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Abstract

Large-scale datacenters (DCs) host tens of thousands
of diverse applications each day. The DC’s cluster man-
ager must determine “where” and “when” an application
should run, and “how many resources” it should be allo-
cated. This is challenging in cloud environments for sev-
eral reasons, including workload interference, dynamic
resource demands, and hardware platform heterogene-
ity. Recent work has addressed “where” an application
should be scheduled, namely, which of the tens of thou-
sands of servers has the configuration and interference
profile that preserves the workload’s QoS guarantees.

However, significant challenges remain in terms of
“when” an application is scheduled. DC applications have
diverse QoS constraints and resource requirements. Typi-
cally workloads in DCs are scheduled in admission order,
provided all workloads have the same priority. This is sub-
optimal for two reasons. First, demanding applications,
i.e., non interference-tolerant applications, can block
non-demanding workloads that can tolerate resource con-
tention. Second, when system resources are fully occu-
pied, the applications are queued until the system exits
the oversubscribed phase, and resume scheduling as the
first servers become available, to minimize scheduling
delays. This can induce significant performance degra-
dations as these servers might not reflect the workload’s
true resource needs.

We present ARQ, a multi-class admission control
protocol that leverages Paragon, a heterogeneity and
interference-aware DC scheduler. ARQ divides appli-
cations in classes based on the quality of resources they
need and queues them separately. This improves server
utilization and system throughput, while maintaining per-
application QoS guarantees. To enforce timely scheduling,
ARQ diverges workloads to a queue of lower resource
quality, if no suitable server becomes available within
the time window specified by the application’s QoS. In an
oversubscribed scenario with 8 500 applications on 1,000
EC?2 servers, ARQ bounds performance degradation to
less than 10% for 99% of workloads, while significantly
improving utilization.

1. Introduction

An increasing amount of computing is performed in
the cloud, primarily due to cost benefits for both the
end-users and the operators of datacenters (DC) that

host cloud services [3]. Large-scale providers such
as Amazon EC2 [18], Microsoft Windows Azure [42],
Rackspace [32] and Google Compute Engine [21] host
tens of thousands of applications on a daily basis. Several
companies also organize their IT infrastructure as pri-
vate clouds, using management systems such as VMware
vSphere [41] or Citrix XenServer [45].

The operator of a cloud service must schedule the
stream of incoming applications on available servers in
a resource-efficient manner, i.e., achieving fast execu-
tion (user’s goal) at high resource utilization (operator’s
goal). This scheduling problem is particularly difficult
for several reasons. First, DCs accommodate a diverse
set of workloads in terms of performance and resource
requirements [3, 26], which typically change over time.
Second, the DC operator often has no a priori knowledge
of workload characteristics. Third, different workloads
have widely varying sensitivities to interference due to
contention in shared resources. Fourth, DC server plat-
forms are heterogeneous, both in terms of configuration
and server generation, which further complicates efficient
cluster management. Finally, an additional challenge
comes from the fact that during periods of adversarial traf-
fic, i.e., intervals with very high load, the system can be-
come oversubscribed, resulting in poor performance and
QoS violations. Most DCs employ some admission con-
trol to minimize core oversubscription. However, these
schemes typically do not differentiate applications and
servers in terms of their sensitivity to interference and
heterogeneity.

Recent work has shown how to address the four five
challenges in the presence of unknown workloads, vary-
ing interference sensitivities and heterogeneous server
platforms [17]. Paragon is a QoS-aware DC scheduler
that accounts both for interference between co-scheduled
applications, and heterogeneity in server platforms. It
is designed as a recommendation engine that uses a
minimal signal about a new workload and leverages
the large amount of information the system has about
previously-scheduled applications. Paragon uses collab-
orative filtering techniques, such as SVD, to classify ap-
plications based on the platforms they benefit from, and
the type/amount of interference they tolerate and cause.
Then, a greedy scheduler finds the best DC servers for a
given workload. Paragon scales to tens of thousands of
servers and applications with minimal overheads.



While Paragon addresses the challenge of “where”
an application should be scheduled, it does not answer
“when” it should be scheduled. Some applications have
strict scheduling deadlines, which must be met, even when
the system is oversubscribed. This can result in subop-
timal scheduling, since no suitable servers are available.
Other workloads, can tolerate scheduling delays in order
to be assigned to servers of appropriate quality. In all
cases, resource requirements should be taken into account
at admission point, such that easy-to-satisfy workloads
are not blocked behind demanding applications.

