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Ideal Fine-Grain Voltage Scaling: Breadth-First Search
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Non-Ideal FGVS: Different Levels
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Non-Ideal FGVS: Space and Time
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FG-SYNC+: Summary of FGVS Potential

Exploiting fine-grain voltage scaling requires:

I FGVS in Level: at least three levels and four levels
results in additional benefits

I FGVS in Space: per-core voltage control

I FGVS in Time: voltage settling response times of
100 ns or faster

How do we design a power distribution network that
can enable fine-grain voltage scaling?

Architecture and Circuits Co-Design Approach
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PDN: Basic Regulators

The three primary types of step-down voltage regulators are linear
regulators, inductor-based switching regulators (buck), and

capacitor-based switching regulators.
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Take-Away Points

I Architecture and Mixed-Signal Circuit Co-Design can maximize
the system-level benefit of the emerging trend towards integrated
voltage regulation.

I Lightweight hints can provide an elegant solution to informing
hardware of fine-grain activity imbalance.

I Reconfigurable Power Distribution Networks can enable
realistic FGVS by significantly reducing regulator area overhead
and improving voltage-settling response times by an order of
magnitude.
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