
Appears in the Proceedings of the RISC-V Day Workshop at the 51st Int’l Symp. on Microarchitecture (MICRO-51)

A New Era of Silicon Prototyping in
Computer Architecture Research

Christopher Torng, Shunning Jiang, Khalid Al-Hawaj, Ivan Bukreyev, Berkin Ilbeyi,
Tuan Ta, Lin Cheng, Julian Puscar, Ian Galton, and Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{clt67,cbatten}@cornell.edu

Abstract—Silicon prototyping has historically played a key
role in computer architecture research by validating assump-
tions, enabling measurement of real system-level performance
and energy efficiency, and grounding simulation-based studies.
The demand for silicon prototyping has risen dramatically due
to a surge in hardware innovation driven by fast-paced advances
in software (e.g., machine learning applications). Silicon proto-
typing in this climate further provides critical answers to busi-
ness concerns including estimated total cost of ownership and
product/market fit. However, in conventional wisdom, building
chips is a massive undertaking that is simply out of reach for
most researchers. In this paper, we argue that advancements in
open-source infrastructure for the RISC-V ecosystem are syn-
ergizing with continued development of productive open-source
design tools to significantly reduce design challenges. At the
same time, multi-project wafer services have begun supporting
advanced technology nodes with very small minimum sizes for
significantly reduced costs, bringing forth a new era of silicon
prototyping in which anyone can build prototypes. This paper
provides a case study for cost-effective and productive silicon
prototyping and describes how we paired the RISC-V ecosys-
tem with productive open-source design tools to build a small
1⇥1.25 mm RISC-V system in TSMC 28 nm. The prototype is
written in an open-source Python-based hardware modeling lan-
guage, includes a fully synthesizable PLL written in SystemVer-
ilog, and was built with an open-source modular VLSI build sys-
tem to organize the ASIC toolflow. We hope that our experience
convinces architects that silicon prototyping of RISC-V systems
is both feasible and attractive for supporting future research.

We present a case study for cost-effective and produc-
tive silicon prototyping and describe our experience building
BRGTC2 (i.e., Batten Research Group Test Chip 2), a small
1⇥1.25 mm 6.7M-transistor RISC-V system in TSMC 28 nm.
BRGTC2 is designed and implemented using PyMTL, a new
Python-based hardware modeling framework [5, 6]. Fig-
ure 1 shows the chip block diagram including four RISC-V
RV32IMAF cores which share a 32kB instruction cache,
32kB data cache, and single-precision floating-point unit
along with microarchitectural mechanisms to mitigate the
performance impact of resource sharing. The chip also in-
cludes a fully synthesizable high-performance PLL written
in SystemVerilog and ported from the Celerity SoC [1, 4].
In this paper, we provide an overview of various key as-
pects of our silicon prototyping experience, including our
timeline and costs, open-source software toolchain and ISA,
open-source cycle-level modeling, open-source RTL model-
ing, open-source modular VLSI build system, and synthe-
sizable analog IP. The landscape of connected open-source
tools for computer architecture research now extends across
the computing stack, making RISC-V silicon prototypes both
feasible and attractive as vehicles for future research.

Timeline and Costs – Our team of seven graduate stu-
dents completed the 28 nm SoC in two months. This design

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Figure 1. Block
Diagram of BRGTC2 –
We paired the RISC-V
ecosystem with
productive open-source
design tools to build a
1⇥1.25 mm RISC-V
system in TSMC 28 nm
with seven graduate
students in two months.

Taped out: May 2018
Silicon: Fall 2018

period encompassed developing simple applications, port-
ing an in-house work-stealing runtime to our RISC-V target,
cycle-level design-space exploration of sharing architectures
in gem5 [3], RTL development and testing of each compo-
nent including SRAMs (see Figure 1), composition testing at
RTL and gate level, SPICE-level modeling of the synthesiz-
able PLL, IO floorplanning and physical design, post-place-
and-route performance tuning, and final tapeout. About one
person-month was required for a student with prior ASIC ex-
perience to bring up the TSMC 28 nm design flow for the first
time, including the process libraries, standard cell libraries,
IO cell libraries, Synopsys DC, Cadence Innovus, and Cali-
bre signoff tools, in order to pass DRC/LVS for dummy logic
surrounded by staggered IO pads and no SRAM blocks. The
entire chip RTL was designed in the final one-month period
by seven graduate students using PyMTL for design, test, and
composition. Multi-project wafer services have recently be-
gun to support advanced technology nodes (e.g., 28 nm) with
very small minimum sizes (e.g., 1⇥1 mm) at very reasonable
pricing (e.g., $14K). We chose the Tiny2 program with MO-
SIS, selecting a 1⇥1.25 mm die size and one hundred parts
for about $18K. Other services are also available for univer-
sity researchers at similar pricing (e.g., Muse Semiconduc-
tor [7]). Other costs included packaging (less than $2K for
twenty parts), board costs (less than $1K for PCB and assem-
bly), graduate student salaries, physical IP costs, and EDA
tool licenses. The open-source RISC-V ecosystem helped us
avoid any costs associated with the ISA and also helped avoid
long communication delays with third parties, which can take
months to resolve and can significantly delay a time-sensitive
project. Many small benefits also made a difference (e.g., a
very short but descriptive RISC-V ISA spec saving us from
reading thousand-page specs, no time and effort required to
bring up and modify a software toolchain, open-source VLSI
implementations of previously taped out RISC-V SoCs for
reference including Rocket [2] and Celerity [1, 4]).