We propose ARQ (Admission control with Resource
Quality-awareness), a QoS-aware admission control pro-
tocol that builds on Paragon and accounts for the resource
quality an application needs to preserve its QoS guar-
antees. Resource quality reflects the additional load a
server can support without violating QoS, given its con-
figuration and the applications it currently hosts. ARQ
leverages the heterogeneity and interference information
in the scheduler, to divide incoming applications in multi-
ple classes and direct them to different workload queues.
For example, workloads that need minimal interference
to meet their QoS guarantees are added in one queue,
while applications that can tolerate high interference in
shared resources without performance degradation in a
separate queue. This way a demanding workload will
not block easy-to-satisfy applications, as it waits for a
server of appropriate quality to become available. On
the other hand, since DC applications have strict QoS
guarantees, they can only be queued for limited amounts
of time, while waiting for an appropriate server. ARQ
detects when an application is about to violate its perfor-
mance requirements and re-directs it to a different queue
before the QoS violation occurs. We explore the trade-off
between waiting time and quality of resources and solve
the corresponding optimization problem to find the opti-
mal switching point. We also analyze the stability region
of the multi-class queueing network.

We evaluate ARQ both in small and large-scale experi-
ments. First, we compare the system without admission
control and the system with ARQ, in a local cluster with
40 machines and show the benefits in performance and
efficiency. While without admission control 36% of appli-
cations violate their QoS guarantees for an oversubscribed
scenario; when applying ARQ, only 12% of applications
experience a degradation higher than 5% compared to
their ideal performance. Additionally, admission con-
trol preserves the efficiency benefits of Paragon. With
Paragon, utilization increases by 47% of average com-
pared to a scheduler that disallows colocation, while with
Paragon and ARQ utilization still improves by 45.5%.

We also evaluate ARQ on a large-scale cloud provider.
We use 1,000 exclusive instances on Amazon EC2 to run
different workload scenarios. Again, Paragon with ARQ
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Figure 1: Performance achieved by different schedulers
for an oversubscribed scenario with 8,500 applications on
1,000 EC2 servers. Paragon outperforms schedulers that
ignore heterogeneity and/or interference, but still violates
QoS for 39% of workloads.

outperforms the system without admission control, espe-
cially for the case of an oversubscribed scenario, where
99% of workloads have less than 10% performance degra-
dation, while maintaining the previous efficiency gains.

2. Background

2.1. Paragon Overview

Paragon is a heterogeneity and interference-aware DC
scheduler [17]. It assigns applications to heterogeneous
servers based on the hardware platform they benefit from
and the co-scheduled applications that minimize destruc-
tive interference and preserve QoS. Paragon has two com-
ponents, a classification engine and a greedy scheduler.
We briefly describe their operation in the following para-
graphs.

The first component of Paragon performs fast and ac-
curate classification of incoming applications, in terms of
the server configuration (SC) they perform better on and
the interference they cause and tolerate in various shared
resources, such as the processor, cache hierarchy, mem-
ory, storage and networking subsystems. The interference
profile is obtained through targeted microbenchmarks of
tunable intensity that create contention in specific shared
resources. These microbenchmarks are called sources
of interference (Sols). The classification engine is built
as a recommendation system, similar to Netflix [6] or
e-commerce. It leverages robust collaborative filtering
methods, namely Singular Value Decomposition (SVD)
and PQ-reconstruction and adds marginal overheads to
the system, since it only requires a minimal signal about
a new workload. Instead it takes advantage of the knowl-
edge the system already has about previously-scheduled
applications. Within two minutes of its arrival, an incom-
ing workload is scheduled efficiently on a DC server.
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QoS losses, there are still significant challenges that re-
main. Paragon accounts for the characteristics of a work-
load to decide in which server it should be assigned, but
does not use this information to decide “when” the appli-
cation should be admitted and scheduled. Instead, appli-
cations are scheduled in a simple FIFO order. This has
two shortcomings; first, easy-to-satisfy workloads can get
trapped behind demanding applications, e.g., workloads
that require exclusive instances of high-end, multi-socket
servers to preserve their QoS. Second, in the event of an
oversubscribed scenario, i.e., when the required resources
are more than the total resources available in the system,
Paragon implements an application-agnostic admission
control protocol. It queues applications in a single queue
until the first server becomes available, and then resumes
FIFO-ordered scheduling. This ignores the fact that appli-
cations need resources of a certain quality to meet their
QoS, and can result in performance degradation. Figure
1 shows the case of an oversubscribed scenario, where
8,500 applications are submitted in a 1,000-server EC2
cluster with inter-arrival times of 1 sec. Although Paragon
outperforms schedulers that ignore heterogeneity, inter-
ference, or assign workloads to the least-loaded servers,
it still violates QoS for several workloads. This happens
as applications are sent to suboptimal servers that do not
have sufficient resources to service them.

