iterations using iBench. While performance for the original application is low, with the CPU being saturated,
identifying contentious regions in the code progressively improves throughput and decreases resource utilization, improving
resource efficiency.

the matrix elements or memoizing intermediate results. After
each iteration we reevaluate the application’s performance and
resource utilization. As shown in the last column of Fig. 8 the
final code runs in 35% less time than the original unoptimized
version while requiring fewer system resources. While the
code optimizations shown here are relatively straightforward,
we believe that given the speed of obtaining the interference
profile, using signals from iBench can significantly facilitate
the development and testing process of large applications.

D. Scheduling in Heterogeneous CMPs

Finally, we show that iBench is applicable outside DC
system studies. CMPs today consist of tens of - often -
heterogeneous cores [12], [39], [44], [48]. Scheduling for these
systems is challenging because in addition to the interfer-
ence between applications that share resources, the scheduler
should account for system heterogeneity. Similarly to the
first use case, we design a simple scheduler that takes the
interference profile obtained by iBench and identifies how
each application from a multiprogrammed mix should be
mapped to heterogeneous cores. When the mix is submitted

to the system, each workload is briefly profiled against the
iBench workloads to obtain its interference profile. Each SoI
requires at most 10msec and runs can be done in parallel by
replicating and sandboxing the application binary. Profiling
can additionally leverage classification techniques to reduce
the training overhead, by only profiling against a subset of
SoIs and deriving the missing entries based on similarities
with previous applications [9], [17]. We first create 40 4-
SPECCPU2006 application mixes and schedule them on a
simulated 4-core CMP [36] with 2 Xeon-like and 2 Atom-like
cores from different generations each. The simulator captures
contention in the cache and memory hierarchy, therefore the
same process as before is used to quantify the impact of inter-
ference on application performance. The examined workloads
do not exhibit storage or network activity hence we do not use
the SoIs creating contention in those resources (SoI3-5). SPEC
workloads are classified with regards to their cache demands
as insensitive (n), friendly (f), fitting (t) and streaming (s),
and mixes are created based on the methodology in [37].
Cores differ in their frequency, private cache hierarchy and
microarchitectural details (e.g., pipeline, prefetchers, branch

9

0 5 10 15 20 25 30 35 40
Workload mix

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

ov
er

Is
ol

at
io

n
4 app mixes

fnss0 fnnt0 tffn0 nsst1 fttt10.0

0.2

0.4

0.6

0.8

1.0

1.2

S
pe

ed
up

ov
er

Is
ol

ai
on

App 1
App 2

App 3
App 4

0 10 20 30 40 50 60
Workload mix

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

ov
er

Is
ol

at
io

n

16 app mixes

B A B A B A B A
0

20

40

60

80

100
C

yc
le

s
(%

)

Exec
LLC

Net
L2

Memory

f4s3t5n4 f2s7t4n3 f4s4t4n4 f2s3t6n5

Fig. 9: Scheduling in heterogeneous CMPs. The upper fig-
ures show performance across the 4-application mixes and
a per-application breakdown for selected mixes. The lower
figures show the performance for the 16-application mixes
and a breakdown of execution time to various subsystems for
select mixes, before (B) and after (A) the use of iBench for
scheduling.

predictors, issue width). All cores share an 8MB last level
cache (LLC) and 16GB of memory. The scheduler uses iBench
to identify the type of core and co-scheduled applications that
constrain interference and selects the mapping that minimizes
the average interference across workloads. Although this is
not necessarily a global optimum it is good enough that
performance does not degrade and utilization increases. The
scheduler can also take advantage of workload signatures [12]
to further refine the application-to-core mapping search space.
We also create 60 16-application mixes and schedule them
in a similar system with 16 cores. The variability in fre-
quencies and cache hierarchies here is more widespread. Fig.
9 shows the performance obtained when using iBench to
guide the scheduling decisions. The upper figures show the
performance of the 4-app mixes ordered from worst to best-
performing compared to isolated runs, and the breakdown to
per-application performance for selected mixes. Performance
degradations are marginal for most workloads. The lower
figures show the performance across the 16-app mixes and
the breakdown of clock cycles to the various subsystems
for selected mixes. While without the use of iBench several
mixes spend significant fractions waiting in memory instead
of executing instructions, by minimizing interference larger
fractions of time are devoted to useful execution. We plan
to perform a more detailed study of scheduling tradeoffs in
heterogeneous CMPs as part of future work.

