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1 Abstract

Recent work has shown that monolithic integration of voltage regulators will be
feasible in the near future, enabling reduced system cost and the potential for
fine-grain voltage scaling (FGVS). In this project, we use architecture-level
modeling to explore a new dynamic voltage/frequency scaling controller called the
fine-grain synchronization controller (FG-SYNC+). FG-SYNC+ enables improved
performance and energy efficiency at similar average power for multithreaded
applications with activity imbalance. We then use circuit-level modeling to explore
various approaches to organizing on-chip voltage regulation, including a new
approach called reconfigurable power distribution networks (RPDNs). RPDNs allow
one regulator to “borrow” energy storage from regulators associated with
underutilized cores resulting in improved area/power efficiency and faster
response times. We evaluate FG-SYNC+ and RPDN using a vertically integrated
research methodology, and our results demonstrate a 10–50% performance and
10–70% energy-efficiency improvement on the majority of the applications studied
compared to no FGVS, yet RPDN uses 40% less area compared to a more traditional
per-core regulation scheme.

2 Motivation

Monolithic integration using a standard CMOS process provides a tremendous cost
incentive for integrating closed-loop voltage regulators on the die. Recent technology
trends suggest that it is now becoming feasible to integrate switching regulators
on-chip (e.g., Intel Haswell), enabling reduced system cost as well as the potential
for fine-grain voltage scaling (FGVS) to exploit fine-grain activity imbalance in
multi-threaded applications for performance and energy efficiency benefits.

Integrated Voltage Regulation in
Intel Haswell Processors
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The PC ecosystem has lagged phones and tablets in 
power management. For many years, voltage regulators 
(VRs) for PC processors have been a staid and boring af-
fair, delivering relatively incremental improvements. Tra-
ditional VRs are bulky and consume high-value mother-
board real estate close to the processor, but they operate at 
very low frequencies (e.g., 1MHz) compared with modern 
1–3GHz processors. 

Intel’s introduction of fully integrated voltage regula-
tors (FIVRs) in its newest Core processor, code-named 
Haswell, is fundamentally changing the power-delivery land-
scape. This innovation is the technical underpinning for 
new platform-level power management that adopts and in 
some aspects exceeds the capabilities of mobile systems, 
radically reducing average power consumption for the sys-
tem and improving responsiveness. The result is one of the 
greatest increases in mobile-PC battery life ever, as evi-
denced in the initial Haswell-based notebooks that are now 
shipping. 

Specifically, the FIVR’s low latency enables more-
agile power management that can quickly turn platform 
components on or off, enabling the system to spend most 
of its time in a deep-sleep state. The OS and applications, 
however, remain alive and connected to the network, and 
the system swiftly responds to external stimuli. For exam-
ple, in Windows 8 Connected Standby mode, Intel claims 
the Haswell platform reduces power consumption by 20x 
compared with Sandy Bridge, while still meeting the 300ms 
wake-up requirement.  

Looking beyond the PC, the implications are signifi-
cant across a wide range of markets. Properly designed IP 
blocks such as CPUs, GPUs, FPGA fabrics, wireless 
modems, and caches can all take advantage of a FIVR. Ap-
plications from smartphones to servers all benefit from 

improvements in power efficiency. Although Intel is the 
first to bring FIVRs to market, others will eventually 
follow. 

Tiny Capacitors and Inductors 
The FIVR is tightly coupled to Haswell, using both on-die 
and package-level integration. It complements an external 
voltage-regulator module (VRM) to deliver power to the 
processor. The FIVR’s main input voltage is supplied by 
the VRM at 1.8V (nominal) but is dynamically adjusted via 
serial voltage identification (SVID) that ranges between 
1.6V and 2.3V. The output voltages that the FIVR supplies 
to the different die regions vary from about 0.65V to 2.0V. 

Conceptually, the VRM is optimized for high con-
version efficiency and acts as a slow and coarse-grained 

Figure 1. Block diagram of Haswell’s power distribution. 
The FIVR converts a single voltage, VCCIN (1.8V nominal), 
into several independent voltage rails, each of which varies 
dynamically according to the needs of the circuit.  
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Fine-Grain Activity Imbalance in
Multi-Threaded Applications
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3 Target System

Our target system is an embedded processor composed
of: eight in-order, single-issue, five-stage, RISC cores;
private, coherent 16 KB instruction and data L1 caches;
and a shared 512 KB unified L2 cache. We implemented
the core and L1 memory system for this design in RTL and
used a commercial standard-cell-based CAD toolflow
targeting a TSMC 65 nm process to generate layout. Each
core can run at 333 MHz at 1 V and the full eight-core
system is approximately 6 mm2. Target System Layout

4 Types of Integrated Voltage Regulation

The three primary types of step-down voltage regulators are linear regulators (e.g.,
LDOs), inductor-based switching regulators (e.g., buck), and capacitor-based
switching regulators (e.g., switched-capacitor).