3. Admission Control

3.1. Overview

Large cloud providers such as Amazon EC2 and Windows
Azure, typically deploy some admission control protocol.
This prevents machine oversubscription, i.e., the same
core servicing more than one applications, which can in-
duce interference, resulting in serious performance losses.

We design ARQ, a QoS-aware admission control pro-
tocol that queues and schedules applications based on
the quality of resources they need. This solves two prob-
lems; first, applications that demand few, easy-to-satisfy
resources are not blocked behind demanding workloads.
Second, in the case where no suitable servers for a given
application are available, the system waits for a server

Figure 2: ARQ design. Each queue corresponds to appli-
cations with different resource quality requirements.

of appropriate quality to be freed before it schedules that
workload. Alternatively, the application would be directed
to the first free server to avoid queueing delays, with the
risk of performance losses. In the discussion of ARQ’s
design we assume single-node applications for simplicity.
The design holds for multi-node and distributed work-
loads with some changes as well.

Resource quality: The resource demands of a workload
reflect the load a server should support such that the ap-
plication meets its QoS constraints. This is a function
of the interference the server can tolerate from the new
application, and the interference the new workload can
tolerate from applications already running in the same
machine. We use the classification engine in Paragon
to derive the tolerated (¢;) and caused (c;) interference
of each server in the system on a set of shared resources.
Shared resources include the cache and memory hierarchy,
CPU modules, and storage and networking devices. De-
tails on the method ¢;’s and ¢;’s are obtained can be found
in [17]. The interference profile for a server is updated
upon initiation or completion of an application’s execu-
tion. Similarly, upon application arrival, an interference
profile is obtained for each workload. This information
guides the scheduling decisions by assigning applications
to appropriate servers. Given the interference profile of a
server or application, we define resource quality as:

QiZClVg(ZCi-FZ(lOO_ti)) M

where c¢; and ¢; are summed over all shared resources for
which interference is measured. Conceptually, higher Q;
reflects applications with high demands (high caused and
low tolerated interference) that need high-quality system
resources. Low Q; on the other hand, corresponds to
workloads that are insensitive to interference, and can
satisfy their QoS even when assigned to servers with
poor resource quality, e.g., highly-loaded machines, or
machines with few cores.



Multi-class admission control: We design ARQ as an
admission control protocol with multiple classes of “cus-
tomers” [7, 29], where customers in this case correspond
to applications. The class an application belongs to is de-
termined by its Q; value. Applications with Q; values that
fall in the same range are assigned to the same class. Q;s
range from 0 to 100%. We assume ten classes of applica-
tions for now, and justify this selection in the evaluation
section (see sensitivity study in Section 5). Fig. 2 shows
an overview of ARQ. Each queue corresponds to appli-
cations of a specific class. From top to bottom we move
from more to less demanding applications. Upon arrival,
the cluster manager derives the interference profile of an
incoming workload, determines the class it belongs to
and queues it appropriately. Each class has a correspond-
ing pool of servers of appropriate resource quality that
service the queue’s applications. By separating applica-
tions based on their resource quality requirements, ARQ
avoids bottlenecks where applications that are sensitive
to interference block workloads that are not. However,
limiting the resources an application can access to the
subset of servers of the corresponding pool can also result
in performance violations. DC workloads are driven by
strict QoS and SLA guarantees and cannot be queued
indefinitely waiting for a suitable server to be freed. We
address this issue by diverging workloads to queues with
better or worse resource qualities.

3.2. Waiting Time versus Resource Quality

Diverging an application to a different queue creates a
trade-off between the time an application is waiting in a
queue, and the quality of resources it is allocated. The
more time it waits, the higher the chance it will be sched-
uled to a preferred server. At the same time, as waiting
time increases, there is a higher chance the application
will violate its QoS requirements. We approach this trade-
off as an optimization problem.

Queue bypassing: When there is no available server in
the pool of a class, queued workloads should be diverged
to another queue. There are two possible options for
where a workload can be redirected. First, it can be di-
verged to a higher queue. If the queue directly above
the queue the workload was originally placed in is empty,
the diverged workload is assigned to one of the queue’s
available servers. This hurts utilization, since resources of
higher quality than necessary are allocated, but preserves
the workload’s QoS requirements. In the opposite case;
the workload is diverged to a lower queue. In that case,
performance may be degraded, since the application re-
ceives resources of lower quality than required. However,
the scheme guarantees that in all cases the application will
be assigned to a server within the time window dictated
by its QoS constraints.
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Figure 3: CDF of server busy times (Fig. 3a) and CDF
of the probability that there will be at least one free server
within a specific time window from an application’s arrival
(Fig. 3b).