VI. CONCLUSIONS

We presented iBench, a benchmark suite that measures the
tolerated and caused interference of a workload in various
shared resources. iBench is geared towards DC applications,
but can also be applied to conventional workloads. It consists
of 15 benchmarks (SoIs) that induce pressure over a wide
range of shared resources that span the core, cache hierarchy,
memory, storage and networking subsystems. iBench quan-
tifies the type and degree of interference that an applica-
tion generates in this set of shared resources. Similarly, it
measures the type and intensity of interference an applica-
tion can tolerate before violating its QoS across the same
resources. We have validated the accuracy and consistency
of iBench against a number of DC applications, ranging for
conventional single-node applications, to distributed Hadoop
workloads, and latency-critical online services. We have also
evaluated a number of use cases for iBench. First, we use
the interference information obtained with iBench to schedule
workloads in an EC2-like environment in a way that minimizes
interference between co-scheduled applications and improves
system utilization. Second, we have shown how iBench can
assist towards making informed decisions on the hardware
specifications of a chip aimed for DC workloads, or on the
provisioning of a DC server. Third, we have shown how
iBench can be used by software developers to design more
resource-efficient applications during testing. Finally, we have
shown that iBench is applicable outside the context of DCs,
and have used it for scheduling in large-scale heterogeneous
CMPs. In all cases, using iBench significantly improves the
decision quality and the performance, and resource efficiency
of the system. We plan to release iBench under the GPL
license, for researchers both in academia and industry to use.

ACKNOWLEDGEMENTS

We sincerely thank Daniel Sanchez and the anonymous re-
viewers for their useful feedback on earlier versions of this
manuscript. Christina Delimitrou was supported by a Stanford
Graduate Fellowship.

REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2/
[2] Apache Hadoop. http://hadoop.apache.org/
[3] Apache Lucene. http://lucene.apache.org/core/
[4] Apache Nutch. http://nutch.apache.org/
[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, M. Paleczny. ”Workload

Analysis of a Large-Scale Key-Value Store”. In Proc. of SIGMETRICS,
London, UK, 2012.

[6] L. Barroso. ”Warehouse-Scale Computing: Entering the Teenage Decade”.
ISCA Keynote, SJ, June 2011.

[7] L. A. Barroso, U. Holzle.“The Datacenter as a Computer”. Synthesis
Series on Computer Architecture, May 2009.

[8] L. A. Barroso and U. Holzle.“The Case for Energy- Proportional Com-
puting”. Computer, 40(12):33–37, 2007.

[9] R. M. Bell. Y. Koren, C. Volinsky.“The BellKor 2008 Solution to the
Netflix Prize”. Technical report, AT&T Labs, Oct 2007.

[10] C. Bienia, et al. “The PARSEC benchmark suite: Characterization and
architectural implications”. In Proc. of PACT, Toronto, CA, 2008.

[11] L. Bottou. “Large-Scale Machine Learning with Stochastic Gradient
Descent”. In Proc. of COMPSTAT, 2010.

[12] K. Craeynest, et al. “Scheduling Heterogeneous Multi-Cores through
Performance Impact Estimation (PIE)”. In Proc. of ISCA, 2012.

10

[13] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In Proc. of OSDI, SF, CA, 2004.

[14] C. Delimitrou, C. Kozyrakis. “Cross-Examination of Datacenter Work-
load Modeling Techniques”. In Proc. of the First International Workshop
on Datacenter Performance, DCPerf, Minnesota, MN.

[15] C. Delimitrou, S. Sankar, K. Vaid, C. Kozyrakis. “Decoupling Datacenter
Studies from Access to Large-Scale Applications: A Modeling Approach
for Storage Workloads”. In Proc. of IISWC, Austin, TX, 2011.

[16] C. Delimitrou, S. Sankar, A. Kansal, C. Kozyrakis. “ECHO: Recreating
Network Traffic Maps for Datacenters of Tens of Thousands of Servers”.
In Proc. of IISWC, San Diego, CA, 2012.

[17] C. Delimitrou and C. Kozyrakis. “Paragon: QoS-Aware Scheduling in
Heterogeneous Datacenters”. In Proc. of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Houston, March 2013.

[18] H. Esmaeilzadeh, E. Blem, et al. “Dark silicon and the end of multicore
scaling”. In Proc. of ISCA, San Jose, CA, 2011.

[19] Eucalyptus. http://www.eucalyptus.com/
[20] M. Ferdman, A. Adileh, et al. “Clearing the Clouds: A Study of Emerg-

ing Scale-out Workloads on Modern Hardware”. In Proc. of ASPLOS,
London, UK, 2012.