5 FGVS Architecture Design: FG-SYNC+

We explore a new FGVS controller called the fine-grain synchronization controller
(FG-SYNC+) that exploits fine-grain scaling in level (i.e., many voltage levels), space
(i.e., per-core regulation), and time (i.e., fast transition times between levels) to
improve performance and energy efficiency while maintaining similar average power.
FG-SYNC+ uses a thread library instrumented with hint instructions to inform the
hardware about which cores are doing useful work vs. useless work (e.g., waiting for
a task, waiting at a barrier).
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In these application activity plots illustrating FG-SYNC+, rows show controller
decisions per-core and black strips above cores show when that core is active. We
compare SPLASH-2 LU factorization with two vs. four voltage domains (a,b). We also
illustrate the impact of slow voltage-settling response times over a small excerpt from
radix sort (c,d).

Fine-Grain Voltage Scaling with FG-SYNC+

We use three sensitivity studies to understand the implication of varying: (1) the
number of voltage levels, (2) the number of voltage domains, (3) and voltage-settling
response times.

0.7/1.0V 1.0/1.15V

1.0/1.33V

0.7/1.0/1.33V0.7/1.0/1.15V

0.7/1.0/1.15/1.33V

2 Domains 4 Domains

8 Domains

1000 ns 100 ns

0 ns

isopower

isopower

Increasing

sprinting

levels

isopower

Increasing

number of

domains

Decreasing

response

time

iso
power

N
o
rm

. 
E

n
e
rg

y
 E

ff
ic

ie
n

c
y 2.0

1.8

1.6

1.4

1.2

1.0

0.8
0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

Speedup Speedup

N
o
rm

. 
E

n
e
rg

y
 E

ff
ic

ie
n

c
y 2.0

1.8

1.6

1.4

1.2

1.0

0.8
1.0 1.1 1.2 1.3 1.4 1.5 0.4 0.6 0.8 1.0 1.2 1.4

2-Level Controllers 3-Level vs. 4-Level Controllers

Different Numbers of Domains Different Response Times

Speedup Speedup

To exploit fine-grain activity imbalance, (1) at least three levels are required and four
levels helps further; (2) more domains results in improved performance and energy
efficiency; (3) response times of 100 ns or faster are required.

6 FGVS Circuit Design: RPDN

Shown in (a), we use a single fixed-voltage regulator (SFVR) as a baseline to
compare against more sophisticated regulation schemes. We choose a configuration
that can provide 80% efficiency at 1 V with an area of 0.26 mm2 (4% of the core/L1
area). Shown in (b), multiple adjustable voltage regulators (MAVR) enable
fine-grain voltage scaling in space and level. The power efficiency vs. area plot in (c)
shows how we choose a per-core regulator area of 0.08 mm2 to allow efficient voltage
regulation for super-sprint. Note that designing for super-sprint significantly
over-provisions for rest, nominal, and sprint modes; also, only one or two cores will
ever be using the super-sprint mode at any given time.

Core 1 with Adjustable Regulator

Vin

AVR
Control

Unit

Core

Phase 0

Core 0 with Adjustable Regulator

(b) MAVR Abstract Schematic

Vin Flyback Cap

Core 0

SFVR
Control

Unit

S
P P

Vout = Vin/2

S

Phase 0

Core 1 Core 7

(a) SFVR Abstract Schematic

80

75

70

65

60

55

0.02 0.04 0.06 0.08

P
o
w

e
r 

E
ff
ic

ie
n

c
y
 (

%
)

Area (mm2)

Nominal
Mode

Super-Sprint
Mode

0.08 mm2

80% Efficiency
at Super-Sprint

Chosen Design Point

(c) MAVR Efficiency vs. Area

Reconfigurable Power Distribution Networks

We propose a new approach called reconfigurable power distribution networks
(RPDNs). As shown below, RPDNs include many small “unit cells” that each contain
the flyback capacitance and regulator switches required for a SC regulator. These
cells can be flexibly reconfigured through a switch fabric and combined with per-core
control circuitry to effectively create multiple differently-sized SC regulators
“on-demand” for cores. The inset shows how 16 unit cells can be allocated to four
cores operating in four different modes.
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MAVR Transient Response

RPDN Transient Response

The RPDN architecture provides area
savings of 40% over MAVR when
supporting per-core supply regulation
across the same number of cores. In
addition to reducing area overhead,
RPDN significantly reduces the
voltage-settling response time. The
waveforms shown here illustrate the
difference in the transient responses for
RPDN and MAVR when transitioning
between modes. For RPDN, the
response time for the nominal to
super-sprint transition takes 150 ns while
the same transition takes 2.9 µs with
MAVR.

7 Evaluation

Evaluation Methodology

We use a vertically integrated evaluation methodology that uses a mix of circuit-,
gate-, register-transfer-, and architectural-level modeling.
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Evaluation Results

We evaluate the performance, energy
efficiency, and power of applications on
our target system with each PDN. We use
a 4-level, 8-domain FG-SYNC+ controller
and account for realistic voltage-settling
response times and regulator power
efficiencies in each DVFS mode for
varying load currents. 1.0
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Our promising results suggest that there is an important opportunity for architecture
and circuit co-design of integrated voltage regulation in future systems.
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