Free-server probability distributions: ARQ needs to
know the likelihood that a server of a specific class will
become available within the time an application can be
queued for, to decide when an application should be di-
verged to the next queue. We statistically analyze the
server busy time periods for each server pool to obtain
these probability distributions. Busy periods are defined
as the per-server time intervals from the moment a server
is assigned a workload, until that workload completes.

We first use distribution fitting to represent the server
busy-time per server pool in a closed form using known
distributions. Fig. 3a shows the CDF of server busy-time
for the first server pool (highest quality servers) in a 1,000
server experiment. More details on the methodology can
be found in section 4. We show the experimental data
(dots) and the closed form representation, derived from
distribution fitting. In this case, the data is fitted to a curve
resembling a normal distribution. The CDF reflects the
fraction of servers that are freed within an interval after
they have been allocated to an application. For example,
60% of servers in that server pool are freed within 2700
sec from the time an application is scheduled to them.

Using this closed form CDF we easily derive the free-
server CDF, which reflects the probability that within a
time interval from an application’s arrival, at least one
server of the corresponding pool will be available. Fig.
3b shows the free-server probability CDF for the first
server pool. The highlighted point shows that there is a
60% probability that within 56 sec from an application’s
arrival to that queue, there will be at least one free server.

Switching between queues: ARQ determines the switch-
ing point between queues to maximize the probability that
a server will be available within a specific time window
from an application’s arrival. Let’s assume for simplicity
that the QoS constraint of an application is defined at 95%
of the application’s optimal performance. This means
that the workload can tolerate at most a 5% performance
degradation. Given the free-server probability CDFs for
each server pool, ARQ solves the following optimization
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problem for an application a, switching between queues i
and j:

max {(Sa —wii(t)) - Qi - Prilt], (Sa —wt;(1)) - Q;- Prjt]}
s.t. (wti(t) +wtj(t) +P,) < 0.05-CT,
@)

where Pr;[t] is the probability that there is a free server
in queue i, Q; is the resource quality of queue i, CT}, is the
optimal computation time for application a, P, is the clas-
sification overheads of Paragon and S, = 1.05-CT, — P,
is the available “slack” that can be used for queueing,
before the application violates its QoS constraints. ARQ
finds the switching time that maximizes the probability
that a server of either queue i or j will become available
such that the application will preserve its QoS guaran-
tees. It also promotes waiting longer for a server of the
appropriate class rather than switching eagerly to the next
queue (Q; > Q)).

3.3. Stability Analysis

A queueing network is stable if the total expected number
of jobs in the network remains bounded as a function of
time. Stability of multi-class queueing networks has been
studied extensively [14, 15, 19, 24] both in the context of
deterministic and stochastic arrival processes, using fluid
limit models or Lyapunov functions. Here we briefly out-
line the conditions that guarantee stability in ARQ. Since
each future state in the network depends only on the cur-
rent, and not on past states, the system can be modeled as
a Markov Chain (MC). Suppose A; is the external arrival
rate for application class i and ; the corresponding ser-
vice rate. P is the routing matrix, where F;; the traffic di-
verged from class i to class j. Then the traffic equation is:
A = A+ PT A, with the explicit solution A = [I — PT]~A.
In this formulation we assume for simplicity that diverged
jobs are placed in the tail of the new queue as opposed to
the head. This assumption does not affect that stability
conditions of the network. Also, ps 2 ¥,csAi/L; is the
load factor of server S. For Poisson arrival and service
processes, the stability of the Markov process is equated
with positive (Harris) recurrence for the corresponding
queue length process O(s) = (Q;(s),s > 0). Assuming
no jobs are dropped from the network, this reduces to the
simple traffic condition: pg < 1 VS to guarantee stability.

3.4. Additional Policies

ARQ can incorporate additional optimizations to priori-
tize application scheduling based on e.g., their expected
computation time or their priorities. These optimizations
are orthogonal to the principal design of the admission
control protocol and may require additional information
about the scheduled workloads.

[Computation time] Shortest Job First (SJF) is a well-
known algorithm [39] that prioritizes the execution of

Server Type GHz, cores, L1(KB), LLC(MB), mem(GB) | #
Xeon L5609 1.87 2x8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2x12 32/32 12 24 DDR3 2
Xeon X5670 293 2x12 32/32 12 48 DDR3 2
Xeon L5640 227 2x12 32/32 12 48 DDR3 1
Xeon MP 3.16 4x4 16/16 1 8 DDR2 5
Xeon E5345 233 1x4  32/32 8 32FB-DIMM | 8
Xeon E5335 2.00 1x4 32/32 8 16FB-DIMM | 8
Opteron 240 1.80 2x2  64/64 2 4 DDR2 7
Atom 330 1.60 1x2  32/24 1 4 DDR2 5
Atom D510 1.66 1x2  32/24 1 8 DDR2 1

Table 1: Main characteristics of the servers of the local
cluster. The total core count is 178 for 40 servers of 10
different SCs.

short over long-running tasks. It improves the system’s
throughput by completing more tasks in a shorter time
while preserving their corresponding QoS requirements.
SJF can be implemented in ARQ. Jobs with a short ex-
pected computation time in each queue are scheduled
before long-running jobs. However, given that the QoS
requirements of every application must be preserved, SJF
is applied with the additional constraint that scheduling
of long-running jobs can only be delayed for as long as
their QoS guarantees dictate.