Open-Source Software and ISA – The RISC-V software
toolchain was tremendously useful as an out-of-the-box and
standard solution for compiling applications for our system.
In particular, we leveraged recent GCC support with options
targeting RV32IMAF, and we were also able to use inline as-
sembly in our in-house work-stealing runtime library to im-
plement hints and to track stats. The RISC-V ISA itself was
also a tremendous success. Because the ISA is designed as
a small base set of instructions with modular extensions, we
were able to apply an incremental design approach by writ-
ing RTL to first support the base set (i.e., RV32I), then add
multiply/divide support (i.e., RV32IM), then add atomic sup-
port (i.e., RV32IMA), and finally add floating-point support
(i.e., RV32IMAF). We also leveraged the control and status
registers for many custom purposes including tracking stats.

Open-Source Cycle-Level Modeling – The gem5 simu-
lator system [3] is a popular platform for simulator-based
cycle-level modeling in the computer architecture research
community. Multicore support has recently been added for
RISC-V [9], providing computer architects a critical tool for
cycle-level design-space exploration of complex RISC-V sys-
tems. We leveraged RISC-V support on gem5 to explore our
sharing architecture shown in Figure 1, which shares caching
resources and long-latency functional units. We swept im-
portant parameters including the latency to shared resources,
the number of each resource to share, the impact of memory
coalescing techniques, the size and capacity of caches and
buffers, and the impact of various arbitration schemes.

Open-Source RTL Modeling – We paired the RISC-V
ecosystem with a new Python-based hardware modeling
framework, PyMTL [5, 6], to build our RISC-V system.
PyMTL leverages the Python programming language to cre-
ate a highly productive and flexible environment for test, de-
sign, and composition in BRGTC2. Testing in PyMTL en-
ables access to full-featured software testing frameworks built
for Python (e.g., pytest [8]), providing useful features in-
cluding automatic test discovery, modular fixtures, and rich
customizable plugins. We leveraged PyMTL support for
two-state simulation and state initialization to one, zero, and
random values. Designing in PyMTL was more accessible
than in Verilog for students new to RTL design, avoiding
many well-known quirks of the older language while also
enabling a familiar style of debugging in Python. Compo-
sition in PyMTL enabled powerful multi-level co-simulation
of functional-level, cycle-level, and RTL models. For exam-
ple, to debug an issue with atomics, we swapped in a func-
tional model of the cache to narrow the bug location down
to other components. The PyMTL framework generates Ver-
ilog for our standard ASIC toolflow. Overall, we found the
PyMTL framework to be a tremendous success for designing
a RISC-V system from scratch with rigorous testing support.

Open-Source ASIC Flow Organization – The availability
of high-quality, community-developed reference ASIC flows
is a tremendously useful resource for both new and experi-
enced chip designers. We designed our RISC-V silicon pro-
totype (see Figure 2) using a modular VLSI build system1,
which we have open-sourced as a reference organization of

1Modular VLSI Build System: https://github.com/cornell-brg/alloy-asic

1.25 mm

1.
0

m
m

I$
Tag

I$
Data

Bloom
Filter
Accel

Shared
MDU

Shared
FPU

L0

P
L
L

I$
Tag

I$
Data

D$
Tag

D$
Data

D$
Tag

D$
Data

Core

CoreCore

Core

Figure 2. Chip Plot of BRGTC2 – The research goal of the chip
was to provide detailed performance, area, and energy numbers for
various projects in our research group, while also evaluating the
usability of synthesizable analog IP and experimenting with
PyMTL support for ASICs.