[21] Google Compute Engine. https://cloud.google.com/products/
compute-engine

[22] S. Govindan, J. Liu, A. Kansal, A. Sivasubramaniam. “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines”. In Proc. of SOCC, Cascais, Portugal, 2011.

[23] J.R. Hamilton. “Cost of Power in Large-Scale Data Centers”. http://
perspectives.mvdirona.com

[24] A. Jaleel, M. Mattina, B. Jacob. “Last Level Cache (LLC) Performance
of Data Mining Workloads On a CMP - A Case Study of Parallel
Bioinformatics Workloads”. In Proc. of the 12thHPCA, Austin, TX, 2006.

[25] Y. Joo, V. Ribeiro et al. ”TCP/IP traffic dynamics and network perfor-
mance: A lesson in workload modeling, flow control, and trace-driven
simulations”. In Proc. of SIGCOMM, 2001.

[26] Intel Nehalem Architecture Optimization Reference Manual. April 2012.
[27] C. Kozyrakis, A. Kansal, S. Sankar, K. Vaid, ”Server Engineering

Insights for Large-Scale Online Services”. In IEEE Micro, vol.30, no.4,
July 2010.

[28] J. Mars, L. Tang, R. Hundt, K. Skadron, M. L. Soffa “Bubble-Up: In-
creasing Utilization in Modern Warehouse Scale Computers via Sensible
Co-locations”. In Proc. of MICRO, Brazil, 2011.

[29] D. Meisner, C.M. Sadler, L. A. Barroso, W.-D. Weber and T. Wenisch.
“Power management of online data-intensive services”. In Proc. of the
38th annual international symposium on Computer architecture, San Jose,
CA, 2011.

[30] Memcached. http://memcached.org/
[31] R. Narayanan, B. Ozisikyilmaz, et al. “MineBench: A Benchmark Suite

for DataMining Workloads”. In Proc. of IISWC, San Jose, CA, 2006.
[32] Open Compute Project. http://www.opencompute.org/
[33] Open Source Software for Building Private and Public Clouds. http:

//www.openstack.org/
[34] A. Rajaraman and J. Ullman. “Textbook on Mining of Massive

Datasets”, 2011.
[35] Roundcube. Open source webmail software. http://roundcube.net/
[36] D. Sanchez, C. Kozyrakis. “Fast and Scalable Microarchitectural Simula-

tion of Thousand-Core Systems”. In Proc. of the International Symposium
on Computer Architecture (ISCA), Tel-Aviv, Israel, 2013.

[37] D. Sanchez, C. Kozyrakis. “Vantage: Scalable and Efficient Fine-
Grain Cache Partitioning”. In Proc. of the International Symposium on
Computer Architecture (ISCA), San Jose, CA, 2011.

[38] S. Sengupta and R. Ganesan. ”Workload Modeling for Web-based
Systems”. In Proc. of CMG, 2003.

[39] D. Shelepov, J. Saez, et al. “HASS: A Scheduler for Heterogeneous
Multicore Systems”. In OSP, vol. 43, 2009.

[40] L. Tang, J. Mars, M. L. Soffa. “Compiling For Niceness: Mitigating
Contention for QoS in Warehouse Scale Computers ”. In Proc. of CGO,
San Jose, CA, 2012.

[41] VMWare Distributed Resources Scheduler. http://www.vmware.com/
products/datacenter-virtualization/vsphere/drs-dpm.html

[42] VMWare vCloud. http://www.vmware.com/products/
datacenter-virtualization/vcloud-suite/overview.html.

[43] Windows Azure. http://www.windowsazure.com/en-us/
[44] J. Winter, D. Albonesi. “Scheduling algorithms for unpredictably het-

erogeneous CMP architectures ”. In Proc. of DSN, 2008.

[45] S. Woo, M. Ohara, et al. “The SPLASH-2 Programs: Characterization
and Methodological Considerations”. In Proc. of ISCA, Santa Margherita,
Italy, 1995.

[46] XenServer. http://www.citrix.com/products/xenserver/overview.html
[47] X. Zhang, E. Tune, et al. “CPI2: CPU performance isolation for shared

compute clusters”. In Proc. of EuroSys, Prague, Czech Republic, 2013.
[48] T. Zidenberg, I. Keslassy, U. Weiser. “MultiAmdahl: How Should I

Divide My Heterogenous Chip?” In CAL, vol. 11, 2012.

11