[Priorities] ARQ can incorporate the concept of priorities
by scheduling more critical applications first. Although
the scheduler attempts to preserve QoS for all submitted
workloads, in the event where only some workloads can
meet their performance requirements the scheduler will
prioritize the critical over the non-critical applications.

In Section 5 we show how ARQ behaves when imple-
menting shortest-job-first and application priorities in the
case of an oversubscribed workload scenario.

4. Methodology

Server systems: We evaluated Paragon on a small local
cluster and a major cloud provider. Our local cluster
includes servers of ten different configurations shown in
Table 1. We also show how many servers of each type we
use. Note that these configurations range from high-end
Xeon systems to low-power Atom-based boards. There
is a wide range of core counts, clock frequencies, and
memory capacities and speeds present in the cluster.

For the cloud-based cluster we used exclusive (re-
served) server instances on Amazon EC2, i.e., no other
users had access to these servers and no interference from
external workloads exists. We also verified that no exter-
nal scheduling decisions or actions such as auto-scaling
or workload migration are performed during the course
of the experiments. We used 1,000 servers with 14 dif-
ferent SCs, ranging from small, low-power, dual-core
machines to high-end, quad-socket, multi-core servers
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Figure 4: Performance impact from scheduling with Paragon and ARQ, across three workload scenarios, compared to
Paragon without admission control, a heterogeneity-oblivious, an interference-oblivious and a least-loaded scheduler.

with hundreds of GBs of memory.

Schedulers: We compared Paragon with ARQ to four
alternative schedulers. First, Paragon without the use of
admission control, to isolate the benefits from using ARQ.
Second, a heterogeneity-oblivious scheme that uses the
interference classification to allocate servers but has no
visibility of their SCs. Third, an interference-oblivious
scheme that uses the heterogeneity classification but has
no insight on workload interference. Finally, we evaluate
a scheduler that is both heterogeneity and interference-
agnostic, and assigns applications to the least-loaded ma-
chines in the system. The overheads for the heterogeneity
and interference-oblivious schemes are the corresponding
classification and server selection overheads.

Workloads: We used 29 single-threaded (ST), 22 multi-
threaded (MT), 350 multi-programmed (MP) and 12 I/O-
bound workloads. We use the full SPEC CPU2006 suite
and workloads from PARSEC [8] (blackscholes, body-
track, facesim, ferret, fluidanimate, raytrace, swaptions,
canneal), SPLASH-2 [43] (barnes, fft, lu, ocean, radix,
water), BioParallel [25] (genenet, svm), Minebench [30]
(semphy, plsa, kmeans) and SPECjbb (2, 4 and 8-
warehouse instances). For multiprogrammed workloads,
we use 350 mixes of 4 applications each, based on the
methodology described in [36]. The I/0O-bound workloads
are data mining applications in Hadoop and Matlab run-
ning on a single-node. For workload scenarios with more
than 413 applications we replicated these workloads with
equal likelihood (1/4 ST, 1/4 MT, 1/4 MP, 1/4 1/0O) and
randomized their interleaving.

Workload scenarios: To explore a wide range of be-
haviors, we used the applications listed above to create
multiple workload scenarios. Scenarios vary in the num-
ber and type of submitted applications, their inter-arrival
time and the existence or not of burstiness.

For the small-scale experiments on the local cluster we
examine three workload scenarios. The load in the system
is classified based on its relation to available resources;
low: the required core count is significantly lower than

the available processor resources; high: the required core
count approaches the load the system can support but
does not surpass it; and oversubscribed: the required core
count often exceeds the system’s capabilities, i.e., certain
machines are oversubscribed. First, we examine a low-
load scenario with 178 applications, selected randomly
from the workload pool, which are submitted with 10 sec
inter-arrival times. Second, a high-load scenario with
178 applications, where applications change phases twice
throughout their execution, i.e., experience significant be-
havior changes. Workloads are submitted in the system
following a Gaussian distribution with p = 10 sec and
02 = 1.0. Finally, we examine a scenario, where 178
randomly-chosen applications arrive in the system with
1 sec intervals. Note that the last scenario is an oversub-
scribed one. After a few seconds, there are not enough
servers (or cores) in the system to execute all applications
concurrently.