the ASIC toolflow for architecture and VLSI researchers in-
terested in silicon prototyping. One of the most challeng-
ing aspects of working with ASIC flows is managing the
many moving pieces (e.g., PDK, physical IP libraries, ASIC-
specific tools), which come from many different vendors and
yet must still be made to work together coherently. Despite
the great effort required to successfully assemble a working
ASIC flow, teams typically end up with little reuse across
projects as designers frequently tweak steps, target different
technology nodes, or even use different vendors for physical
IP. Furthermore, while architectural design-space exploration
tends to require just a few stages (e.g., synthesis, simple floor-
planning, no IO cells, need not be DRC or LVS clean), a
full tapeout requires many more stages to guarantee manu-
facturability. The key idea behind a modular VLSI build sys-
tem is to avoid rigidly structured ASIC flows that cannot be
repurposed, and to instead break the ASIC flow into modu-
lar steps that can be re-assembled into different flows. With
a modular build system, architecture projects can omit de-
tailed steps from a chip flow (e.g., use default floorplan, skip
IO pads, skip DRC/LVS), while a VLSI project can include
key steps for VLSI research (e.g., custom floorplanning for
synchronizer research), while reusing the common steps in
between. Our approach also includes the idea of an ASIC
design kit, which is the specific set of physical backend files
required to successfully build chips, as well as a unified and
standard interface to those files. A well-defined interface en-
ables swapping process and IP libraries without modification
to the scripts that use them. Finally, this approach embraces
plugins that hook into steps across the entire ASIC flow for
design-specific customization. We have found that a modular
ASIC flow enables productive reuse of steps across projects,
and we have open-sourced our flow for reference.

Synthesizable Analog IP – Our RISC-V system is clocked
by a synthesizable PLL that was first designed for use in
the Celerity SoC [1, 4], but has been adapted for use in a

TSMC 28 nm process. Management of analog IP is tradi-
tionally a significant challenge in the design of a complex
SoC. Mixed-signal crossings between analog and digital do-
mains are well-known sources of costly design mistakes, and
the communication between analog and digital design teams
adds project management overhead that is nevertheless cru-
cial to the overall success of the chip. Synthesizable analog
IP is an approach that migrates blocks that are traditionally
full-custom into the digital domain to mitigate these chal-
lenges. At a high level, the PLL relies on an array of inter-
nal ring oscillators with varying numbers of stages and con-
figurable load capacitances (i.e., configurable NAND2 loads)
controlled by a digital feedback loop. Our design experience
using this PLL was a success, as we would not have been able
to quickly design a PLL to generate programmable clocks
from scratch with confidence. To test our design, we ported
our PLL as a GDS from Cadence Innovus to Virtuoso, where
we ran SPICE-level extracted simulations. The synthesizable
PLL is planned to be open-sourced, which will provide archi-
tects an additional useful tool for silicon prototyping.

Final Thoughts – Silicon prototyping is a key aspect of
computer architecture research with rising demand from re-
searchers in both industry and academia. We argue that
advancements in open-source infrastructure for the RISC-V
software/hardware ecosystem, the flexibility of new produc-
tive open-source design tools (e.g., PyMTL, open reference
ASIC flows, synthesizable analog IP), and the availability of
multi-project wafer services in advanced technology nodes
with small minimum sizes have significantly reduced both
design costs and challenges, bringing forth a new era of sil-
icon prototyping in which anyone can build prototypes. We
hope that our overview of BRGTC2 helps convince architects
that the broader ecosystem of connected open-source tools for
computer architecture research now extends across the com-
puting stack, making RISC-V silicon prototypes both feasible
and attractive as vehicles for future research.

Acknowledgements – This work was supported in part
by NSF CRI Award #1512937, NSF SHF Award #1527065,
DARPA POSH Award #FA8650-18-2-7852, and equipment,
tool, and/or physical IP donations from Intel, Xilinx, Syn-
opsys, Cadence, and ARM. We thank U.C. Berkeley, the
RISC-V Foundation, and other contributors to the RISC-V
software and hardware ecosystem. We thank Shreesha
Srinath for his support and work on sharing architectures
which motivated our design. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s) and do
not necessarily reflect the views of any funding agency.

REFERENCES

[1] T. Ajayi et al. Celerity: An Open Source RISC-V Tiered Accelerator
Fabric. Symp. on High Performance Chips (Hot Chips), Aug 2017.

[2] K. Asanović et al. The Rocket Chip Generator. Technical report,
EECS Department, University of California, Berkeley, Apr 2016.

[3] N. Binkert et al. The gem5 Simulator. SIGARCH Computer
Architecture News, 39(2):1–7, Aug 2011.

[4] S. Davidson et al. The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips. IEEE Micro, Mar 2018.

[5] S. Jiang, B. Ilbeyi, and C. Batten. Mamba: closing the performance
gap in productive hardware development frameworks. Design
Automation Conf., Jun 2018.

[6] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework
for Vertically Integrated Computer Architecture Research. Int’l Symp.
on Microarchitecture, Dec 2014.

[7] Muse Semiconductor. Online Webpage, 2018 (accessed August 20,
2018). https://www.musesemi.com.

[8] pytest: helps you write better programs. Online Webpage, 2018
(accessed August 20, 2018). https://pytest.org.

[9] T. Ta, L. Cheng, and C. Batten. Simulating Multi-Core RISC-V
Systems in gem5. Workshop on Computer Architecture Research with
RISC-V, Jun 2018.

