Enabling Realistic Fine-Grain Voltage Scaling with Reconfigurable Power Distribution Networks

Waclaw Godycki, Christopher Torng, Ivan Bukreyev Alyssa Apsel, Christopher Batten

> School of Electrical and Computer Engineering Cornell University

> 47th Int'l Symp. on Microarchitecture, Dec 2014

Key Benefit of IVR

Reduced System Cost

Challenges of IVR

- Integrated energy-storage elements have low energy densities
- Low switching speeds with high parasitic losses

Key Benefit of IVR

Reduced System Cost

Challenges of IVR

- Integrated energy-storage elements have low energy densities
- Low switching speeds with high parasitic losses

A New Era of IVR

- Energy storage elements have slightly improved energy densities
- Faster switches with low parasitic losses

Motivation

Motivation: Fine-Grain Voltage Scaling Opportunities

Motivation

Motivation: Fine-Grain Voltage Scaling Opportunities

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Circuits: RPDN

Enable sprinting cores to dynamically borrow energy storage from resting cores

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Circuits: RPDN

Enable sprinting cores to dynamically borrow energy storage from resting cores

Methodology and Evaluation

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Circuits: RPDN

Enable sprinting cores to dynamically borrow energy storage from resting cores

Methodology and Evaluation

Architecture and Circuits Co-Design Approach

(Active Waiting)

r

r r

(Active Waiting)

DVFS Mode Pattern

r r

Non-Ideal FGVS: Space and Time

FG-SYNC+: Summary of FGVS Potential

Exploiting fine-grain voltage scaling requires:

- FGVS in Level: at least three levels and four levels results in additional benefits
- FGVS in Space: per-core voltage control
- FGVS in Time: voltage settling response times of 100 ns or faster

FG-SYNC+: Summary of FGVS Potential

Exploiting fine-grain voltage scaling requires:

- FGVS in Level: at least three levels and four levels results in additional benefits
- **FGVS in Space**: per-core voltage control
- FGVS in Time: voltage settling response times of 100 ns or faster

How do we design a power distribution network that can enable fine-grain voltage scaling?

FG-SYNC+: Summary of FGVS Potential

Exploiting fine-grain voltage scaling requires:

- FGVS in Level: at least three levels and four levels results in additional benefits
- FGVS in Space: per-core voltage control
- FGVS in Time: voltage settling response times of 100 ns or faster

How do we design a power distribution network that can enable fine-grain voltage scaling?

Architecture and Circuits Co-Design Approach

Talk Outline

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Circuits: RPDN

Enable sprinting cores to dynamically borrow energy storage from resting cores

Methodology and Evaluation

Architecture and Circuits Co-Design Approach
Motivation

PDN: Basic Regulators

The three primary types of step-down voltage regulators are linear regulators, inductor-based switching regulators (buck), and capacitor-based switching regulators.

Motivation

How to design sophisticated control circuitry?

How to use multiple phases to reduce ripple?

How to size the energy storage?

How to choose the switch-to-cap area ratio?

Motivation

MAVR: Multiple Adjustable Voltage Regulators

How to design sophisticated control circuitry?

How to use multiple phases to reduce ripple?

How to size the energy storage?

How to choose the switch-to-cap area ratio?

How to design sophisticated control circuitry?

How to use multiple phases to reduce ripple?

How to size the energy storage?

How to choose the switch-to-cap area ratio?

MAVR

MAVR

Key Observation

MAVR requires enough area for each regulator to independently support all power modes

Power limits mean FG-SYNC+ is designed such that only 1 or 2 cores are ever super-sprinting at once

IVI*F*

RPDN: Reconfigurable Power Distribution Networks

Cornell University

RPDN: Reconfigurable Power Distribution Networks

Cornell University

RPDN: Reconfigurable Power Distribution Networks

Cornell University

SPICE-Level Transient Response + Leakage Benefits

SPICE-Level Transient Response + Leakage Benefits

Talk Outline

FGVS Architecture: FG-SYNC+

Use lightweight software hints and lookup tables derived offline to enable fast multi-level voltage configuration

FGVS Circuits: RPDN

Enable sprinting cores to dynamically borrow energy storage from resting cores

Methodology and Evaluation

Architecture and Circuits Co-Design Approach

Evaluation

Evaluation

Take-Away Points

- Architecture and Mixed-Signal Circuit Co-Design can maximize the system-level benefit of the emerging trend towards integrated voltage regulation.
- Lightweight hints can provide an elegant solution to informing hardware of fine-grain activity imbalance.
- Reconfigurable Power Distribution Networks can enable realistic FGVS by significantly reducing regulator area overhead and improving voltage-settling response times by an order of magnitude.

This work was supported in part by the National Science Foundation (NSF), a Spork Fellowship, and donations from Intel Corporation and Synopsys, Inc.