For the large-scale experiments on EC2 we examine
one workload scenario where 7,500 workloads are sub-
mitted with 1 sec intervals and an additional 1,000 appli-
cations arrive in burst (less than 0.1 sec intervals) after the
first 3,750 workloads have been submitted. This results
in an oversubscribed system, where the required cores are
more than available in the cluster.

5. Evaluation

5.1. Small-scale Experiments

Performance: Fig. 4 shows the performance compari-
son between the different schedulers for the three work-
load scenarios in the small-scale cluster. We focus more
on the differences between Paragon without and with the
use of ARQ. Detailed evaluation on the differences be-
tween the other schedulers can be found in [17]. For the
low-load scenario, where system resources are plentiful,
the difference from the use of admission control is small.
Without the use of ARQ, Paragon preserves QoS for 94%
of applications, while with ARQ for 95%. The benefits
from ARQ become more obvious as we move to scenarios
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Figure 5: Overheads from classification, queueing and scheduling compared to useful execution time. Overall, the
overheads in Paragon with ARQ are less than 5% for most applications.
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the oversubscribed scenario in the small-scale system
(Fig. 6a) and sensitivity of ARQ to the number of queues.
Performance and utilization are normalized to the values
for 10 queues (Fig.6b).

of higher load. Both in the scenario where applications
have phases, i.e., their behavior changes significantly at
runtime and in the case of the oversubscribed system, us-
ing ARQ improves performance significantly. For the sce-
nario with workload phases the applications that maintain
their QoS requirements increase from 66% to 91%, and
the average performance improves from 96% to 99.3%.
Even more for the oversubscribed system, while with-
out ARQ only 64% of applications maintain their QoS
guarantees, with ARQ 88% preserve their performance
requirements. This shows that queueing applications sep-
arately, and accounting for the resource quality they need,
reduces the backlog of queued workloads much faster
than when ignoring resource quality. In this experiment
we do not apply the shortest job first (SJF) algorithm and
the use of priorities for two reasons: first, to decouple
the design of ARQ from specific scheduling policies and
second, because all workloads have similar computation
times and similar priorities. Adding these optimizations
can further improve the performance benefits of ARQ.
The other three schedulers (NH, NI and LL) have signif-
icantly lower performance than Paragon due to the fact
that they do not account for platform heterogeneity and
workload interference. Their differences become more
intense for scenarios with higher loads.

Overheads: ARQ limits waiting time such that per-
application QoS is preserved. Fig. 5 shows the breakdown
of execution time for selected applications in the oversub-

5000 10000 15000 20000 25000 0'%980 0.85 0.90 095 1.00 1.05 1.10

Workloads hmean | standard deviation
Shortest 5% 0.20% 0.15%
Shortest 10% 0.30% 0.08%
Shortest 25% 1.20% 0.30%
Shortest 50% 1.45% 0.34%
Shortest 75% 1.78% 0.26%
Shortest 90% 2.31% 0.55%
Shortest 95% 2.32% 0.57%
All 2.68% 0.53%

Table 2: Deviation between expected and achieved com-
putation time for workloads in the oversubscribed sce-
nario when ARQ implements SJF. Applications are ranked
by increasing expected computation time.

scribed case. Time is divided in useful execution time,
overheads from training and classification (first compo-
nent of Paragon) [17], overheads from the greedy server
selection (second component of Paragon) and overheads
from queueing until a suitable server is freed. mcf and
blackscholes do not have a bar for the least-loaded (LL)
scheduler because they did not complete successfully due
to memory exhaustion in the server. In all cases over-
heads are very low and execution time is dominated by
the useful execution of the workload, which for most
workloads is very close to one (optimal execution time).
The overheads from queueing are less than 5% of execu-
tion time at all times. The cases where queueing is high
correspond to workloads that had to be diverged to queues
with lower resource quality, in which case the useful exe-
cution time is also higher than 1 (suboptimal). This only
happens for a very small fraction of workloads, even in
the oversubscribed scenario. Also, there are a few cases,
e.g., perlbench, where Paragon achieves lower total execu-
tion time than Paragon with ARQ. This typically happens
when waiting for a suitable server does not result in better
performance for the application (workload is insensitive
to resource quality). Finally, there are some workloads
for which the total overheads exceed 5% of execution
time, e.g., soplex. This happens because the greedy server
selection can be temporarily trapped in a local minimum
between equally good selections. Although we solve this
problem by inserting a timeout in the algorithm, it in-
creases the total scheduling overheads in some cases. The
greedy server selection happens after the application is



Workloads hmean | standard deviation
High-priority (20%) 0.80% 0.06%
Low-priority (80%) 2.74% 0.32%

Table 3: Deviation between expected and achieved com-
pletion time for workloads in the oversubscribed sce-
nario when ARQ implements priorities. Applications are
grouped in high priority and low priority ones.

ready to be dispatched to a server, therefore its overhead
is not accounted for by ARQ. We plan to address this as
part of future work by preemptively selecting one of the
available servers.

