Experiences Using a Novel Python-Based Hardware Modeling Framework for Computer Architecture Test Chips

This Poster...

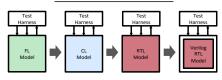
Describes a taped-out 2x2 mm 1.3M-transistor test chip in IBM 130nm designed and implemented using PyMTL, a novel Python-based hardware modeling framework

Goal of tapeout was to demonstrate the ability of this framework to enable Agile hardware design flows

PyMTL: A Unified Python-Based Framework for FL, CL, and RTL Modeling

Functional-Level Modeling (FL)

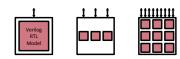
- Behavior


Cycle-Level Modeling (CL)

- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling (RTL)

- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing


What Does PyMTL Enable?

- Incremental refinement from algorithm to hardware implementation
- Automated testing and integration of PyMTL-generated Verilog

3. Multi-level co-simulation of FL, CL, and RTL models

4. Construction of highly parameterized RTL chip generators

PyMTL for Computer Architecture Test Chips

Why Build Computer Architecture Test Chips?

Key Aspect of Agile Hardware Design

- Rapid design iteration
- "Building the right thing"
- Reduces cost of validation

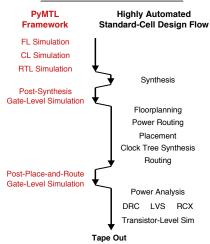
Benefits Research

- Builds research credibility
- Highly reliable power and energy estimates for new architecture techniques

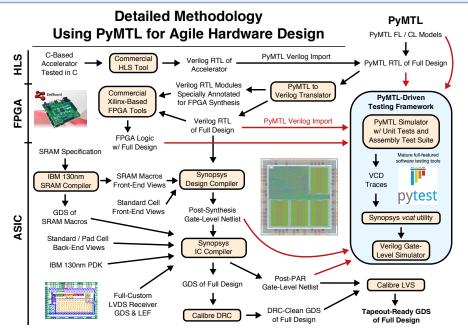
* Adapted from Yunsup Lee IEEE Micro 2016

Design Methodologies: Large Chips vs. Small Chips

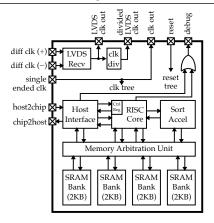
Large-Scale Commercial Chips


- High-volume and high-yield production
- Overcome design challenges with large teams

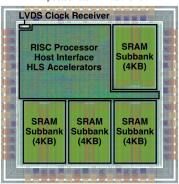
Computer Architecture Test Chips


- Low-volume and reasonable-yield production
- Overcome design challenges despite small teams and limited resources

→ Provide small teams with highly productive development frameworks to shorten time to tapeout


PvMTL for Agile Hardware Design

Small teams push RTL to layout with validated gate-level netlist within a day


PyMTL in Practice: BRG Test Chip 1

Testing Plans After Fabrication

The testing platform enables running small test programs on BRGTC1 to compare the performance and energy of pure-software kernels versus the HLS-generated sorting accelerator

Taped out in March 2016 Expected return in Fall 2016

Taped-out Layout for BRGTC1

2x2mm 1.3M transistors in IBM 130nm RISC processor, 16KB SRAM HLS-generated accelerators Static Timing Analysis Freq. @ 246 MHz