Resource allocation: Fig. 6a shows the required versus
allocated core count for Paragon with and without ARQ
for the oversubscribed scenario. During the ramp-up pe-
riod ([0-9000]sec) both schedulers follow the resource
requirements closely. However, once the system enters
the oversubscribed phase ([9000-17000]sec), i.e., when
the required cores are more than the total resources in
the system, the two schedulers behave differently. While
Paragon without ARQ allocates all available cores and
then queues applications until the first server becomes
available, Paragon with ARQ will only dispatch appli-
cations if an appropriate server is freed. This results in
faster backlog draining since, even though applications
are queued for longer, they run in higher quality platforms.
This way, Paragon with ARQ exits the oversubscribed
phase almost at the same time as Paragon without ARQ,
while maintaining per-application QoS guarantees.

Server utilization: We also measure the average server
utilization before and after the use of ARQ. We focus
on the oversubscribed scenario where ARQ has the high-
est impact. Utilization for the other scenarios is similar
with and without the use of admission control. Paragon
without the use of ARQ already improves utilization by
47% compared to a least-loaded scheduler. Adding ARQ
slightly reduces this improvement since applications that
are queued due to lack of suitable servers will wait for a
machine with the appropriate resource quality rather than
the first available server. However, despite the queueing
effects of ARQ, utilization for the oversubscribed scenario
still improves by 45.5%. This means that the performance
benefits from ARQ do not incur an efficiency penalty.

Sensitivity to design parameters: Fig. 6b shows how
performance and utilization change when we vary the
number of queues in ARQ. Both performance and utiliza-
tion are normalized to the values for 10 queues. More
queues result in more fine-grained application classifica-
tion, and fewer cases of workloads being blocked behind
demanding applications, therefore they improve perfor-
mance, but reduce the number of servers in the corre-
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Figure 7: Performance achieved with the different sched-

ulers for the oversubscribed scenario in 1,000 EC2 ma-

chines.

sponding pools, hurting utilization. Few queues, on the
other hand, revert to the previous state of the scheduler
where many applications are scheduled in FIFO order,
increasing utilization and decreasing performance. We
vary the number of queues from 1 to 20. For 10 queues
we achieve both high performance and high efficiency.
We use this number for all the experiments in this work.

Additional policies: ARQ can implement policies such
as Shortest Job First and application priorities. Table 2
shows the harmonic mean (hmean) and standard devia-
tion of the difference between the expected and achieved
computation time when ARQ implements SJF. In each
queue the shortest applications are scheduled first, subject
to the constraint that QoS is not violated for any applica-
tion, regardless of its computation time. This means that
long-running applications cannot be bypassed indefinitely.
Workloads in the table are grouped based on their ideal
computation time from short-running to long-running. Re-
sults are shown for the oversubscribed scenario. Short
running jobs experience minimal performance degrada-
tion, while the long running applications have higher
degradations, but still within their QoS requirements (5%
execution time increase).

Additionally, we evaluate ARQ in the presence of work-
load priorities. We set “high priority” for 20% of work-
loads in the oversubscribed scenario and compare the
expected and achieved completion time for them (see
table 3). As seen in the table, the high-priority work-
loads complete within 2% of their ideal completion time.
Low-priority applications also complete within their QoS
constraints, in most cases, but experience higher perfor-
mance degradations than high-priority workloads.

Large-scale experiments: Fig. 7 shows the performance



comparison for the different schedulers for the large-scale
scenario. Applications are again ordered from worst to
best-performing. There are 1,000 servers in the system
and 8,500 applications submitted over a period of 2 hours,
following the inter-arrival times specified in Section 4.
While Paragon without ARQ only preserves QoS for 61%
of workloads, introducing admission control increases
that fraction to 83% of applications. Additionally, it
bounds performance degradation for 99% of workloads
to less than 10%. This shows that the protocol scales well
with the number of servers and applications, while main-
taining overheads similar to the ones for the small-scale
experiments.

6. Related Work

We discuss work related to ARQ in terms of admission
control in computer systems and analysis of multi-class
queueing networks.

Admission control systems: A lot of work has high-
lighted the importance of admission control in computer
systems, including datacenters (DCs). Cherkasova et
al. [12, 13] propose a predictive and a session-based ad-
mission control scheme respectively for overloaded web
servers. The schemes monitor the utilization and QoS
achieved at runtime and preemptively adjust the admis-
sion policy to more or less aggressive, such that QoS is
preserved. In the same spirit, Bartolini et al. [S] propose
a self-configurable overload control policy that adjusts
the rate of admitted sessions to preserve SLAs and im-
prove utilization. Liu et al. [28] propose an adaptive
scheme based on queueing theory to control the perfor-
mance of multi-tier web applications. Carlstrom et al. [9]
also design a session-based admission control protocol for
web servers that leverages generalized processor sharing
(GPS) [31] to maximize a reward function that corre-
sponds to the rate of completed jobs. Similarly, Salehi
et al. [35] propose a preemption-aware admission con-
trol system for virtualized systems, where the system
services both internal and external requests, with the in-
ternal requests having preemptive priority over external
requests. The scheme maximizes the rate of admitted re-
quests, subject to preserving per-application SLAs. Cheng
et al. [11] also divide the application space to high and
low-priority workloads and partition the server’s capacity
to service workloads with different priorities. The authors
propose a threshold-based admission control algorithm
where thresholds depend on the application’s priority, and
rewards are higher for critical versus non-critical appli-
cations. Finally, Guitart et al. [22] consider the problem
of admission control in the context of a secure web appli-
cation and propose an adaptive overload control strategy
based on SSL connection differentiation.

Techniques such as predictive admission control [12,

28], protection against DoS attacks, or schemes that ad-
ditionally account for application security at admission
control [22], are orthogonal to the design of ARQ, and
can be incorporated in the scheme if the corresponding
functionality is desired.

Multi-class queueing networks: Multiclass queueing
networks have applications in a wide spectrum of sys-
tems ranging from banks, to product lines and network
systems. Miller [29] analyzes a multi-class queueing net-
work that optimizes the rewards obtained by accepting or
rejecting customers in a system with multiple customer
classes. Bertsimas et al. [7] study the distribution of
steady-state queue lengths for a multi-class markovian
queueing network and propose a methodology based on
Lyapunov functions for the performance analysis of MCs
with infinite states, including multi-class queueing net-
works. Kulkarni et al. [27] examine an admission control
protocol for multi-class traffic with service priorities in
high-speed networks. They assign different size buffers to
each class and derive policies to guarantee per-class QoS.
Stolyar [38] discusses the stability of multi-class queueing
networks, whose stochastic process is a continuous time
MC. He shows that the sequence of underlying stochastic
processes converges to a fluid process with sample paths
defined as fixed points of a special operator and defines
the conditions under which the network is stable. In the
same context, Chen [10] studies the fluid approximation
and stability of a multi-class queueing network.

Gurvich [23] provides an overview of the design and
control of multi-class queueing networks (M/M/N queues
with multiple types of customers and many servers). He
analyzes the V-Model of skills-based routing, and ex-
amines how different customer classes are scheduled to
servers and how many servers are required to minimize
staffing and waiting costs. Sethuraman et al. [37] pro-
pose that globally optimal scheduling for a multi-class
system with parallel queues reduces to finding the optimal
routing matrix under the assumption that the optimal se-
quencing strategy for each server is a simple static priority
policy. Atar et al. [1] also consider asymptotic optimality
in a multi-class queueing system with many exponential
servers, under the presence of heavy traffic.

In the context of computer systems, Gemikonakli et
al. [20] model the performance of a virtualized server us-
ing a multi-class M/M/1 queueing model, where applica-
tions of different rates arrive in each queue. They analyze
the stability, backlog and throughput of the system using
an MC model. In a system that resembles a multi-class
queue, Yolken et al. [46] propose a game-based capac-
ity allocation system, where each client receives service
rate proportional to the bid on resources he submitted
to the system operator. Each client has a flow of jobs
and although applications are serviced in a FCFS manner,
service rates vary across jobs.



7. Conclusions

We have presented ARQ, a QoS-aware admission control
protocol for heterogeneous datacenters that complements
Paragon. ARQ divides applications to classes based on
their resource quality requirements and queues them sepa-
rately in a multi-class queueing network. ARQ is derived
from validated queueing models, and it improves the sys-
tem’s throughput by allowing easy-to-satisfy workloads to
be serviced before demanding applications. It preserves
each application’s QoS requirements by limiting waiting
time, and diverging workloads to other queues when nec-
essary. ARQ can also be enhanced with optimizations,
such as SJF and priority-aware scheduling. We have eval-
uated Paragon with ARQ in both small and large-scale
experiments and have shown that for an oversubscribed
scenario with 8,500 applications on 1,000 servers 99%
of workloads experience less than 10% degradation com-
pared to 79% of workloads without ARQ.
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